

TECHNICAL DATA SHEET

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803

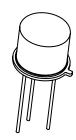
Website: http://www.microsemi.com

NPN POWER SILICON TRANSISTOR

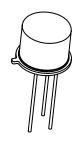
Qualified per MIL-PRF-19500/394

DEVICES

2N4150 2N5237 2N5238 2N4150S 2N5237S 2N5238S JAN
JANTX
JANTXV
JANS


ABSOLUTE MAXIMUM RATINGS ($T_C = +25^{\circ}C$ unless otherwise noted)

Parameters / Test Conditions	Symbol	2N4150 2N4150S	2N5237 2N5237S	2N5238 2N5238S	Unit
Collector-Emitter Voltage	V_{CEO}	70	120	170	Vdc
Collector-Base Voltage	V _{CBO}	100	150	200	Vdc
Emitter-Base Voltage	V_{EBO}	10			Vdc
Collector Current	I_{C}	10		Adc	
Total Power Dissipation @ $T_A = +25^{\circ}C^{(1)}$ @ $T_C = +25^{\circ}C^{(2)}$	P_{T}	1.0 15		W	
Operating & Storage Junction Temperature Range T_j , T_{stg} -65 to		-65 to +200		°C	
Thermal Resistance, Junction-to Case Junction- to Ambient	$R_{\theta JC} \\ R_{\theta JA}$	10 175			°C/W


- 1) Derate linearly @ $5.7 \text{mW/}^{\circ}\text{C}$ for $T_A > +25 ^{\circ}\text{C}$
- 2) Derate linearly @ $100 \text{mW/}^{\circ}\text{C}$ for $T_C > +25^{\circ}\text{C}$

ELECTRICAL CHARACTERISTICS ($T_A = +25^{\circ}C$, unless otherwise noted)

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS				•	
Collector-Emitter Breakdown Voltage $I_C = 0.1 \text{mAdc}$	2N4150, 2N4150S 2N5237, 2N5237S 2N5238, 2N5238S	V _{(BR)CEO}	70 120 170		Vdc
Collector-Emitter Cutoff Current $V_{BE} = 0.5 \text{Vdc}, V_{CE} = 60 \text{Vdc}$ $V_{BE} = 0.5 \text{Vdc}, V_{CE} = 110 \text{Vdc}$ $V_{BE} = 0.5 \text{Vdc}, V_{CE} = 160 \text{Vdc}$	2N4150, 2N4150S 2N5237, 2N5237S 2N5238, 2N5238S	I _{CEX}		10 10 10	μAdc
$\begin{aligned} & \text{Collector-Emitter Cutoff Current} \\ & V_{\text{CE}} = 60 \text{Vdc} \\ & V_{\text{CE}} = 110 \text{Vdc} \\ & V_{\text{CE}} = 160 \text{Vdc} \end{aligned}$	2N4150, 2N4150S 2N5237, 2N5237S 2N5238, 2N5238S	I _{CEO}		10 10 10	μAdc
Emitter-Base Cutoff Current $V_{EB} = 7.0 Vdc$ $V_{EB} = 5.0 Vdc$		I_{EBO}		10 0.1	μAdc

TO-5 2N4150, 2N5237, 2N5238

TO-39 (TO-205AD) 2N4150S, 2N5237S, 2N5238S

TECHNICAL DATA SHEET

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978)

1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com

NPN POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/394

ELECTRICAL CHARACTERISTICS ($T_A = +25$ °C, unless otherwise noted) (CONT.)

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Collector-Base Cutoff Current					
$V_{CB} = 100 \text{Vdc}$ $V_{CB} = 150 \text{Vdc}$ $V_{CB} = 200 \text{Vdc}$ $V_{CB} = 80 \text{Vdc}$	2N4150, 2N4150S 2N5237, 2N5237S 2N5238, 2N5238S All Types	I_{CBO}		10 10 10 0.1	μAdc
ON CHARACTERISTICS (3)					
Forward-Current Transfer Ratio $I_C = 1.0 Adc$, $V_{CE} = 5.0 Vdc$ $I_C = 5.0 Adc$, $V_{CE} = 5.0 Vdc$ $I_C = 10 Adc$, $V_{CE} = 5.0 Vdc$	2N4150, 2N4150S 2N5237, 2N5237S 2N5238, 2N5238S All Types All Types	h _{FE}	50 50 50 40 10	200 225 225 120	
Collector-Emitter Saturation Voltage $I_C = 5.0 \text{Adc}, I_B = 0.5 \text{Adc}$ $I_C = 10 \text{Adc}, I_B = 1.0 \text{Adc}$		V _{CE(sat)}		0.6 2.5	Vdc
Base-Emitter Saturation Voltage $I_C = 5.0 Adc$, $I_B = 0.5 Adc$ $I_C = 10 Adc$, $I_B = 1.0 Adc$		V _{BE(sat)}		1.5 25	Vdc

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
$\begin{aligned} & \text{Magnitude of Common Emitter Small-Signal Short-Circuit} \\ & \text{Forward Current Transfer Ratio} \\ & I_C = 0.2 \text{Adc}, V_{CE} = 10 \text{Vdc}, f = 10 \text{MHz} \end{aligned}$		$ \mathrm{h_{fe}} $	1.5	7.5	
Forward Current Transfer Ratio $I_C = 50$ mAdc, $V_{CE} = 5.0$ V, $f = 1.0$ kHz	2N4150, 2N4150S 2N5237, 2N5237S 2N5238, 2N5238S	h_{fe}	40 40 40	160 160 250	
Output Capacitance $V_{CB} = 10 V dc$, $I_E = 0$, $100 kHz \le f \le 1.0 MHz$		C_{obo}		350	pF

SWITCHING CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Delay Time	$V_{CC} = 20 \text{Vdc}, V_{BB} = 5.0 \text{Vdc}$	$t_{\rm d}$		50	ns
Rise Time	$I_C = 5.0 Adc, I_{B1} = 0.5 Adc$	$t_{\rm r}$		500	ns
Storage Time	$V_{CC} = 20 \text{Vdc}, V_{BB} = 5.0 \text{Vdc}$	$t_{\rm s}$		1.5	μs
Fall Time	$I_C = 5.0 Adc, I_{B1} = -I_{B2} = -0.5 Adc$	t_{f}		500	ns

SAFE OPERATING AREA

DC Tests

 $T_C = +25$ °C, 1 Cycle, t = 1.0s

Test 1

 $V_{CE} = 40 \text{Vdc}, I_{C} = 0.22 \text{Adc}$

Test 2

 $V_{CE} = 70 \text{Vdc}, I_C = 90 \text{mAdc}$

Test 3

 $V_{CE} = 120 V dc, I_{C} = 15 mAdc$ 2N5237, 2N52378 $V_{CE} = 170 V dc, I_{C} = 3.5 mAdc$ 2N5238, 2N52388

(3) Pulse Test: Pulse Width = $300\mu s$, Duty Cycle $\leq 2.0\%$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Microsemi manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B