2N6426, 2N6427

2N6426 is a Preferred Device

Darlington Transistors

NPN Silicon

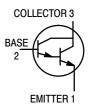
Features

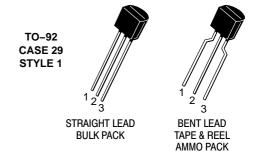
• These are Pb-Free Devices*

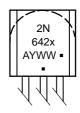
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	40	Vdc
Collector - Base Voltage	V _{CBO}	40	Vdc
Emitter – Base Voltage	V _{EBO}	12	Vdc
Collector Current – Continuous	Ic	500	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	83.3	°C/W


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

x = 6 or 7

A = Assembly Location

Y = Year

WW = Work Week

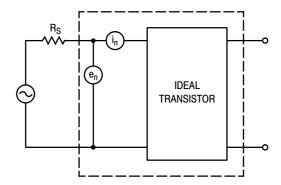
= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.


^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

2N6426, 2N6427

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			•			
Collector – Emitter Breakdown Voltage, (Note 1) (I _C = 10 mAdc, V _{BE} = 0)		V _{(BR)CEO}	40	-	_	Vdc
Collector – Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)		V _{(BR)CBO}	40	-	_	Vdc
Emitter – Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V _{(BR)EBO}	12	-	_	Vdc
Collector Cutoff Current (V _{CE} = 25 Vdc, I _B = 0)		I _{CES}	-	-	1.0	μAdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)		I _{CBO}	-	-	50	nAdc
Emitter Cutoff Current (V _{EB} = 10 Vdc, I _C = 0)		I _{EBO}	-	-	50	nAdc
ON CHARACTERISTICS						
DC Current Gain, (Note 1) (I _C = 10 mAdc, V _{CE} = 5.0 Vdc)	2N6426 2N6427	h _{FE}	20,000 10,000	- -	200,000 100,000	_
$(I_C = 100 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	2N6426 2N6427		30,000 20,000	- -	300,000 200,000	
$(I_C = 500 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	2N6426 2N6427		20,000 14,000	- -	200,000 140,000	
Collector – Emitter Saturation Voltage (I_C = 50 mAdc, I_B = 0.5 mAdc) (I_C = 500 mAdc, I_B = 0.5 mAdc		V _{CE(sat)}		0.71 0.9	1.2 1.5	Vdc
Base – Emitter Saturation Voltage (I _C = 500 mAdc, I _B = 0.5 mAdc)		V _{BE(sat)}	-	1.52	2.0	Vdc
Base – Emitter On Voltage (I _C = 50 mAdc, V _{CE} = 5.0 Vdc)		V _{BE(on)}	_	1.24	1.75	Vdc
SMALL-SIGNAL CHARACTERISTICS						
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	-	5.4	7.0	pF
Input Capacitance ($V_{EB} = 1.0 \text{ Vdc}$, $I_{C} = 0$, $f = 1.0 \text{ MHz}$)		C _{ibo}	_	10	15	pF
Input Impedance ($I_C = 10 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	2N6426 2N6427	h _{ie}	100 50	- -	2000 1000	kΩ
Small–Signal Current Gain ($I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}, f = 1.0 \text{ kHz}$)	2N6426 2N6427	hfe	20,000 10,000	1 1		_
Current – Gain – High Frequency (I _C = 10 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)	2N6426 2N6427	h _{fe}	1.5 1.3	2.4 2.4	- -	-
Output Admittance ($I_C = 10 \text{ mAdc}$, $V_{CE} = 5.0 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)		h _{oe}	-	-	1000	μmhos
Noise Figure (I _C = 1.0 mAdc, V_{CE} = 5.0 Vdc, R_S = 100 k Ω , f = 1.0 kHz)		NF	-	3.0	10	dB

^{1.} Pulse Test: Pulse Width \leq 300 μ s; Duty Cycle \leq 2.0%.

Figure 1. Transistor Noise Model

NOISE CHARACTERISTICS

 $(V_{CE} = 5.0 \text{ Vdc}, T_A = 25^{\circ}C)$

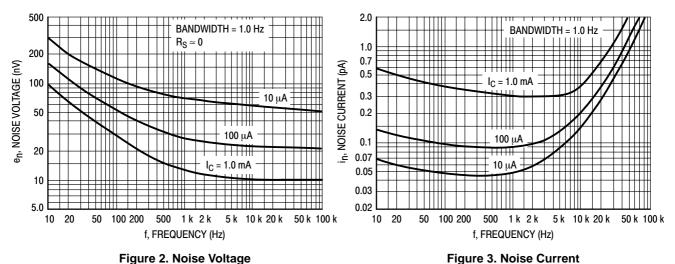


Figure 2. Noise Voltage

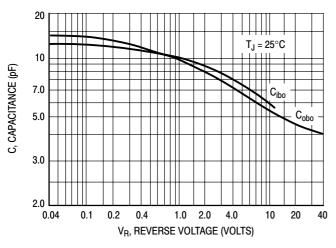
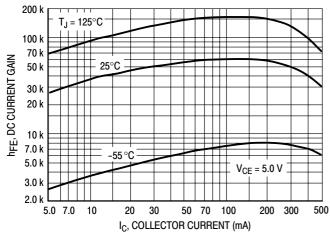

200 V_T, TOTAL WIDEBAND NOISE VOLTAGE (nV) BANDWIDTH = 10 Hz TO 15.7 kHz 12 BANDWIDTH = 10 Hz TO 15.7 kHz 100 NF, NOISE FIGURE (dB) 10 70 $I_C = 10 \mu A$ 10 μA 8.0 50 100 μΑ 6.0 100 μΑ 30 4.0 I_C = 1.0 mA 20 1.0 mA 2.0 1.0 2.0 100 200 500 2.0 20 50 1000 1.0 5.0 20 50 100 500 1000 R_S , SOURCE RESISTANCE ($k\Omega$) R_S , SOURCE RESISTANCE ($k\Omega$)

Figure 4. Total Wideband Noise Voltage

Figure 5. Wideband Noise Figure

SMALL-SIGNALCHARACTERISTICS


 $V_{CE} = 5.0 \text{ V}$

|hfe|, SMALL-SIGNAL CURRENT GAIN f = 100 MHz $T_J = 25^{\circ}C$ 2.0 1.0 0.8 0.6 0.4 0. 1.0 2.0 0.5 20 50 100 200 500 0.5 10 IC, COLLECTOR CURRENT (mA)

Figure 6. Capacitance

Figure 7. High Frequency Current Gain

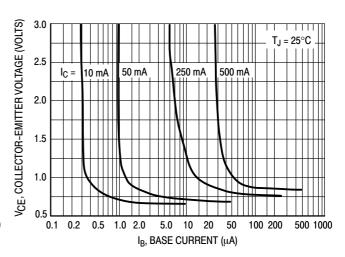
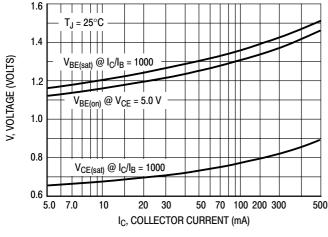



Figure 8. DC Current Gain

Figure 9. Collector Saturation Region

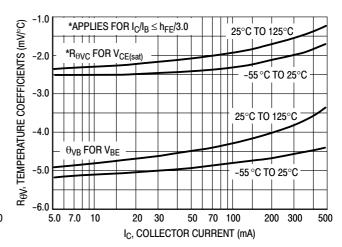


Figure 10. "On" Voltages

Figure 11. Temperature Coefficients

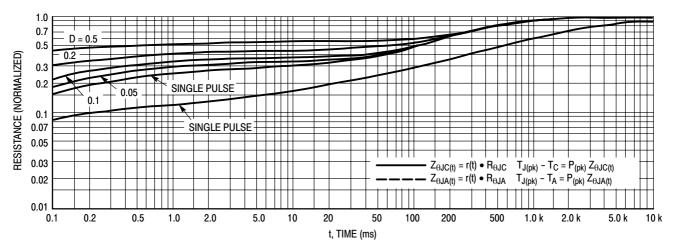


Figure 12. Thermal Response

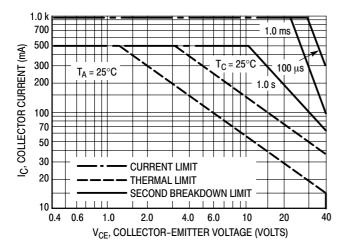
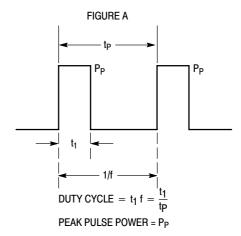
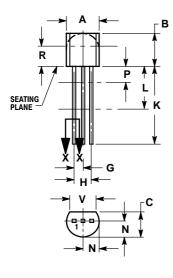



Figure 13. Active Region Safe Operating Area

Design Note: Use of Transient Thermal Resistance Data

ORDERING INFORMATION

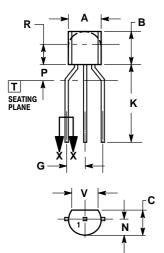

Device	Package	Shipping [†]
2N6426G	TO-92 (Pb-Free)	5,000 Units / Bulk
2N6426RLRAG	TO-92 (Pb-Free)	2,000 / Tape & Ammo
2N6427G	TO-92 (Pb-Free)	5,000 Units / Bulk
2N6427RLRAG	TO-92 (Pb-Free)	2,000 / Tape & Ammo

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

2N6426, 2N6427

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 **ISSUE AM**


STRAIGHT LEAD **BULK PACK**

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED
- LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
Р		0.100		2.54
R	0.115		2.93	
٧	0.135		3.43	

BENT LEAD TAPE & REEL AMMO PACK

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS.
 CONTOUR OF PACKAGE BEYOND
- DIMENSION R IS UNCONTROLLED
- LEAD DIMENSION IS UNCONTROLLED IN PAND BEYOND DIMENSION K MINIMUM.

	MILLIMETERS		
DIM	MIN	MAX	
Α	4.45	5.20	
В	4.32	5.33	
С	3.18	4.19	
D	0.40	0.54	
G	2.40	2.80	
J	0.39	0.50	
K	12.70		
N	2.04	2.66	
P	1.50	4.00	
R	2.93		
٧	3.43		

STYLE 1:

PIN 1 FMITTER

BASE

COLLECTOR

ON Semiconductor and una registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ltc (SCILLC). Solitude services the inject to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications. intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - Pre-Biased category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

MMUN2217LT1G FP101-TL-E RN1607(TE85L,F) DRC9A14E0L DTA124GKAT146 DTA144WETL DTA144WKAT146
DTC113EET1G DTC115TETL DTC115TKAT146 DTC124TETL DTC144ECA-TP DTC144VUAT106 MUN5241T1G
BCR158WH6327XTSA1 NSBA114TDP6T5G NSBA143TF3T5G NSBA143ZF3T5G NSBC114EF3T5G NSBC114YF3T5G
NSBC123TF3T5G NSBC143TF3T5G NSVMUN2212T1G NSVMUN5111DW1T3G NSVMUN5314DW1T3G NSVUMC2NT1G
SMMUN2134LT1G SMUN2212T1G SMUN5235T1G SMUN5330DW1T1G SSVMUN5312DW1T2G 2SC3650-TD-E RN1303(TE85L,F)
RN4605(TE85L,F) BCR135SH6327XT TTEPROTOTYPE79 UMC3NTR DTA113EET1G EMA2T2R EMH15T2R SDTA114YET1G
SMMUN2111LT3G SMMUN2113LT1G SMMUN2114LT1G SMMUN2211LT3G SMUN2214T3G SMUN5113DW1T1G
SMUN5335DW1T1G NSBA114YF3T5G NSBC114TF3T5G