# Old Company Name in Catalogs and Other Documents

On April 1<sup>st</sup>, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1<sup>st</sup>, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

#### Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
  - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
  - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
  - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.



# 16

# R8C/2H Group, R8C/2J Group Hardware Manual

RENESAS MCU R8C FAMILY / R8C/2x SERIES

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Renesas Electronics www.renesas.com

Rev.1.00 2008.03

#### Notes regarding these materials

- This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
- Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
   You should not use the products or the technology described in this document for the purpose of military
- 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
- 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
- 5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
- 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below: (1) artificial life support devices or systems
  - (2) surgical implantations
  - (3) healthcare intervention (e.g., excision, administration of medication, etc.)
  - (4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

- 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
- 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
- 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

# General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
- In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
  not access these addresses; the correct operation of LSI is not guaranteed if they are
  accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

# How to Use This Manual

# 1. Purpose and Target Readers

This manual is designed to provide the user with an understanding of the hardware functions and electrical characteristics of the MCU. It is intended for users designing application systems incorporating the MCU. A basic knowledge of electric circuits, logical circuits, and MCUs is necessary in order to use this manual. The manual comprises an overview of the product; descriptions of the CPU, system control functions, peripheral functions, and electrical characteristics; and usage notes.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of the manual for details.

The following documents apply to the R8C/2H Group, R8C/2J Group. Make sure to refer to the latest versions of these documents. The newest versions of the documents listed may be obtained from the Renesas Technology Web site.

| Document Type               | Description                                                                                                                                                                                                                                                    | Document Title                                   | Document No.            |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------|
| Datasheet                   | Hardware overview and electrical characteristics                                                                                                                                                                                                               | R8C/2H Group,<br>R8C/2J Group<br>Datasheet       | REJ03B0217              |
| Hardware manual             | Hardware specifications (pin assignments,<br>memory maps, peripheral function<br>specifications, electrical characteristics, timing<br>charts) and operation description<br>Note: Refer to the application notes for details on<br>using peripheral functions. | R8C/2H Group,<br>R8C/2J Group<br>Hardware Manual | This hardware<br>manual |
| Software manual             | Description of CPU instruction set                                                                                                                                                                                                                             | R8C/Tiny Series<br>Software Manual               | REJ09B0001              |
| Application note            | Information on using peripheral functions and<br>application examples<br>Sample programs<br>Information on writing programs in assembly<br>language and C                                                                                                      | Available from Rene<br>Technology Web sit        |                         |
| Renesas<br>technical update | Product specifications, updates on documents, etc.                                                                                                                                                                                                             |                                                  |                         |

# 2. Notation of Numbers and Symbols

The notation conventions for register names, bit names, numbers, and symbols used in this manual are described below.

| (1) | Register Names, Bit Names, and Pin Names<br>Registers, bits, and pins are referred to in the text by symbols. The symbol is accompanied by the word<br>"register," "bit," or "pin" to distinguish the three categories.<br>Examples the PM03 bit in the PM0 register<br>P3_5 pin, VCC pin                                                                   |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (2) | Notation of Numbers<br>The indication "b" is appended to numeric values given in binary format. However, nothing is appended to the<br>values of single bits. The indication "h" is appended to numeric values given in hexadecimal format. Nothing<br>is appended to numeric values given in decimal format.<br>Examples Binary: 11b<br>Hexadecimal: EFA0h |  |

Decimal: 1234

# 3. Register Notation

The symbols and terms used in register diagrams are described below.

|  | F          | Symbol<br>XXX                               | Address After Reset<br>XXX 00h                   |    |
|--|------------|---------------------------------------------|--------------------------------------------------|----|
|  | Bit Symbol | Bit Name                                    | Function                                         | RW |
|  | XXX0       | XXX bits                                    | b1 b0<br>1 0: XXX<br>0 1: XXX                    | RW |
|  | XXX1       |                                             | 1 0: Do not set.<br>1 1: XXX                     | RW |
|  | (b2)       | Nothing is assigned.<br>When read, the cont | If necessary, set to 0.<br>ent is undefined.     | _  |
|  | (b3)       | Reserved bits                               | Set to 0.                                        | RW |
|  | XXX4       | XXX bits                                    | Function varies according to the operating mode. | RW |
|  | XXX5       |                                             |                                                  | wo |
|  | XXX6       |                                             |                                                  | RW |
|  | XXX7       | XXX bit                                     | 0: XXX<br>1: XXX                                 | RO |

\*1

Blank: Set to 0 or 1 according to the application.0: Set to 0.1: Set to 1.

X: Nothing is assigned.

\*2

RW: Read and write. RO: Read only. WO: Write only. -: Nothing is assigned.

\*3

• Reserved bit

Reserved bit. Set to specified value.

\*4

• Nothing is assigned

Nothing is assigned to the bit. As the bit may be used for future functions, if necessary, set to 0.

• Do not set to a value

Operation is not guaranteed when a value is set.

• Function varies according to the operating mode.

The function of the bit varies with the peripheral function mode. Refer to the register diagram for information on the individual modes.

# 4. List of Abbreviations and Acronyms

| Abbreviation | Full Form                                     |  |
|--------------|-----------------------------------------------|--|
| ACIA         | Asynchronous Communication Interface Adapter  |  |
| bps          | bits per second                               |  |
| CRC          | Cyclic Redundancy Check                       |  |
| DMA          | Direct Memory Access                          |  |
| DMAC         | Direct Memory Access Controller               |  |
| GSM          | Global System for Mobile Communications       |  |
| Hi-Z         | High Impedance                                |  |
| IEBus        | Inter Equipment Bus                           |  |
| I/O          | Input / Output                                |  |
| IrDA         | Infrared Data Association                     |  |
| LSB          | Least Significant Bit                         |  |
| MSB          | Most Significant Bit                          |  |
| NC           | Non-Connect                                   |  |
| PLL          | Phase Locked Loop                             |  |
| PWM          | Pulse Width Modulation                        |  |
| SIM          | Subscriber Identity Module                    |  |
| UART         | Universal Asynchronous Receiver / Transmitter |  |
| VCO          | Voltage Controlled Oscillator                 |  |

All trademarks and registered trademarks are the property of their respective owners.

# Table of Contents

| SFR Pa | SFR Page Reference                                         |    |
|--------|------------------------------------------------------------|----|
| 1. (   | Dverview                                                   | 1  |
| 1.1    | Features                                                   |    |
| 1.1    |                                                            |    |
| 1.1.   |                                                            |    |
| 1.1.   | Product List                                               |    |
| 1.2    | Block Diagram                                              |    |
| 1.5    | Pin Assignment                                             |    |
| 1.5    | Pin Functions                                              |    |
| 1.0    |                                                            |    |
| 2. 0   | Central Processing Unit (CPU)                              | 14 |
| 2.1    | Data Registers (R0, R1, R2, and R3)                        | 15 |
| 2.2    | Address Registers (A0 and A1)                              | 15 |
| 2.3    | Frame Base Register (FB)                                   |    |
| 2.4    | Interrupt Table Register (INTB)                            | 15 |
| 2.5    | Program Counter (PC)                                       | 15 |
| 2.6    | User Stack Pointer (USP) and Interrupt Stack Pointer (ISP) | 15 |
| 2.7    | Static Base Register (SB)                                  | 15 |
| 2.8    | Flag Register (FLG)                                        | 15 |
| 2.8.   | 1 Carry Flag (C)                                           | 15 |
| 2.8.   | 2 Debug Flag (D)                                           | 15 |
| 2.8.   | 3 Zero Flag (Z)                                            | 15 |
| 2.8.   | 4 Sign Flag (S)                                            | 15 |
| 2.8.   | 5 Register Bank Select Flag (B)                            | 15 |
| 2.8.   | 6 Overflow Flag (O)                                        | 15 |
| 2.8.   | 7 Interrupt Enable Flag (I)                                |    |
| 2.8.   | 8 Stack Pointer Select Flag (U)                            |    |
| 2.8.   | 9 Processor Interrupt Priority Level (IPL)                 |    |
| 2.8.   | 10 Reserved Bit                                            |    |
| 3. N   | Memory                                                     | 17 |
| 4. 5   | Special Function Registers (SFRs)                          | 10 |
| 4. 0   |                                                            |    |
| 5. F   | Resets                                                     | 31 |
| 5.1    | Hardware Reset                                             |    |
| 5.1.   | 1 When Power Supply is Stable                              |    |
| 5.1.   | 2 Power On                                                 |    |
| 5.2    | Power-On Reset Function                                    |    |
| 5.3    | Voltage Monitor 0 Reset                                    |    |
| 5.4    | Voltage Monitor 1 Reset                                    |    |
| 5.5    | Voltage Monitor 2 Reset                                    |    |
| 5.6    | Watchdog Timer Reset                                       |    |
| 5.7    | Software Reset                                             |    |
| 6. \   | /oltage Detection Circuit                                  |    |
|        | -                                                          |    |
| 6.1    | VCC Input Voltage                                          |    |
| 6.1.   | 1 Monitoring Vdet0                                         |    |

| 6.1.2   | Monitoring Vdet1                                        | 47  |
|---------|---------------------------------------------------------|-----|
| 6.1.3   | Monitoring Vdet2                                        | 47  |
| 6.2     | Voltage Monitor 0 Reset                                 | 48  |
| 6.3     | Voltage Monitor 1 Interrupt and Voltage Monitor 1 Reset |     |
| 6.4     | Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset | 51  |
| 7. Cor  | nparator                                                | 53  |
| 7.1     | Overview                                                | 53  |
| 7.2     | Register Description                                    | 55  |
| 7.3     | Monitoring Comparison Results                           | 62  |
| 7.3.1   | Monitoring Comparator 1                                 | 62  |
| 7.3.2   | Monitoring Comparator 2                                 | 62  |
| 7.4     | Functional Description                                  | 63  |
| 7.4.1   | Comparator 1                                            | 63  |
| 7.4.2   | Comparator 2                                            | 66  |
| 7.5     | Comparator 1 and Comparator 2 Interrupts                | 69  |
| 7.5.1   | Non-Maskable Interrupts                                 | 69  |
| 7.5.2   | Maskable Interrupts                                     | 69  |
| 7.6     | Adjusting Internal Reference Voltage (Vref)             | 70  |
| 8. I/O  | Ports                                                   |     |
| 8.1     | Functions of I/O Ports                                  |     |
| 8.2     | Effect on Peripheral Functions                          |     |
| 8.3     | Pins Other than Programmable I/O Ports                  |     |
| 8.4     | Port Setting                                            |     |
| 8.5     | Unassigned Pin Handling                                 |     |
| 8.6     | Notes on I/O Ports                                      |     |
| 8.6.1   | Port P4_3, P4_4 (for R8C/2H Group only)                 | 90  |
| 9. Pro  | cessor Mode                                             |     |
| 9.1     | Processor Modes                                         |     |
| 7.1     | ricessor widdes                                         |     |
| 10. Bus | 3                                                       |     |
| 11. Clo | ck Generation Circuit                                   | 93  |
| 11.1    | On-Chip Oscillator Clocks                               |     |
| 11.1    | Low-Speed On-Chip Oscillator Clock                      |     |
| 11.1.1  |                                                         |     |
| 11.2    | XCIN Clock (for R8C/2H Group only)                      |     |
| 11.3    | CPU Clock and Peripheral Function Clock                 |     |
| 11.3.1  | System Clock                                            |     |
| 11.3.2  | CPU Clock                                               |     |
| 11.3.3  | Peripheral Function Clock (f1, f2, f4, f8, and f32)     |     |
| 11.3.4  | fOCO                                                    |     |
| 11.3.5  | fOCO-F                                                  |     |
| 11.3.6  | fOCO-S                                                  | 107 |
| 11.3.7  | fC4 and fC32 (for R8C/2H Group only)                    | 107 |
| 11.4    | Power Control                                           |     |
| 11.4.1  | Standard Operating Mode                                 | 108 |

| 11.4.2   | Wait Mode                                            | 110 |
|----------|------------------------------------------------------|-----|
| 11.4.3   | Stop Mode                                            |     |
| 11.5     | Notes on Clock Generation Circuit                    |     |
| 11.5.1   | Stop Mode                                            | 116 |
| 11.5.2   | Wait Mode                                            | 116 |
| 11.5.3   | Oscillation Circuit Constants                        | 116 |
| 12. Pro  | tection                                              | 117 |
| 13. Inte | errupts                                              | 118 |
| 13.1     | Interrupt Overview                                   | 118 |
| 13.1.1   | Types of Interrupts                                  | 118 |
| 13.1.2   | Software Interrupts                                  | 119 |
| 13.1.3   | Special Interrupts                                   | 120 |
| 13.1.4   | Peripheral Function Interrupt                        | 120 |
| 13.1.5   | Interrupts and Interrupt Vectors                     | 121 |
| 13.1.6   | Interrupt Control                                    | 123 |
| 13.2     | INT Interrupt                                        | 131 |
| 13.2.1   | $\overline{\text{INTi}}$ Interrupt (i = 0 or 1)      | 131 |
| 13.2.2   | $\overline{\text{INTi}}$ Input Filter (i = 0 or 1)   | 133 |
| 13.3     | Key Input Interrupt                                  |     |
| 13.4     | Address Match Interrupt                              |     |
| 13.5     | Notes on Interrupts                                  |     |
| 13.5.1   | Reading Address 00000h                               |     |
| 13.5.2   | SP Setting                                           |     |
| 13.5.3   | External Interrupt and Key Input Interrupt           |     |
| 13.5.4   | Changing Interrupt Sources                           |     |
| 13.5.5   | Changing Interrupt Control Register Contents         |     |
| 14. ID ( | Code Areas                                           | 141 |
| 14.1     | Overview                                             | 141 |
| 14.2     | Functions                                            | 141 |
| 14.3     | Notes on ID Code Areas                               |     |
| 14.3.1   | Setting Example of ID Code Areas                     |     |
| 15. Opt  | ion Function Select Area                             | 143 |
| 15.1     | Overview                                             |     |
| 15.2     | OFS Register                                         |     |
| 15.3     | Notes on Option Function Select Area                 |     |
| 15.3.1   | Setting Example of Option Function Select Area       |     |
| 16. Wa   | tchdog Timer                                         | 146 |
| 16.1     | Count Source Protection Mode Disabled (R8C/2H Group) |     |
| 16.2     | Count Source Protection Mode Disabled (R8C/2J Group) |     |
| 16.3     | Count Source Protection Mode Enabled (Roc/25 Group)  |     |
| 17. Tim  | ers                                                  |     |
| 17.1     | Timer RA                                             |     |
| 17.1.1   | Timer Mode                                           |     |
|          |                                                      |     |

| 17.1.2  | Pulse Output Mode                              | 163 |
|---------|------------------------------------------------|-----|
| 17.1.3  | Event Counter Mode                             | 165 |
| 17.1.4  | Pulse Width Measurement Mode                   |     |
| 17.1.5  | Pulse Period Measurement Mode                  | 170 |
| 17.1.6  | Notes on Timer RA                              |     |
| 17.2    | Timer RB                                       |     |
| 17.2.1  | Timer Mode                                     |     |
| 17.2.2  | Programmable Waveform Generation Mode          |     |
| 17.2.3  | Programmable One-shot Generation Mode          |     |
| 17.2.4  | Programmable Wait One-Shot Generation Mode     |     |
| 17.2.5  | Notes on Timer RB                              |     |
| 17.3    | Timer RE (for R8C/2H Group only)               |     |
| 17.3.1  | Real-Time Clock Mode                           |     |
| 17.3.2  | Output Compare Mode                            |     |
| 17.3.3  | Notes on Timer RE (for R8C/2H Group only)      |     |
| 17.4    | Timer RF                                       |     |
| 17.4.1  | Input Capture Mode                             |     |
| 17.4.2  | Output Compare Mode                            |     |
| 17.4.3  | Notes on Timer RF                              | 225 |
| 18. Ser | ial Interface                                  | 226 |
| 18.1    | Clock Synchronous Serial I/O Mode              | 231 |
| 18.1.1  | Polarity Select Function                       | 234 |
| 18.1.2  | LSB First/MSB First Select Function            | 234 |
| 18.1.3  | Continuous Receive Mode                        | 235 |
| 18.2    | Clock Asynchronous Serial I/O (UART) Mode      | 236 |
| 18.2.1  | Bit Rate                                       | 240 |
| 18.3    | Notes on Serial Interface                      | 241 |
|         |                                                |     |
| 19. Har | dware LIN                                      | 242 |
| 19.1    | Features                                       | 242 |
| 19.2    | Input/Output Pins                              | 243 |
| 19.3    | Register Configuration                         | 244 |
| 19.4    | Functional Description                         | 246 |
| 19.4.1  | Master Mode                                    |     |
| 19.4.2  | Slave Mode                                     |     |
| 19.4.3  | Bus Collision Detection Function               |     |
| 19.4.4  | Hardware LIN End Processing                    |     |
| 19.5    | Interrupt Requests                             |     |
| 19.6    | Notes on Hardware LIN                          | 256 |
| 20. Fla | sh Memory                                      | 257 |
| 20.1    | Overview                                       | 257 |
| 20.2    | Memory Map                                     |     |
| 20.3    | Functions to Prevent Rewriting of Flash Memory | 259 |
| 20.3.1  | ID Code Check Function                         | 259 |
| 20.3.2  | ROM Code Protect Function                      | 260 |
| 20.4    | CPU Rewrite Mode                               | 261 |
| 20.4.1  | Register Description                           | 262 |

| 20.4.2  | Status Check Procedure                                                 |     |
|---------|------------------------------------------------------------------------|-----|
| 20.4.3  | EW0 Mode                                                               |     |
| 20.5    | Standard Serial I/O Mode                                               |     |
| 20.5.1  | ID Code Check Function                                                 |     |
| 20.6    | Parallel I/O Mode                                                      |     |
| 20.6.1  | ROM Code Protect Function                                              | 276 |
| 20.7    | Notes on Flash Memory                                                  | 277 |
| 20.7.1  | CPU Rewrite Mode                                                       |     |
| 04 Dec  |                                                                        | 070 |
|         | lucing Power Consumption                                               |     |
|         | Overview                                                               |     |
|         | Key Points and Processing Methods for Reducing Power Consumption       |     |
| 21.2.1  | Voltage Detection Circuit                                              |     |
| 21.2.2  | Ports                                                                  |     |
| 21.2.3  | Clocks                                                                 |     |
| 21.2.4  | Selecting Oscillation Drive Capacity (for R8C/2H Group only)           |     |
| 21.2.5  | Wait Mode, Stop Mode                                                   |     |
| 21.2.6  | Stopping Peripheral Function Clocks                                    |     |
| 21.2.7  | Timers                                                                 |     |
| 21.2.8  | Reducing Internal Power Consumption                                    |     |
| 21.2.9  | Stopping Flash Memory                                                  |     |
| 21.2.10 | ) Low-Current-Consumption Read Mode                                    |     |
| 22. Ele | ctrical Characteristics                                                | 282 |
|         |                                                                        |     |
|         | R8C/2H Group<br>R8C/2J Group                                           |     |
| 22.2    | R8C/2J Group                                                           | 299 |
| 23. Usa | ge Notes                                                               | 316 |
| 23.1    | Notes on I/O Ports                                                     |     |
| 23.1.1  | Port P4_3, P4_4 (for R8C/2H Group only)                                |     |
| 23.2    | Notes on Clock Generation Circuit                                      |     |
| 23.2.1  | Stop Mode                                                              |     |
| 23.2.2  | Wait Mode                                                              |     |
| 23.2.3  | Oscillation Circuit Constants                                          |     |
|         | Notes on Interrupts                                                    |     |
| 23.3.1  | Reading Address 00000h                                                 |     |
| 23.3.2  | SP Setting                                                             |     |
| 23.3.2  | External Interrupt and Key Input Interrupt                             |     |
| 23.3.4  | Changing Interrupt Sources                                             |     |
| 23.3.4  |                                                                        |     |
|         | Changing Interrupt Control Register Contents<br>Notes on ID Code Areas |     |
| 23.4    | Setting Example of ID Code Areas                                       |     |
|         |                                                                        |     |
|         | Notes on Option Function Select Area                                   |     |
| 23.5.1  | Setting Example of Option Function Select Area                         |     |
|         | Notes on Timers                                                        |     |
| 23.6.1  | Notes on Timer RA                                                      |     |
| 23.6.2  | Notes on Timer RB                                                      |     |
| 23.6.3  | Notes on Timer RE (for R8C/2H Group only)                              |     |
| 23.6.4  | Notes on Timer RF                                                      |     |

| 23.7     | Notes on Serial Interface                                       |       |
|----------|-----------------------------------------------------------------|-------|
| 23.8     | Notes on Hardware LIN                                           | . 333 |
| 23.9     | Notes on Flash Memory                                           |       |
| 23.9.1   | CPU Rewrite Mode                                                | . 334 |
| 23.10    | Notes on Noise                                                  | . 335 |
| 23.10.   | 8 71 7                                                          |       |
|          | Latch-up                                                        | . 335 |
| 23.10.   | 2 Countermeasures against Noise Error of Port Control Registers | . 335 |
| 24. No   | tes for On-Chip Debugger                                        | 336   |
| Appendix | 1. Package Dimensions                                           | 337   |
| Appendix | 2. Connection Examples with On-Chip Debugging Emulator          | 338   |
| Appendix | 3. Example of Oscillation Evaluation Circuit                    | 339   |
| Index    |                                                                 | 340   |

# SFR Page Reference

| Address        | Register                                                                 | Symbol     | Page           |
|----------------|--------------------------------------------------------------------------|------------|----------------|
| 0000h          | register                                                                 | Cymbol     | 1 age          |
|                |                                                                          |            |                |
| 0001h<br>0002h |                                                                          |            |                |
|                |                                                                          |            |                |
| 0003h          | Deserves Made Desister 0                                                 | DMO        | 04             |
| 0004h          | Processor Mode Register 0                                                | PM0<br>PM1 | 91             |
| 0005h          | Processor Mode Register 1                                                |            | 91             |
| 0006h          | System Clock Control Register 0                                          | CM0        | 96, 97         |
| 0007h          | System Clock Control Register 1                                          | CM1        | 98, 99         |
| 0008h          |                                                                          |            |                |
| 0009h          |                                                                          |            |                |
| 000Ah          | Protect Register                                                         | PRCR       | 117            |
| 000Bh          |                                                                          |            |                |
| 000Ch          | System Clock Select Register <sup>(2)</sup>                              | OCD        | 100            |
| 000Dh          | Watchdog Timer Reset Register                                            | WDTR       | 149            |
| 000Eh          | Watchdog Timer Start Register                                            | WDTS       | 149            |
| 000Fh          | Watchdog Timer Control Register                                          | WDC        | 150            |
| 0010h          | Address Match Interrupt Register 0                                       | RMAD0      | 137            |
| 0011h          |                                                                          |            |                |
| 0012h          |                                                                          |            |                |
| 0013h          | Address Match Interrupt Enable Register                                  | AIER       | 137            |
| 0014h          | Address Match Interrupt Register 1                                       | RMAD1      | 137            |
| 0015h          |                                                                          |            |                |
| 0015h          |                                                                          |            |                |
| 0010h          |                                                                          |            |                |
| 0017h          |                                                                          |            |                |
|                |                                                                          |            |                |
| 0019h          |                                                                          |            |                |
| 001Ah          |                                                                          |            |                |
| 001Bh          |                                                                          |            |                |
| 001Ch          | Count Source Protection Mode Register                                    | CSPR       | 151            |
| 001Dh          |                                                                          |            |                |
| 001Eh          |                                                                          |            |                |
| 001Fh          |                                                                          |            |                |
| 0020h          | High-Speed On-Chip Oscillator Control Register 0                         | HRA0       | 101            |
| 0021h          | High-Speed On-Chip Oscillator Control Register 1                         | HRA1       | 101            |
| 0022h          | High-Speed On-Chip Oscillator Control Register 2                         | HRA2       | 101            |
| 0023h          |                                                                          |            |                |
| 0024h          |                                                                          |            |                |
| 0025h          |                                                                          |            |                |
| 0026h          |                                                                          |            |                |
| 0027h          |                                                                          |            |                |
| 0028h          | Clock Prescaler Reset Flag <sup>(2)</sup>                                | CPSRF      | 102            |
| 0029h          | High-Speed On-Chip Oscillator Control Register 4                         | FRA4       | 102            |
| 002Ah          | 5 spin - p                                                               |            | -              |
| 002Bh          | High-Speed On-Chip Oscillator Control Register 6                         | FRA6       | 102            |
| 002Ch          |                                                                          | 11010      | 102            |
| 002Ch          |                                                                          |            |                |
| 002Dh          | BGR Trimming Auxiliary Register A                                        | BGRTRMA    | 55             |
| 002En          | BGR Trimming Auxiliary Register B                                        | BGRTRMA    | 55             |
|                | DON MINIMUN AUXILIARY REGISTER D                                         |            | 55             |
| 0030h          | Veltage Detection Desister 1                                             | 1/041      | 40.50          |
| 0031h          | Voltage Detection Register 1<br>Voltage Detection Register 2             | VCA1       | 42, 56         |
| 0032h          | Voltage Detection Register 2                                             | VCA2       | 42, 56,<br>103 |
| 0033h          |                                                                          |            | 100            |
| 0033h          |                                                                          |            |                |
| 0034h          |                                                                          |            |                |
|                | Voltago Monitor 1 Circuit Control Deviator                               | \/\\/1C    | 44 57          |
| 0036h          | Voltage Monitor 1 Circuit Control Register                               | VW1C       | 44, 57         |
| 0037h          | Voltage Monitor 2 Circuit Control Register                               | VW2C       | 45, 58         |
| 0038h          | Voltage Monitor 0 Circuit Control Register                               | VW0C       | 43             |
| 0039h          |                                                                          |            |                |
| 003Ah          |                                                                          |            |                |
|                | Voltage Detection Circuit External Input Control                         | VCAB       | 59             |
| 003Bh          |                                                                          |            | 1              |
|                | Register                                                                 |            |                |
| 003Ch          | Comparator Mode Register                                                 | ALCMR      | 59             |
| 003Ch<br>003Dh | Comparator Mode Register<br>Voltage Monitor Circuit Edge Select Register | VCAC       | 46, 60         |
| 003Ch          | Comparator Mode Register                                                 |            |                |

| Address        | Register                                                 | Symbol  | Page |
|----------------|----------------------------------------------------------|---------|------|
| 0040h          |                                                          | 5,      |      |
| 0041h          | Comparator 1 Interrupt Control Register                  | VCMP1IC | 123  |
| 0042h          | Comparator 2 Interrupt Control Register                  | VCMP2IC | 123  |
| 0043h          |                                                          |         |      |
| 0044h          |                                                          |         |      |
| 0045h          |                                                          |         |      |
| 0046h          |                                                          |         |      |
| 0047h          |                                                          |         |      |
| 0048h          |                                                          |         |      |
| 0049h          |                                                          |         |      |
| 004Ah          | Timer RE Interrupt Control Register <sup>(2)</sup>       | TREIC   | 123  |
| 004Bh          | UART2 Transmit Interrupt Control Register <sup>(2)</sup> | S2TIC   | 123  |
| 004Ch          | UART2 Receive Interrupt Control Register <sup>(2)</sup>  | S2RIC   | 123  |
| 004Dh          | Key Input Interrupt Control Register                     | KUPIC   | 123  |
| 004Eh          |                                                          |         |      |
| 004Fh          |                                                          |         |      |
| 0050h          | Compare 1 Interrupt Control Register                     | CMP1IC  | 123  |
| 0051h          | UART0 Transmit Interrupt Control Register                | SOTIC   | 123  |
| 0052h          | UART0 Receive Interrupt Control Register                 | SORIC   | 123  |
| 0053h          |                                                          |         |      |
| 0054h          |                                                          |         |      |
| 0055h          |                                                          |         |      |
| 0056h          | Timer RA Interrupt Control Register                      | TRAIC   | 123  |
| 0057h          |                                                          |         |      |
| 0058h          | Timer RB Interrupt Control Register                      | TRBIC   | 123  |
| 0059h          | INT1 Interrupt Control Register                          | INT1IC  | 124  |
| 005Ah          |                                                          |         |      |
| 005Bh          | Timer RF Interrupt Control Register                      | TRFIC   | 123  |
| 005Ch          | Compare 0 Interrupt Control Register                     | CMPOIC  | 123  |
| 005Dh          | INT0 Interrupt Control Register                          | INTOIC  | 124  |
| 005Eh          |                                                          | 04.510  | 100  |
| 005Fh          | Capture Interrupt Control Register                       | CAPIC   | 123  |
| 0060h          |                                                          |         |      |
| 0061h<br>0062h |                                                          |         |      |
| 0062h          |                                                          |         |      |
| 0064h          |                                                          |         |      |
| 0065h          |                                                          |         |      |
| 0066h          |                                                          |         |      |
| 0067h          |                                                          |         |      |
| 0068h          |                                                          |         |      |
| 0069h          |                                                          |         |      |
| 006Ah          |                                                          |         |      |
| 006Bh          |                                                          |         |      |
| 006Ch          |                                                          |         |      |
| 006Dh          |                                                          |         |      |
| 006Eh          |                                                          |         |      |
| 006Fh          |                                                          |         |      |
| 0070h          |                                                          |         |      |
| 0071h          |                                                          |         |      |
| 0072h          |                                                          |         |      |
| 0073h          |                                                          |         |      |
| 0074h          |                                                          |         |      |
| 0075h          |                                                          |         |      |
| 0076h          |                                                          |         |      |
| 0077h          |                                                          |         |      |
| 0078h          |                                                          |         |      |
| 0079h          |                                                          |         |      |
| 007Ah          |                                                          |         |      |
| 007Bh          |                                                          |         |      |
| 007Ch          |                                                          |         |      |
| 007Dh          |                                                          |         |      |
| 007Eh          |                                                          |         |      |
| 007Fh          |                                                          |         |      |

NOTES:
1. The blank regions are reserved. Do not access locations in these regions.
2. This register is not implemented in the R8C/2J Group.

| Address                                                                                                                                      | Register                                                        | Symbol | Page | Address                                                                                                                                               | Register                                                                                                                                                                                                                             | Symbol                                                                                       | Page                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 0080h                                                                                                                                        |                                                                 |        |      | 00C0h                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 0081h                                                                                                                                        |                                                                 |        |      | 00C1h                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 0082h                                                                                                                                        |                                                                 |        |      | 00C2h                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 0083h                                                                                                                                        |                                                                 |        |      | 00C3h                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 0084h                                                                                                                                        |                                                                 |        |      | 00C4h                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 0085h                                                                                                                                        |                                                                 |        |      | 00C5h                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 0086h                                                                                                                                        |                                                                 |        |      | 00C6h                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 0087h                                                                                                                                        |                                                                 |        |      | 00C7h                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 0088h                                                                                                                                        |                                                                 |        |      | 00C8h                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 0089h                                                                                                                                        |                                                                 |        |      | 00C9h                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 008Ah                                                                                                                                        |                                                                 |        |      | 00CAh                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 008Bh                                                                                                                                        |                                                                 |        |      | 00CBh                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 008Ch                                                                                                                                        |                                                                 |        |      | 00CCh                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 008Dh                                                                                                                                        |                                                                 |        |      | 00CDh                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 008Eh                                                                                                                                        |                                                                 |        |      | 00CEh                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 008Fh                                                                                                                                        |                                                                 |        |      | 00CFh                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 0090h                                                                                                                                        | İ -                                                             |        |      | 00D0h                                                                                                                                                 | ſ                                                                                                                                                                                                                                    |                                                                                              | l                                                                       |
| 0091h                                                                                                                                        |                                                                 |        |      | 00D1h                                                                                                                                                 | 1                                                                                                                                                                                                                                    |                                                                                              |                                                                         |
| 0092h                                                                                                                                        |                                                                 |        |      | 00D2h                                                                                                                                                 | 1                                                                                                                                                                                                                                    |                                                                                              |                                                                         |
| 0093h                                                                                                                                        |                                                                 | 1      |      | 00D3h                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              | 1                                                                       |
| 0094h                                                                                                                                        |                                                                 | ł      |      | 00D4h                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 0095h                                                                                                                                        |                                                                 | 1      |      | 00D5h                                                                                                                                                 | 1                                                                                                                                                                                                                                    |                                                                                              |                                                                         |
| 0096h                                                                                                                                        |                                                                 | 1      |      | 00D6h                                                                                                                                                 | 1                                                                                                                                                                                                                                    |                                                                                              |                                                                         |
| 0097h                                                                                                                                        |                                                                 | 1      |      | 00D7h                                                                                                                                                 | 1                                                                                                                                                                                                                                    |                                                                                              |                                                                         |
| 0098h                                                                                                                                        |                                                                 |        |      | 00D8h                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 0099h                                                                                                                                        |                                                                 |        |      | 00D9h                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 009Ah                                                                                                                                        |                                                                 |        | +    | 00DAh                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 009Bh                                                                                                                                        |                                                                 |        | +    | 00DBh                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 009Ch                                                                                                                                        |                                                                 |        | +    | 00DDh                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 009Dh                                                                                                                                        |                                                                 |        |      | 00DDh                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 009Dh                                                                                                                                        |                                                                 |        |      | 00DEh                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 009Eh                                                                                                                                        |                                                                 |        |      | 00DEh<br>00DFh                                                                                                                                        |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 009FN<br>00A0h                                                                                                                               | LIADTO Transmit/Dessive Made Desister                           | U0MR   | 228  | 00E0h                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
|                                                                                                                                              | UART0 Transmit/Receive Mode Register<br>UART0 Bit Rate Register |        | 228  | 00E0h                                                                                                                                                 | Dart D1 Desister                                                                                                                                                                                                                     | P1                                                                                           | 70.70                                                                   |
| 00A1h                                                                                                                                        | UART0 Transmit Buffer Register                                  | UOBRG  | 228  | 00E1h                                                                                                                                                 | Port P1 Register                                                                                                                                                                                                                     | PI                                                                                           | 78, 79                                                                  |
| 00A2h<br>00A3h                                                                                                                               |                                                                 | UOTB   | 229  | 00E2h                                                                                                                                                 | Dest D4 Disection Desister                                                                                                                                                                                                           | 004                                                                                          | 70 70                                                                   |
|                                                                                                                                              |                                                                 | 11000  | 000  |                                                                                                                                                       | Port P1 Direction Register                                                                                                                                                                                                           | PD1                                                                                          | 78, 79                                                                  |
| 00A4h                                                                                                                                        | UART0 Transmit/Receive Control Register 0                       | U0C0   | 229  | 00E4h                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              | 70.70                                                                   |
| 00A5h                                                                                                                                        | UART0 Transmit/Receive Control Register 1                       | U0C1   | 230  | 00E5h                                                                                                                                                 | Port P3 Register                                                                                                                                                                                                                     | P3                                                                                           | 78, 79                                                                  |
| 00A6h                                                                                                                                        | UART0 Receive Buffer Register                                   | U0RB   | 230  | 00E6h                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 00A7h                                                                                                                                        |                                                                 |        |      | 00E7h                                                                                                                                                 | Port P3 Direction Register                                                                                                                                                                                                           | PD3                                                                                          | 78, 79                                                                  |
| 00A8h                                                                                                                                        |                                                                 |        |      | 00E8h                                                                                                                                                 | Port P4 Register                                                                                                                                                                                                                     | P4                                                                                           | 78, 79                                                                  |
| 00A9h                                                                                                                                        |                                                                 |        |      | 00E9h                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                              |                                                                         |
| 00AAh                                                                                                                                        | 1                                                               |        |      | 00EAh                                                                                                                                                 | Port P4 Direction Register                                                                                                                                                                                                           | PD4                                                                                          | 78, 79                                                                  |
| 00ABh                                                                                                                                        |                                                                 |        |      |                                                                                                                                                       | i eiti i Bileeden tegietei                                                                                                                                                                                                           | 1 04                                                                                         |                                                                         |
|                                                                                                                                              |                                                                 |        |      | 00EBh                                                                                                                                                 | · · ·                                                                                                                                                                                                                                |                                                                                              |                                                                         |
| 00ACh                                                                                                                                        |                                                                 |        |      | 00ECh                                                                                                                                                 | Port P6 Register                                                                                                                                                                                                                     | P6                                                                                           | 78, 79                                                                  |
| 00ADh                                                                                                                                        |                                                                 |        |      | 00ECh<br>00EDh                                                                                                                                        | Port P6 Register                                                                                                                                                                                                                     | P6                                                                                           | 78, 79                                                                  |
| 00ADh<br>00AEh                                                                                                                               |                                                                 |        |      | 00ECh<br>00EDh<br>00EEh                                                                                                                               | · · ·                                                                                                                                                                                                                                |                                                                                              |                                                                         |
| 00ADh<br>00AEh<br>00AFh                                                                                                                      |                                                                 |        |      | 00ECh<br>00EDh<br>00EEh<br>00EFh                                                                                                                      | Port P6 Register                                                                                                                                                                                                                     | P6                                                                                           | 78, 79                                                                  |
| 00ADh<br>00AEh<br>00AFh<br>00B0h                                                                                                             |                                                                 |        |      | 00ECh<br>00EDh<br>00EEh<br>00EFh<br>00F0h                                                                                                             | Port P6 Register                                                                                                                                                                                                                     | P6                                                                                           | 78, 79                                                                  |
| 00ADh<br>00AEh<br>00AFh<br>00B0h<br>00B1h                                                                                                    |                                                                 |        |      | 00ECh<br>00EDh<br>00EEh<br>00EFh<br>00F0h<br>00F1h                                                                                                    | Port P6 Register                                                                                                                                                                                                                     | P6                                                                                           | 78, 79                                                                  |
| 00ADh<br>00AEh<br>00AFh<br>00B0h                                                                                                             |                                                                 |        |      | 00ECh<br>00EDh<br>00EEh<br>00EFh<br>00F0h                                                                                                             | Port P6 Register                                                                                                                                                                                                                     | P6                                                                                           | 78, 79                                                                  |
| 00ADh<br>00AEh<br>00AFh<br>00B0h<br>00B1h                                                                                                    |                                                                 |        |      | 00ECh<br>00EDh<br>00EEh<br>00EFh<br>00F0h<br>00F1h                                                                                                    | Port P6 Register                                                                                                                                                                                                                     | P6                                                                                           | 78, 79                                                                  |
| 00ADh<br>00AEh<br>00AFh<br>00B0h<br>00B1h<br>00B2h                                                                                           |                                                                 |        |      | 00ECh<br>00EDh<br>00EEh<br>00EFh<br>00F0h<br>00F1h<br>00F2h                                                                                           | Port P6 Register                                                                                                                                                                                                                     | P6                                                                                           | 78, 79                                                                  |
| 00ADh<br>00AEh<br>00AFh<br>00B0h<br>00B1h<br>00B2h<br>00B3h                                                                                  |                                                                 |        |      | 00ECh<br>00EDh<br>00EEh<br>00EFh<br>00F0h<br>00F1h<br>00F2h<br>00F3h                                                                                  | Port P6 Register                                                                                                                                                                                                                     | P6                                                                                           | 78, 79                                                                  |
| 00ADh<br>00AEh<br>00AFh<br>00B0h<br>00B1h<br>00B2h<br>00B3h<br>00B4h                                                                         |                                                                 |        |      | 00ECh<br>00EDh<br>00EEh<br>00Fh<br>00F0h<br>00F1h<br>00F2h<br>00F3h<br>00F3h                                                                          | Port P6 Register                                                                                                                                                                                                                     | P6                                                                                           | 78, 79                                                                  |
| 00ADh<br>00AEh<br>00AFh<br>00B0h<br>00B1h<br>00B2h<br>00B3h<br>00B4h<br>00B5h                                                                |                                                                 |        |      | 00ECh<br>00EDh<br>00EEh<br>00FFh<br>00F0h<br>00F1h<br>00F2h<br>00F3h<br>00F3h                                                                         | Port P6 Register Port P6 Direction Register                                                                                                                                                                                          | P6<br>PD6<br>PD6                                                                             | 78, 79                                                                  |
| 00ADh<br>00AEh<br>00AFh<br>00B0h<br>00B1h<br>00B2h<br>00B3h<br>00B4h<br>00B5h<br>00B6h<br>00B7h                                              |                                                                 |        |      | 00ECh<br>00EDh<br>00EFh<br>00F7h<br>00F7h<br>00F7h<br>00F3h<br>00F3h<br>00F5h<br>00F6h<br>00F7h                                                       | Port P6 Register Port P6 Direction Register Port P6 Direction Register Port P6 Direction Register Pin Select Register 2                                                                                                              | P6<br>PD6                                                                                    | 78, 79<br>78, 79<br>78, 79<br>80                                        |
| 00ADh<br>00AEh<br>00AFh<br>00B0h<br>00B1h<br>00B2h<br>00B3h<br>00B4h<br>00B5h<br>00B6h<br>00B7h<br>00B8h                                     |                                                                 |        |      | 00ECh<br>00EDh<br>00EFh<br>00F7h<br>00F7h<br>00F7h<br>00F3h<br>00F4h<br>00F5h<br>00F6h<br>00F7h                                                       | Port P6 Register Port P6 Direction Register Port P6 Direction Register Pin Select Register 2 Port Mode Register                                                                                                                      | P6<br>PD6<br>PD6<br>PD8<br>PINSR2<br>PMR                                                     | 78, 79<br>78, 79<br>78, 79<br>80<br>80                                  |
| 00ADh<br>00AEh<br>00AFh<br>00B0h<br>00B1h<br>00B2h<br>00B3h<br>00B4h<br>00B5h<br>00B6h<br>00B7h<br>00B8h<br>00B9h                            |                                                                 |        |      | 00ECh<br>00EDh<br>00EFh<br>00F0h<br>00F1h<br>00F1h<br>00F3h<br>00F3h<br>00F4h<br>00F5h<br>00F6h<br>00F7h<br>00F8h                                     | Port P6 Register Port P6 Direction Register Port P6 Direction Register Pin Select Register 2 Port Mode Register External Input Enable Register                                                                                       | P6<br>PD6<br>PD6<br>PD8<br>PINSR2<br>PINSR2<br>PMR<br>INTEN                                  | 78, 79<br>78, 79<br>78, 79<br>80<br>80<br>81<br>131                     |
| 00ADh<br>00AEh<br>00AFh<br>00B0h<br>00B1h<br>00B2h<br>00B3h<br>00B4h<br>00B5h<br>00B6h<br>00B7h<br>00B8h<br>00B3h                            |                                                                 |        |      | 00ECh<br>00EDh<br>00EFh<br>00F0h<br>00F1h<br>00F1h<br>00F3h<br>00F4h<br>00F3h<br>00F5h<br>00F5h<br>00F7h<br>00F8h<br>00F9h                            | Port P6 Register Port P6 Direction Register Port P6 Direction Register Pin Select Register 2 Port Mode Register External Input Enable Register INT Input Filter Select Register                                                      | P6<br>PD6<br>PD6<br>PD6<br>PINSR2<br>PINSR2<br>PMR<br>INTEN<br>INTEN                         | 78, 79<br>78, 79<br>78, 79<br>80<br>80<br>81<br>131<br>132              |
| 00ADh<br>00AEh<br>00AFh<br>00B0h<br>00B1h<br>00B2h<br>00B2h<br>00B3h<br>00B4h<br>00B5h<br>00B6h<br>00B8h<br>00B8h                            |                                                                 |        |      | 00ECh<br>00EDh<br>00EEh<br>00F0h<br>00F1h<br>00F2h<br>00F3h<br>00F4h<br>00F5h<br>00F6h<br>00F7h<br>00F8h<br>00F9h<br>00FAh<br>00FAh                   | Port P6 Register Port P6 Direction Register Port P6 Direction Register Pin Select Register 2 Port Mode Register External Input Enable Register INT Input Filter Select Register Key Input Enable Register                            | P6<br>PD6<br>PD6<br>PD6<br>PINSR2<br>PINSR2<br>PMR<br>INTEN<br>INTF<br>KIEN                  | 78, 79<br>78, 79<br>78, 79<br>80<br>80<br>81<br>131<br>132<br>135       |
| 00ADh<br>00AEh<br>00AFh<br>00B0h<br>00B1h<br>00B3h<br>00B3h<br>00B3h<br>00B6h<br>00B7h<br>00B8h<br>00B8h<br>00B8h<br>00B8h<br>00BBh          |                                                                 |        |      | 00ECh<br>00EDh<br>00EEh<br>00F0h<br>00F0h<br>00F1h<br>00F2h<br>00F3h<br>00F4h<br>00F5h<br>00F6h<br>00F6h<br>00F8h<br>00F8h<br>00F9h<br>00FAh          | Port P6 Register Port P6 Direction Register Port P6 Direction Register Pin Select Register 2 Port Mode Register External Input Enable Register INT Input Filter Select Register Key Input Enable Register Pull-Up Control Register 0 | P6<br>PD6<br>PD6<br>PD6<br>PINSR2<br>PINSR2<br>PMR<br>INTEN<br>INTEN<br>INTF<br>KIEN<br>PUR0 | 78, 79<br>78, 79<br>78, 79<br>80<br>80<br>81<br>131<br>132<br>135<br>82 |
| 00ADh<br>00AEh<br>00AFh<br>00B0h<br>00B1h<br>00B2h<br>00B3h<br>00B4h<br>00B5h<br>00B6h<br>00B7h<br>00B8h<br>00B9h<br>00BBh<br>00BBh<br>00BCh |                                                                 |        |      | 00ECh<br>00EDh<br>00EFh<br>00F0h<br>00F1h<br>00F2h<br>00F3h<br>00F3h<br>00F4h<br>00F5h<br>00F6h<br>00F7h<br>00F8h<br>00F9h<br>00FAh<br>00FBh<br>00FCh | Port P6 Register Port P6 Direction Register Port P6 Direction Register Pin Select Register 2 Port Mode Register External Input Enable Register INT Input Filter Select Register Key Input Enable Register                            | P6<br>PD6<br>PD6<br>PD6<br>PINSR2<br>PINSR2<br>PMR<br>INTEN<br>INTF<br>KIEN                  | 78, 79<br>78, 79<br>78, 79<br>80<br>80<br>81<br>131<br>132<br>135       |
| 00ADh<br>00AEh<br>00AFh<br>00B0h<br>00B1h<br>00B2h<br>00B3h<br>00B3h<br>00B4h<br>00B5h<br>00B6h<br>00B7h<br>00B8h<br>00B8h<br>00BBh          |                                                                 |        |      | 00ECh<br>00EDh<br>00EEh<br>00F0h<br>00F0h<br>00F1h<br>00F2h<br>00F3h<br>00F4h<br>00F5h<br>00F6h<br>00F6h<br>00F8h<br>00F8h<br>00F9h<br>00FAh          | Port P6 Register Port P6 Direction Register Port P6 Direction Register Pin Select Register 2 Port Mode Register External Input Enable Register INT Input Filter Select Register Key Input Enable Register Pull-Up Control Register 0 | P6<br>PD6<br>PD6<br>PD6<br>PINSR2<br>PINSR2<br>PMR<br>INTEN<br>INTEN<br>INTF<br>KIEN<br>PUR0 | 78, 79<br>78, 79<br>78, 79<br>80<br>80<br>81<br>131<br>132<br>135<br>82 |

NOTE: 1. The blank regions are reserved. Do not access locations in these regions.

| Address | Register                                                                | Symbol | Page                       |
|---------|-------------------------------------------------------------------------|--------|----------------------------|
| 0100h   | Timer RA Control Register                                               | TRACR  | 159                        |
| 0100h   | Timer RA I/O Control Register                                           | TRAIOC | 159, 161, 164,             |
|         |                                                                         |        | 166, 168, 171              |
| 0102h   | Timer RA Mode Register                                                  | TRAMR  | 160                        |
| 0103h   | Timer RA Prescaler Register                                             | TRAPRE | 160                        |
| 0104h   | Timer RA Register                                                       | TRA    | 160                        |
| 0105h   |                                                                         |        |                            |
| 0106h   | LIN Control Register                                                    | LINCR  | 244                        |
| 0107h   | LIN Status Register                                                     | LINST  | 245                        |
| 0108h   | Timer RB Control Register                                               | TRBCR  | 175                        |
| 0109h   | Timer RB One-Shot Control Register                                      | TRBOCR | 175                        |
| 010Ah   | Timer RB I/O Control Register                                           | TRBIOC | 176, 178, 182,<br>185, 189 |
| 010Bh   | Timer RB Mode Register                                                  | TRBMR  | 176                        |
| 010Ch   | Timer RB Prescaler Register                                             | TRBPRE | 177                        |
| 010Dh   | Timer RB Secondary Register                                             | TRBSC  | 177                        |
| 010Eh   | Timer RB Primary Register                                               | TRBPR  | 177                        |
| 010Fh   |                                                                         |        |                            |
| 0110h   |                                                                         |        |                            |
| 0111h   |                                                                         |        |                            |
| 0112h   |                                                                         |        |                            |
| 0113h   |                                                                         |        |                            |
| 0114h   |                                                                         |        |                            |
| 0115h   |                                                                         |        |                            |
| 0116h   |                                                                         |        |                            |
| 0117h   |                                                                         |        |                            |
| 0118h   | Timer RE Second Data Register / Counter Data Register <sup>(2)</sup>    | TRESEC | 198, 206                   |
| 0119h   | Timer RE Minute Data Register / Compare<br>Data Register <sup>(2)</sup> | TREMIN | 198, 206                   |
| 011Ah   | Timer RE Hour Data Registe <sup>(2)</sup>                               | TREHR  | 199                        |
| 011Bh   | Timer RE Day of Week Data Register <sup>(2)</sup>                       | TREWK  | 199                        |
| 011Ch   | Timer RE Control Register 1 <sup>(2)</sup>                              | TRECR1 | 200, 207                   |
| 011Dh   | Timer RE Control Register 2 <sup>(2)</sup>                              | TRECR2 | 201, 207                   |
| 011Eh   | Timer RE Count Source Select Register <sup>(2)</sup>                    | TRECSR | 202, 208                   |
| 011Fh   | Timer RE Real-Time Clock Precision Adjust<br>Register                   | TREOPR | 202                        |
| 0120h   | -                                                                       |        | †                          |
| 0121h   |                                                                         |        |                            |
| 0122h   |                                                                         | 1      |                            |
| 0123h   |                                                                         | 1      |                            |
| 0124h   |                                                                         |        |                            |
| 0125h   |                                                                         |        |                            |
| 0126h   |                                                                         |        |                            |
| 0127h   |                                                                         |        |                            |
| 0128h   |                                                                         |        |                            |
| 0129h   |                                                                         |        |                            |
| 012Ah   |                                                                         |        |                            |
| 012Bh   |                                                                         |        |                            |
| 012Ch   |                                                                         |        |                            |
| 012Dh   |                                                                         |        |                            |
| 012Eh   |                                                                         |        |                            |
| 012Fh   |                                                                         |        |                            |

| Address        | Register | Symbol         | Page |
|----------------|----------|----------------|------|
| 0130h          | -        | -              |      |
| 0131h          |          |                |      |
| 0132h          |          |                |      |
| 0133h          |          |                |      |
| 0134h          |          |                |      |
| 0135h          |          |                |      |
| 0136h          |          |                |      |
| 0137h          |          |                |      |
| 0138h          |          |                |      |
| 0139h          |          |                |      |
| 013Ah          |          |                |      |
| 013Bh          |          |                |      |
| 013Ch          |          |                |      |
| 013Dh          |          |                |      |
| 013Eh          |          |                |      |
| 013Fh          |          |                |      |
| 0140h          |          |                |      |
| 0141h          |          |                |      |
| 0142h          |          |                |      |
| 0143h          |          |                |      |
| 0144h          |          |                |      |
| 0145h          |          |                |      |
| 0146h          |          |                |      |
| 0147h          |          |                |      |
| 0148h          |          |                |      |
| 0149h          |          |                |      |
| 014Ah          |          |                |      |
| 014Bh          |          |                |      |
| 014Ch          |          |                |      |
| 014Dh          |          |                |      |
| 014Eh          |          |                |      |
| 014Fh          |          |                |      |
| 0150h          |          |                |      |
| 0151h          |          |                |      |
| 0152h          |          |                |      |
| 0153h          |          |                |      |
| 0154h          |          |                |      |
| 0155h          |          |                |      |
| 0156h          |          |                |      |
| 0157h          |          | <del>   </del> |      |
| 0158h          |          | <del>   </del> |      |
| 0159h          |          |                |      |
| 015Ah          |          |                |      |
| 015An<br>015Bh |          |                |      |
| 015Ch          |          |                |      |
| 015Dh          |          |                |      |
|                |          |                |      |
|                |          | <del> </del>   |      |
| 015Eh<br>015Fh |          |                |      |

NOTES:
1. The blank regions are reserved. Do not access locations in these regions.
2. This register is not implemented in the R8C/2J Group.

|                                  |                                                          |        | _    |
|----------------------------------|----------------------------------------------------------|--------|------|
| Address                          | Register                                                 | Symbol | Page |
| 0160h                            | UART2 Transmit/Receive Mode Register <sup>(2)</sup>      | U2MR   | 228  |
| 0161h                            | UART2 Bit Rate Register <sup>(2)</sup>                   | U2BRG  | 228  |
| 0162h                            | UART2 Transmit Buffer Register <sup>(2)</sup>            | U2TB   | 229  |
| 0163h                            | -                                                        |        |      |
| 0164h                            | UART2 Transmit/Receive Control Register 0 <sup>(2)</sup> | U2C0   | 229  |
| 0165h                            | UART2 Transmit/Receive Control Register 1 <sup>(2)</sup> | U2C1   | 230  |
| 0166h                            | UART2 Receive Buffer Register <sup>(2)</sup>             | U2RB   | 230  |
|                                  | UARTZ Receive Buller Register(2)                         | OZIND  | 230  |
| 0167h                            |                                                          |        |      |
| 0168h                            |                                                          |        |      |
| 0169h                            |                                                          |        |      |
| 016Ah                            |                                                          |        |      |
| 016Bh                            |                                                          |        |      |
| 016Ch                            |                                                          |        |      |
| 016Dh                            |                                                          |        |      |
| 016Eh                            |                                                          |        |      |
| 016Fh                            |                                                          |        |      |
| 0170h                            |                                                          |        |      |
| 0171h                            |                                                          | 1      |      |
| 0172h                            |                                                          |        |      |
| 0173h                            |                                                          |        |      |
| 0174h                            |                                                          |        |      |
| 0174h                            |                                                          |        |      |
| 0175h                            |                                                          |        |      |
|                                  |                                                          |        |      |
| 0177h                            |                                                          |        |      |
| 0178h                            |                                                          |        |      |
| 0179h                            |                                                          |        |      |
| 017Ah                            |                                                          |        |      |
| 017Bh                            |                                                          |        |      |
| 017Ch                            |                                                          |        |      |
| 017Dh                            |                                                          |        |      |
| 017Eh                            |                                                          |        |      |
| 017Fh                            |                                                          |        |      |
| 0180h                            |                                                          |        |      |
| 0181h                            |                                                          |        |      |
| 0182h                            |                                                          |        |      |
| 0183h                            |                                                          |        |      |
| 0184h                            |                                                          |        |      |
| 0185h                            |                                                          |        |      |
| 0186h                            |                                                          |        |      |
| 0180h                            |                                                          |        |      |
|                                  |                                                          |        |      |
| 0188h                            |                                                          |        |      |
| 0189h                            |                                                          |        |      |
| 018Ah                            |                                                          |        |      |
| 018Bh                            |                                                          |        |      |
| 018Ch                            |                                                          |        |      |
| 018Dh                            |                                                          |        |      |
| 018Eh                            |                                                          |        |      |
| 018Fh                            |                                                          |        |      |
| 0190h                            |                                                          |        |      |
| 0191h                            |                                                          |        |      |
| 0192h                            |                                                          |        |      |
| 0193h                            |                                                          | 1      | 1    |
| 0194h                            |                                                          |        |      |
| 0195h                            |                                                          |        |      |
| 0196h                            |                                                          |        |      |
| 0197h                            |                                                          |        | 1    |
| 0197h                            |                                                          |        |      |
|                                  |                                                          |        |      |
|                                  |                                                          | 1      |      |
| 0199h                            |                                                          |        |      |
| 0199h<br>019Ah                   |                                                          |        |      |
| 0199h<br>019Ah<br>019Bh          |                                                          |        |      |
| 0199h<br>019Ah<br>019Bh<br>019Ch |                                                          |        |      |
| 0199h<br>019Ah<br>019Bh          |                                                          |        |      |
| 0199h<br>019Ah<br>019Bh<br>019Ch |                                                          |        |      |

| Address        | Register                        | Symbol   | Page |
|----------------|---------------------------------|----------|------|
| 01A0h          | Register                        | Symbol   | Faye |
| 01A1h          |                                 |          |      |
| 01A2h          |                                 |          |      |
| 01A3h          |                                 |          |      |
| 01A4h          |                                 |          |      |
| 01A5h          |                                 |          |      |
| 01A6h          |                                 |          |      |
| 01A7h          |                                 |          |      |
| 01A8h          |                                 |          |      |
| 01A9h          |                                 |          |      |
| 01AAh          |                                 |          |      |
| 01ABh          |                                 |          |      |
| 01ACh          |                                 |          |      |
| 01ADh          |                                 |          |      |
| 01AEh          |                                 |          |      |
| 01AFh          |                                 |          |      |
| 01B0h          |                                 |          |      |
| 01B1h<br>01B2h |                                 |          |      |
| 01B2h          | Flash Memory Control Register 4 | FMR4     | 266  |
| 01B3h          | radin Memory Control Register 4 | 1 101114 | 200  |
| 01B4h          | Flash Memory Control Register 1 | FMR1     | 265  |
| 01B6h          |                                 |          | _00  |
| 01B7h          | Flash Memory Control Register 0 | FMR0     | 262  |
| 01B8h          | ,                               | -        |      |
| 01B9h          |                                 |          |      |
| 01BAh          |                                 |          |      |
| 01BBh          |                                 |          |      |
| 01BCh          |                                 |          |      |
| 01BDh          |                                 |          |      |
| 01BEh          |                                 |          |      |
| 01C0h          |                                 |          |      |
| 01C1h          |                                 |          |      |
| 01C2h          |                                 |          |      |
| 01C3h          |                                 |          |      |
| 01C4h          |                                 |          |      |
| 01C5h          |                                 |          |      |
| 01C6h          |                                 |          |      |
| 01C7h          |                                 |          |      |
| 01C8h<br>01C9h |                                 |          |      |
| 01C9h          |                                 |          |      |
| 01CAn<br>01CBh |                                 |          |      |
| 01CDh          |                                 |          |      |
| 01CDh          |                                 |          |      |
| 01CEh          |                                 |          |      |
| 01CFh          |                                 |          |      |
| 01D0h          |                                 |          |      |
| 01D1h          |                                 |          |      |
| 01D2h          |                                 |          |      |
| 01D3h          |                                 |          |      |
| 01D4h          |                                 |          |      |
| 01D5h          |                                 |          |      |
| 01D6h          |                                 |          |      |
| 01D7h          |                                 |          |      |
| 01D8h          |                                 |          |      |
| 01D9h          |                                 |          |      |
| 01DAh          |                                 |          |      |
| 01DBh          |                                 |          |      |
| 01DCh          |                                 |          |      |
| 01DDh          |                                 |          |      |
| 01DEh          |                                 |          |      |
| 01DFh          |                                 |          |      |

NOTES:
1. The blank regions are reserved. Do not access locations in these regions.
2. This register is not implemented in the R8C/2J Group.

| Address          | Posistar | Cumhal | Dara     | Address -        | Bogister | Cymrhal | Deee |
|------------------|----------|--------|----------|------------------|----------|---------|------|
| Address<br>01E0h | Register | Symbol | Page     | Address<br>0220h | Register | Symbol  | Page |
| 01E0h            | <u> </u> |        |          | 0220h<br>0221h   |          |         |      |
| 01E1h            | <u> </u> |        |          | 0221h<br>0222h   |          |         |      |
| 01E2h            |          |        |          |                  |          |         |      |
| 01E3h            | <u> </u> |        |          | 0223h<br>0224h   |          |         |      |
|                  |          |        |          |                  |          |         |      |
| 01E5h            |          |        |          | 0225h            |          |         |      |
| 01E6h            |          |        |          | 0226h            |          |         |      |
| 01E7h            |          |        |          | 0227h            |          |         |      |
| 01E8h            |          |        |          | 0228h            |          |         |      |
| 01E9h            |          |        |          | 0229h            |          |         |      |
| 01EAh            |          |        |          | 022Ah            |          |         |      |
| 01EBh            |          |        |          | 022Bh            |          |         |      |
| 01ECh            |          |        |          | 022Ch            |          |         |      |
| 01EDh            |          |        |          | 022Dh            |          |         |      |
| 01EEh            |          |        |          | 022Eh            |          |         |      |
| 01EFh            |          |        |          | 022Fh            |          |         |      |
| 01F0h            |          |        |          | 0230h            |          |         |      |
| 01F1h            |          |        |          | 0231h            |          |         |      |
| 01F2h            |          |        |          | 0232h            |          |         |      |
| 01F3h            |          |        |          | 0233h            |          |         |      |
| 01F4h            |          |        |          | 0234h            |          |         |      |
| 01F5h            |          |        |          | 0235h            |          |         |      |
| 01F6h            |          |        |          | 0236h            |          |         |      |
| 01F7h            |          |        |          | 0237h            |          |         |      |
| 01F8h            |          |        |          | 0238h            |          |         |      |
| 01F9h            |          |        |          | 0239h            |          |         |      |
| 01FAh            |          |        |          | 023Ah            |          |         |      |
| 01FBh            |          |        |          | 023Bh            |          |         |      |
| 01FCh            |          |        |          | 023Ch            |          |         |      |
| 01FDh            |          |        |          | 023Dh            |          |         |      |
| 01FEh            |          |        |          | 023Eh            |          |         |      |
| 01FFh            |          |        |          | 023Fh            |          |         |      |
| 0200h            |          |        |          | 0240h            |          |         |      |
| 0201h            |          |        |          | 0241h            |          |         |      |
| 0202h            |          |        |          | 0242h            |          |         |      |
| 0203h            |          |        |          | 0243h            |          |         |      |
| 0204h            |          |        |          | 0244h            |          |         |      |
| 0205h            |          |        |          | 0245h            |          |         |      |
| 0206h            |          |        |          | 0246h            |          |         |      |
| 0207h            |          |        |          | 0247h            |          |         |      |
| 0208h            |          |        |          | 0248h            |          |         |      |
| 0209h            |          |        |          | 0249h            |          |         |      |
| 0200h            | <u> </u> |        | <u> </u> | 024Ah            |          |         |      |
| 0207th           | <u> </u> |        | <u> </u> | 024Bh            |          |         |      |
| 020Dh            | <u> </u> |        |          | 024Ch            |          |         |      |
| 020Ch            | <u> </u> |        |          | 024Ch            |          |         |      |
| 020Dh            | <u> </u> |        |          | 024Dh            |          |         |      |
| 020Eh            | l        |        |          | 024En            |          |         |      |
| 020FI            | l        |        |          | 024FN<br>0250h   |          |         |      |
| 0210h            | <u> </u> |        | <u> </u> | 0250h            |          |         |      |
| 0211h<br>0212h   | <u> </u> |        | <u> </u> | 0251h<br>0252h   |          |         |      |
| 0212h<br>0213h   | <u> </u> |        |          | 0252h<br>0253h   |          |         |      |
|                  | ll       |        | I        |                  |          |         |      |
| 0214h            | ļļ       |        | <u> </u> | 0254h            |          |         |      |
| 0215h            | <u> </u> |        |          | 0255h            |          |         |      |
| 0216h            | ļ        |        | l        | 0256h            |          |         |      |
| 0217h            | 4        |        | L        | 0257h            |          |         |      |
| 0218h            | Į        |        |          | 0258h            |          |         |      |
| 0219h            |          |        |          | 0259h            |          |         |      |
| 021Ah            |          |        |          | 025Ah            |          |         |      |
| 021Bh            |          |        |          | 025Bh            |          |         |      |
| 021Ch            |          |        |          | 025Ch            |          |         |      |
| 021Dh            |          |        |          | 025Dh            |          |         |      |
| 021Eh            |          |        |          | 025Eh            |          |         |      |
| 021Fh            |          |        |          | 025Fh            |          |         |      |
|                  |          |        |          |                  |          |         |      |

NOTE: 1. The blank regions are reserved. Do not access locations in these regions.

| Address        | Register                                   | Symbol | Page     | Address         | Register | Symbol | Page |
|----------------|--------------------------------------------|--------|----------|-----------------|----------|--------|------|
| 0260h          | -                                          |        |          | 02A0h           | -        |        | -    |
| 0261h          |                                            |        |          | 02A1h           |          |        |      |
| 0262h          |                                            |        |          | 02A2h           |          |        |      |
| 0263h          |                                            |        |          | 02A3h           |          |        |      |
| 0264h          |                                            |        |          | 02A4h           |          |        |      |
| 0265h          |                                            |        |          | 02A5h           |          |        |      |
| 0266h          |                                            |        |          | 02A6h           |          |        |      |
| 0267h          |                                            |        |          | 02A7h           |          |        |      |
| 0268h          |                                            |        |          | 02A8h           |          |        |      |
| 0269h          |                                            |        |          | 02A9h           |          |        |      |
| 026Ah          |                                            |        |          | 02AAh           |          |        |      |
| 0268h          |                                            |        |          | 02ABh           |          |        |      |
| 026Ch          |                                            |        |          | 02ACh           |          |        |      |
| 026Dh          |                                            |        |          | 02ADh           |          |        |      |
| 026Eh          |                                            |        |          | 02AEh           |          |        |      |
| 020Eh          |                                            |        |          | 02AEh<br>02AFh  |          |        |      |
| 020FII         |                                            |        |          | 02AFI1<br>02B0h |          |        |      |
|                |                                            |        |          |                 |          |        |      |
| 0271h          |                                            |        | ł        | 02B1h           |          |        |      |
| 0272h          |                                            |        | ł        | 02B2h           |          |        |      |
| 0273h          |                                            |        |          | 02B3h           |          |        |      |
| 0274h          |                                            |        | ļ        | 02B4h           |          |        |      |
| 0275h          |                                            |        |          | 02B5h           |          |        |      |
| 0276h          |                                            |        |          | 02B6h           |          |        |      |
| 0277h          |                                            |        | l        | 02B7h           |          |        |      |
| 0278h          |                                            |        |          | 02B8h           |          |        |      |
| 0279h          |                                            |        |          | 02B9h           |          |        |      |
| 027Ah          |                                            |        |          | 02BAh           |          |        |      |
| 027Bh          |                                            |        |          | 02BBh           |          |        |      |
| 027Ch          |                                            |        |          | 02BCh           |          |        |      |
| 027Dh          |                                            |        |          | 02BDh           |          |        |      |
| 027Eh          |                                            |        |          | 02BEh           |          |        |      |
| 027Fh          |                                            |        |          | 02BFh           |          |        |      |
| 0280h          |                                            |        |          | 02C0h           |          |        |      |
| 0281h          |                                            |        |          | 02C1h           |          |        |      |
| 0282h          |                                            |        |          | 02C2h           |          |        |      |
| 0283h          |                                            |        |          | 02C3h           |          |        |      |
| 0284h          |                                            |        |          | 02C4h           |          |        |      |
| 0285h          |                                            |        |          | 02C5h           |          |        |      |
| 0286h          |                                            |        |          | 02C6h           |          |        |      |
| 0287h          |                                            |        |          | 02C7h           |          |        |      |
| 0288h          |                                            |        |          | 02C8h           |          |        |      |
| 0289h          |                                            |        | 1        | 02C9h           |          |        |      |
| 028Ah          |                                            |        | 1        | 02CAh           |          |        |      |
| 028Bh          |                                            |        |          | 02CBh           |          |        |      |
| 028Ch          |                                            |        | <u> </u> | 02CCh           |          |        |      |
| 028Dh          |                                            |        | 1        | 02CDh           |          |        |      |
| 028Eh          |                                            |        |          | 02CEh           |          |        |      |
| 028En<br>028Fh |                                            |        |          | 02CEn<br>02CFh  |          |        |      |
| 028Fn<br>0290h | Timer RF Register                          | TRF    | 215      | 02CFn<br>02D0h  |          |        |      |
|                |                                            | IRF    | 215      |                 |          |        |      |
| 0291h          |                                            |        |          | 02D1h           |          |        |      |
| 0292h          |                                            |        |          | 02D2h           |          |        |      |
| 0293h          |                                            |        |          | 02D3h           |          |        |      |
| 0294h          |                                            |        | l        | 02D4h           |          |        |      |
| 0295h          |                                            |        |          | 02D5h           |          |        |      |
| 0296h          |                                            |        |          | 02D6h           |          |        |      |
| 0297h          |                                            |        |          | 02D7h           |          |        |      |
| 0298h          |                                            |        |          | 02D8h           |          |        |      |
| 0299h          | Timer RF Control Register 2 <sup>(2)</sup> | TRFCR2 | 216      | 02D9h           |          |        |      |
| 029Ah          | Timer RF Control Register 0                | TRFCR0 | 216      | 02DAh           |          |        |      |
| 029Bh          | Timer RF Control Register 1                | TRFCR1 | 217      | 02DBh           |          |        |      |
| 029Ch          | Capture and Compare 0 Register             | TRFM0  | 215      | 02DCh           |          |        | 1    |
|                | , ,                                        |        |          | 02DDh           |          |        |      |
|                |                                            |        |          |                 |          |        |      |
| 029Dh<br>029Eh | Compare 1 Register                         | TRFM1  | 215      | 02DEh           |          |        |      |

NOTES:
1. The blank regions are reserved. Do not access locations in these regions.
2. This register is not implemented in the R8C/2J Group.

| Address | Register                         | Symbol | Page                 |
|---------|----------------------------------|--------|----------------------|
| 02E0h   |                                  |        |                      |
| 02E1h   |                                  |        |                      |
| 02E2h   |                                  |        |                      |
| 02E3h   |                                  |        |                      |
| 02E4h   |                                  |        |                      |
| 02E5h   |                                  |        |                      |
| 02E6h   |                                  |        |                      |
| 02E7h   |                                  |        |                      |
| 02E8h   |                                  |        |                      |
| 02E9h   |                                  |        |                      |
| 02EAh   |                                  |        |                      |
| 02EBh   |                                  |        |                      |
| 02ECh   |                                  |        |                      |
| 02EDh   |                                  |        |                      |
| 02EEh   |                                  |        |                      |
| 02EFh   |                                  |        |                      |
| 02F0h   |                                  |        |                      |
| 02F1h   |                                  |        |                      |
| 02F2h   |                                  |        |                      |
| 02F3h   |                                  |        |                      |
| 02F4h   |                                  |        |                      |
| 02F5h   |                                  |        |                      |
| 02F6h   |                                  |        |                      |
| 02F7h   |                                  |        |                      |
| 02F8h   |                                  |        |                      |
| 02F9h   |                                  |        |                      |
| 02FAh   |                                  |        |                      |
| 02FBh   | Pin Select Register 4            | PINSR4 | 46, 61, 80           |
| 02FCh   |                                  |        |                      |
| 02FDh   |                                  |        |                      |
| 02FEh   |                                  |        |                      |
| 02FFh   | Timer RF Output Control Register | TRFOUT | 217                  |
|         |                                  |        |                      |
| FFFFh   | Option Function Select Register  | OFS    | 33, 144,<br>152, 260 |

NOTE: 1. The blank regions are reserved. Do not access locations in these regions.

# RENESAS

R8C/2H Group, R8C/2J Group RENESAS MCU

# 1. Overview

## 1.1 Features

The R8C/2H Group and R8C/2J Group of single-chip MCUs incorporate the R8C/Tiny Series CPU core, employing sophisticated instructions for a high level of efficiency. With 1 Mbyte of address space, and it is capable of executing instructions at high speed. In addition, the CPU core boasts a multiplier for high-speed operation processing.

Power consumption is low, and the supported operating modes allow additional power control. These MCUs also use an anti-noise configuration to reduce emissions of electromagnetic noise and are designed to withstand EMI. Integration of many peripheral functions, including multifunction timer and serial interface, reduces the number of system components.

# 1.1.1 Applications

Electric power meters, electronic household appliances, office equipment, audio equipment, consumer equipment, etc.

## 1.1.2 Specifications

Table 1.1 outlines the Specifications for R8C/2H Group and Table 1.2 outlines the Specifications for R8C/2J Group.

| 14                                                                                                      | _                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|---------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Item                                                                                                    | Function                      | Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| CPU                                                                                                     | Central processing            | R8C/Tiny series core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                                                                                                         | unit                          | Number of fundamental instructions: 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                                                                                                         |                               | Minimum instruction execution time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                                                                                                         |                               | 125 ns (System clock = 8 MHz, VCC = 2.7 to 5.5 V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                         |                               | 250 ns (System clock = 4 MHz, VCC = 2.2 to 5.5 V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                         |                               | • Multiplier: 16 bits $\times$ 16 bits $\rightarrow$ 32 bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                                                         |                               | • Multiply-accumulate instruction: 16 bits × 16 bits + 32 bits $\rightarrow$ 32 bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                                                                                                         |                               | Operation mode: Single-chip mode (address space: 1 Mbyte)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Memory                                                                                                  | ROM, RAM                      | Refer to Table 1.3 Product List for R8C/2H Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Power Supply                                                                                            | Voltage detection             | Power-on reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Voltage                                                                                                 | circuit                       | Voltage detection 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Detection                                                                                               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Comparator                                                                                              |                               | <ul> <li>2 circuits (shared with voltage monitor 1 and voltage monitor 2)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                                                                                                         |                               | External reference voltage input is available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| I/O Ports                                                                                               |                               | Output-only: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                                                                                                         |                               | CMOS I/O ports: 15, selectable pull-up resistor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Clock                                                                                                   | Clock generation              | 2 circuits: On-chip oscillator (high-speed, low-speed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                                                                                                         | circuits                      | (high-speed on-chip oscillator has a frequency adjustment function),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                                                                                                         |                               | XCIN clock oscillation circuit (32 kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|                                                                                                         |                               | • Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                                                                                                         |                               | Low power consumption modes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                                                         |                               | Standard operating mode (low-speed clock, high-speed on-chip oscillator,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                                                                                                         |                               | low-speed on-chip oscillator), wait mode, stop mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                                                                                                         |                               | Real-time clock (timer RE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Interrunte                                                                                              |                               | External: 3 sources, Internal: 17 sources, Software: 4 sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Interrupts                                                                                              |                               | Priority levels: 7 levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Watabdag Timar                                                                                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Watchdog Time                                                                                           |                               | 15 bits × 1 (with prescaler), reset start selectable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Timer                                                                                                   | Timer RA                      | 8 bits × 1 (with 8-bit prescaler)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                         |                               | Timer mode (period timer), pulse output mode (output level inverted every                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                                                                                                         |                               | period), event counter mode, pulse width measurement mode, pulse period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|                                                                                                         | <b>T</b> 55                   | measurement mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                         | Timer RB                      | 8 bits × 1 (with 8-bit prescaler)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                         |                               | Timer mode (period timer), programmable waveform generation mode (PWM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                                                                         |                               | output), programmable one-shot generation mode, programmable wait one-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                                                                                                         |                               | shot generation mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                                                                                                         | Timer RE                      | 8 bits × 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                                                                                                         |                               | Real-time clock mode (count seconds, minutes, hours, days of week), output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                                                                                                         |                               | rical line block mode (beant beconde, minuted, notic, days of week), balpat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                                                                                                         |                               | compare mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                                                         | Timer RF                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                                                                                                         | Timer RF                      | compare mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Serial                                                                                                  | Timer RF<br>UART0, UART2      | compare mode<br>16 bits × 1 (with capture/compare register pin and compare register pin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Serial<br>Interface                                                                                     |                               | compare mode<br>16 bits × 1 (with capture/compare register pin and compare register pin)<br>Input capture mode, output compare mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                                                                                                         |                               | compare mode<br>16 bits × 1 (with capture/compare register pin and compare register pin)<br>Input capture mode, output compare mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Interface<br>LIN Module                                                                                 |                               | compare mode<br>16 bits × 1 (with capture/compare register pin and compare register pin)<br>Input capture mode, output compare mode<br>Clock synchronous serial I/O/UART × 2<br>Hardware LIN: 1 (timer RA, UART0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Interface                                                                                               |                               | compare mode<br>16 bits × 1 (with capture/compare register pin and compare register pin)<br>Input capture mode, output compare mode<br>Clock synchronous serial I/O/UART × 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Interface<br>LIN Module                                                                                 |                               | compare mode         16 bits × 1 (with capture/compare register pin and compare register pin)         Input capture mode, output compare mode         Clock synchronous serial I/O/UART × 2         Hardware LIN: 1 (timer RA, UART0)         • Programming and erasure voltage: VCC = 2.7 to 5.5 V         • Programming and erasure endurance: 100 times                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Interface<br>LIN Module                                                                                 |                               | compare mode         16 bits × 1 (with capture/compare register pin and compare register pin)         Input capture mode, output compare mode         Clock synchronous serial I/O/UART × 2         Hardware LIN: 1 (timer RA, UART0)         • Programming and erasure voltage: VCC = 2.7 to 5.5 V         • Programming and erasure endurance: 100 times         • Program security: ROM code protect, ID code check                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Interface<br>LIN Module<br>Flash Memory                                                                 | UART0, UART2                  | compare mode         16 bits × 1 (with capture/compare register pin and compare register pin)         Input capture mode, output compare mode         Clock synchronous serial I/O/UART × 2         Hardware LIN: 1 (timer RA, UART0)         • Programming and erasure voltage: VCC = 2.7 to 5.5 V         • Programming and erasure endurance: 100 times         • Program security: ROM code protect, ID code check         • Debug functions: On-chip debug, on-board flash rewrite function                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Interface<br>LIN Module<br>Flash Memory<br>Operating Free                                               | UART0, UART2                  | compare mode         16 bits × 1 (with capture/compare register pin and compare register pin)         Input capture mode, output compare mode         Clock synchronous serial I/O/UART × 2         Hardware LIN: 1 (timer RA, UART0)         • Programming and erasure voltage: VCC = 2.7 to 5.5 V         • Programming and erasure endurance: 100 times         • Program security: ROM code protect, ID code check         • Debug functions: On-chip debug, on-board flash rewrite function         System clock = 8 MHz (VCC = 2.7 to 5.5 V)                                                                                                                                                                                                                                              |  |  |  |  |
| Interface<br>LIN Module<br>Flash Memory<br>Operating Free<br>Voltage                                    | UART0, UART2                  | compare mode16 bits × 1 (with capture/compare register pin and compare register pin)<br>Input capture mode, output compare modeClock synchronous serial I/O/UART × 2Hardware LIN: 1 (timer RA, UART0)• Programming and erasure voltage: VCC = 2.7 to 5.5 V• Programming and erasure endurance: 100 times• Program security: ROM code protect, ID code check• Debug functions: On-chip debug, on-board flash rewrite functionSystem clock = 8 MHz (VCC = 2.7 to 5.5 V)System clock = 4 MHz (VCC = 2.2 to 5.5 V)                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Interface<br>LIN Module<br>Flash Memory<br>Operating Free                                               | UART0, UART2                  | compare mode         16 bits × 1 (with capture/compare register pin and compare register pin)         Input capture mode, output compare mode         Clock synchronous serial I/O/UART × 2         Hardware LIN: 1 (timer RA, UART0)         • Programming and erasure voltage: VCC = 2.7 to 5.5 V         • Programming and erasure endurance: 100 times         • Program security: ROM code protect, ID code check         • Debug functions: On-chip debug, on-board flash rewrite function         System clock = 8 MHz (VCC = 2.7 to 5.5 V)         System clock = 4 MHz (VCC = 2.2 to 5.5 V)         5 mA (VCC = 5 V, system clock = 8 MHz)                                                                                                                                             |  |  |  |  |
| Interface<br>LIN Module<br>Flash Memory<br>Operating Free<br>Voltage                                    | UART0, UART2                  | compare mode         16 bits × 1 (with capture/compare register pin and compare register pin)         Input capture mode, output compare mode         Clock synchronous serial I/O/UART × 2         Hardware LIN: 1 (timer RA, UART0)         • Programming and erasure voltage: VCC = 2.7 to 5.5 V         • Programming and erasure endurance: 100 times         • Program security: ROM code protect, ID code check         • Debug functions: On-chip debug, on-board flash rewrite function         System clock = 8 MHz (VCC = 2.7 to 5.5 V)         System clock = 4 MHz (VCC = 2.2 to 5.5 V)         5 mA (VCC = 5 V, system clock = 8 MHz)         23 µA (VCC = 3 V, wait mode (low-speed on-chip oscillator on))                                                                      |  |  |  |  |
| Interface<br>LIN Module<br>Flash Memory<br>Operating Free<br>Voltage<br>Current consur                  | UART0, UART2<br>quency/Supply | compare mode         16 bits × 1 (with capture/compare register pin and compare register pin)         Input capture mode, output compare mode         Clock synchronous serial I/O/UART × 2         Hardware LIN: 1 (timer RA, UART0)         • Programming and erasure voltage: VCC = 2.7 to 5.5 V         • Programming and erasure endurance: 100 times         • Program security: ROM code protect, ID code check         • Debug functions: On-chip debug, on-board flash rewrite function         System clock = 8 MHz (VCC = 2.7 to 5.5 V)         System clock = 4 MHz (VCC = 2.2 to 5.5 V)         5 mA (VCC = 5 V, system clock = 8 MHz)         23 µA (VCC = 3 V, wait mode (low-speed on-chip oscillator on))         0.7 µA (VCC = 3 V, stop mode, BGR trimming circuit disabled) |  |  |  |  |
| Interface<br>LIN Module<br>Flash Memory<br>Operating Free<br>Voltage<br>Current consur                  | UART0, UART2                  | compare mode16 bits × 1 (with capture/compare register pin and compare register pin)Input capture mode, output compare modeClock synchronous serial I/O/UART × 2Hardware LIN: 1 (timer RA, UART0)• Programming and erasure voltage: VCC = 2.7 to 5.5 V• Programming and erasure endurance: 100 times• Program security: ROM code protect, ID code check• Debug functions: On-chip debug, on-board flash rewrite functionSystem clock = 8 MHz (VCC = 2.7 to 5.5 V)System clock = 4 MHz (VCC = 2.2 to 5.5 V)5 mA (VCC = 3 V, system clock = 8 MHz)23 μA (VCC = 3 V, stop mode, BGR trimming circuit disabled)-20 to 85°C (N version)                                                                                                                                                              |  |  |  |  |
| Interface<br>LIN Module<br>Flash Memory<br>Operating Free<br>Voltage<br>Current consur<br>Operating Amb | UART0, UART2<br>quency/Supply | compare mode16 bits × 1 (with capture/compare register pin and compare register pin)Input capture mode, output compare modeClock synchronous serial I/O/UART × 2Hardware LIN: 1 (timer RA, UART0)• Programming and erasure voltage: VCC = 2.7 to 5.5 V• Programming and erasure endurance: 100 times• Program security: ROM code protect, ID code check• Debug functions: On-chip debug, on-board flash rewrite functionSystem clock = 8 MHz (VCC = 2.7 to 5.5 V)System clock = 4 MHz (VCC = 2.2 to 5.5 V)5 mA (VCC = 3 V, system clock = 8 MHz)23 μA (VCC = 3 V, stop mode, BGR trimming circuit disabled)-20 to 85°C (N version)-40 to 85°C (D version)(1)                                                                                                                                    |  |  |  |  |
| Interface<br>LIN Module<br>Flash Memory<br>Operating Free<br>Voltage<br>Current consur                  | UART0, UART2<br>quency/Supply | compare mode16 bits × 1 (with capture/compare register pin and compare register pin)Input capture mode, output compare modeClock synchronous serial I/O/UART × 2Hardware LIN: 1 (timer RA, UART0)• Programming and erasure voltage: VCC = 2.7 to 5.5 V• Programming and erasure endurance: 100 times• Program security: ROM code protect, ID code check• Debug functions: On-chip debug, on-board flash rewrite functionSystem clock = 8 MHz (VCC = 2.7 to 5.5 V)System clock = 4 MHz (VCC = 2.2 to 5.5 V)5 mA (VCC = 3 V, system clock = 8 MHz)23 μA (VCC = 3 V, stop mode, BGR trimming circuit disabled)-20 to 85°C (N version)                                                                                                                                                              |  |  |  |  |

Specifications for R8C/2H Group Table 1.1

NOTE: 1. Specify the D version if D version functions are to be used.

| Item            | Function           | Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CPU             | Central processing | R8C/Tiny series core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | unit               | <ul> <li>Number of fundamental instructions: 89</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                    | Minimum instruction execution time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 |                    | 125 ns (System clock = 8 MHz, VCC = 2.7 to 5.5 V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 |                    | 250 ns (System clock = 4 MHz, VCC = 2.2 to 5.5 V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 |                    | • Multiplier: 16 bits $\times$ 16 bits $\rightarrow$ 32 bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 |                    | • Multiply-accumulate instruction: 16 bits × 16 bits + 32 bits $\rightarrow$ 32 bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 |                    | Operation mode: Single-chip mode (address space: 1 Mbyte)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Memory          | ROM, RAM           | Refer to Table 1.4 Product List for R8C/2J Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Power Supply    | Voltage detection  | Power-on reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Voltage         | circuit            | Voltage detection 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Detection       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Comparator      |                    | • 2 circuits (shared with voltage monitor 1 and voltage monitor 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 |                    | External reference voltage input is available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| I/O Ports       |                    | CMOS I/O ports: 12, selectable pull-up resistor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Clock           | Clock generation   | 1 circuits: On-chip oscillator (high-speed, low-speed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | circuits           | (high-speed on-chip oscillator has a frequency adjustment function),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 |                    | • Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 |                    | Low power consumption modes:     Chard an active and the second an active and the second an |
|                 |                    | Standard operating mode (high-speed on-chip oscillator, low-speed on-chip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1               |                    | oscillator), wait mode, stop mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Interrupts      |                    | External: 3 sources, Internal: 14 sources, Software: 4 sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Matelada a Tima |                    | Priority levels: 7 levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Watchdog Time   |                    | 15 bits × 1 (with prescaler), reset start selectable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Timer           | Timer RA           | 8 bits × 1 (with 8-bit prescaler)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 |                    | Timer mode (period timer), pulse output mode (output level inverted every                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 |                    | period), event counter mode, pulse width measurement mode, pulse period<br>measurement mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | Timer RB           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                 |                    | 8 bits × 1 (with 8-bit prescaler)<br>Timer mode (period timer), programmable waveform generation mode (PWM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                    | output), programmable one-shot generation mode, programmable wait one-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |                    | shot generation mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | Timer RE           | Not implemented                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                 | Timer RF           | 16 bits × 1 (with capture/compare register pin and compare register pin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 |                    | Input capture mode, output compare mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Serial          | UART0              | Clock synchronous serial I/O/UART × 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Interface       | 0/ 11/10           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| LIN Module      |                    | Hardware LIN: 1 (timer RA, UART0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Flash Memory    |                    | <ul> <li>Programming and erasure voltage: VCC = 2.7 to 5.5 V</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ,               |                    | Programming and erasure endurance: 100 times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 |                    | <ul> <li>Program security: ROM code protect, ID code check</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                 |                    | Debug functions: On-chip debug, on-board flash rewrite function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Operating Free  | uency/Supply       | System clock = 8 MHz (VCC = 2.7 to 5.5 V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Voltage         | . ,,               | System clock = 4 MHz (VCC = 2.2 to 5.5 V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Current consur  | nption             | 5 mA (VCC = 5 V, system clock = 8 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |                    | 23 $\mu$ A (VCC = 3 V, wait mode (low-speed on-chip oscillator on))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 |                    | 0.7 $\mu$ A (VCC = 3 V, stop mode, BGR trimming circuit disabled)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Operating Amb   | pient Temperature  | -20 to 85°C (N version)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 |                    | -40 to 85°C (D version) <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Package         |                    | 20-pin LSSOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 |                    | Package code: PLSP0020JB-A (previous code: 20P2F-A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| NOTE:           |                    | J 11 - /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

#### Specifications for R8C/2J Group Table 1.2

NOTE: 1. Specify the D version if D version functions are to be used.



## 1.2 Product List

Table 1.3 lists Product List for R8C/2H Group, Figure 1.1 shows a Part Number, Memory Size, and Package of R8C/2H Group. Table 1.4 lists Product List for R8C/2J Group, Figure 1.2 shows a Part Number, Memory Size, and Package of R8C/2J Group.

| Table 1.3 Product | Current of Mar. 2008 |              |              |           |
|-------------------|----------------------|--------------|--------------|-----------|
| Part No.          | ROM Capacity         | RAM Capacity | Package Type | Remarks   |
| R5F212H1SNSP      | 4 Kbytes             | 256 bytes    | PLSP0020JB-A | N version |
| R5F212H2SNSP      | 8 Kbytes             | 384 bytes    | PLSP0020JB-A |           |
| R5F212H1SDSP      | 4 Kbytes             | 256 bytes    | PLSP0020JB-A | D version |
| R5F212H2SDSP      | 8 Kbytes             | 384 bytes    | PLSP0020JB-A |           |

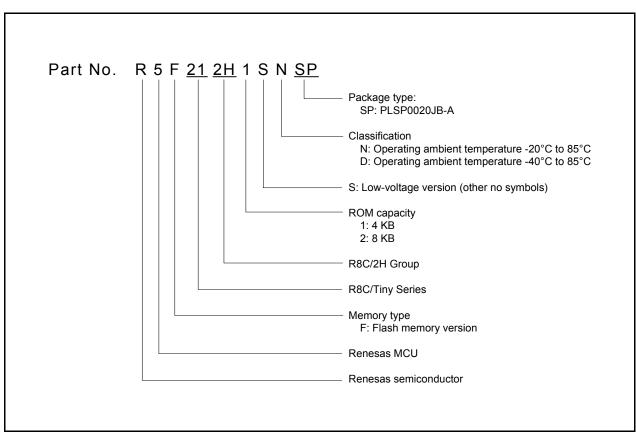



Figure 1.1 Part Number, Memory Size, and Package of R8C/2H Group

| Part No.     | ROM Capacity | RAM Capacity | Package Type | Remarks   |
|--------------|--------------|--------------|--------------|-----------|
| R5F212J0SNSP | 2 Kbytes     | 256 bytes    | PLSP0020JB-A | N version |
| R5F212J1SNSP | 4 Kbytes     | 384 bytes    | PLSP0020JB-A |           |
| R5F212J0SDSP | 2 Kbytes     | 256 bytes    | PLSP0020JB-A | D version |
| R5F212J1SDSP | 4 Kbytes     | 384 bytes    | PLSP0020JB-A |           |

#### Table 1.4 Product List for R8C/2J Group

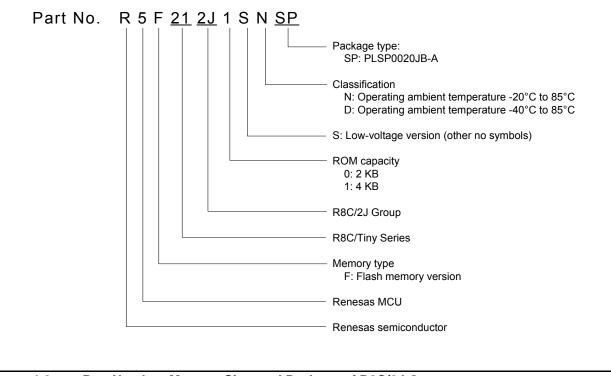
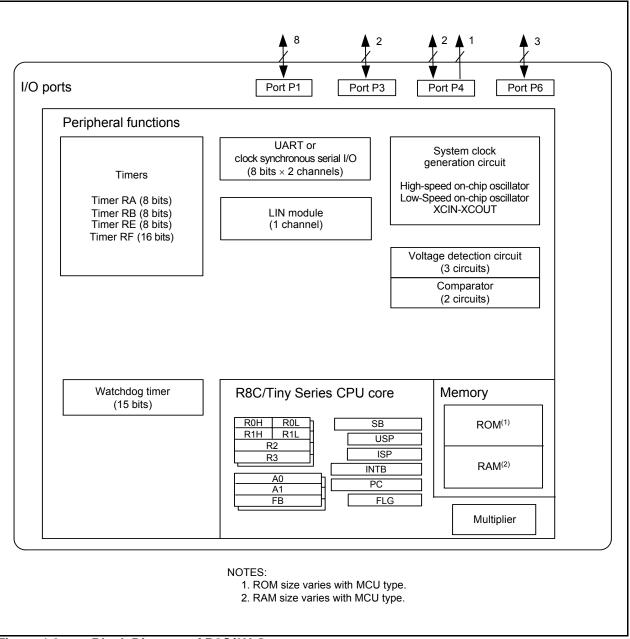
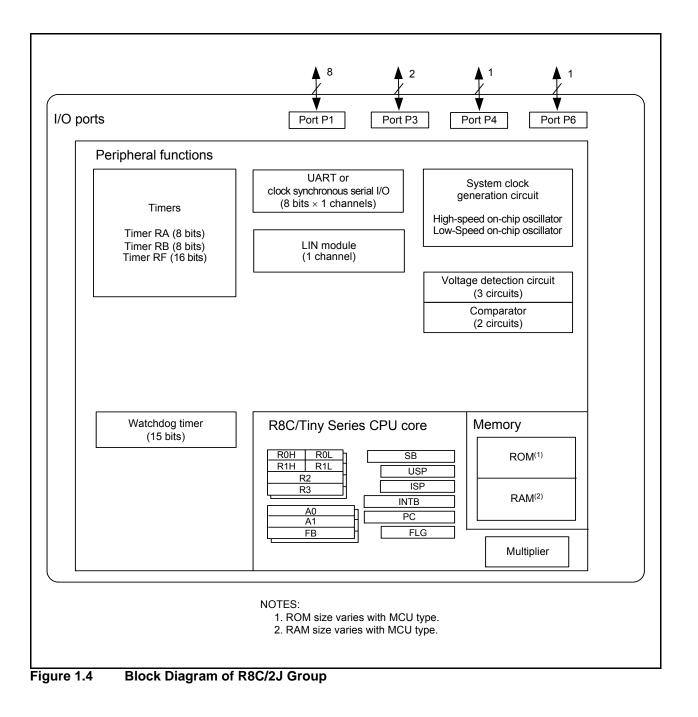


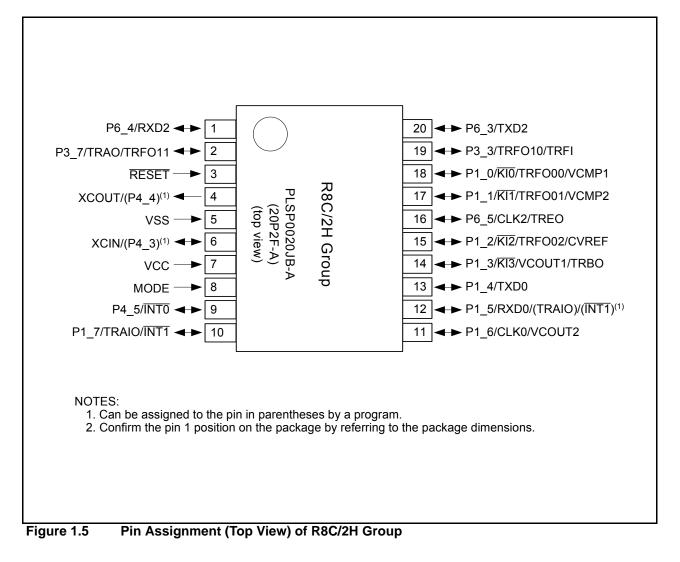

Figure 1.2 Part Number, Memory Size, and Package of R8C/2J Group

Current of Mar. 2008

## 1.3 Block Diagram

Figure 1.3 shows a Block Diagram of R8C/2H Group and Figure 1.4 shows a Block Diagram of R8C/2J Group.

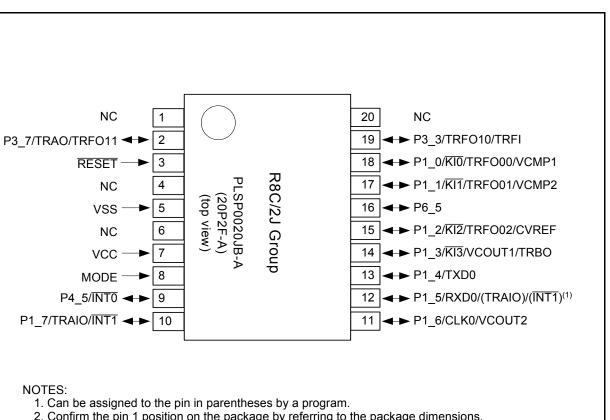





Figure 1.3 Block Diagram of R8C/2H Group



#### 1.4 Pin Assignment

Figure 1.5 shows Pin Assignment (Top View) of R8C/2H Group. Table 1.5 outlines the Pin Name Information by Pin Number of R8C/2H Group.


Figure 1.6 shows Pin Assignment (Top View) of R8C/2J Group. Table 1.6 outlines the Pin Name Information by Pin Number of R8C/2J Group.



| Pin<br>Number Control Pin | Control Din | Dort      | I/O Pin Functions for of Peripheral Modules |                        |            |        |  |
|---------------------------|-------------|-----------|---------------------------------------------|------------------------|------------|--------|--|
|                           | Port        | Interrupt | Timer                                       | Serial Interface       | Comparator |        |  |
| 1                         |             | P6_4      |                                             |                        | RXD2       |        |  |
| 2                         |             | P3_7      |                                             | TRAO/TRFO11            |            |        |  |
| 3                         | RESET       |           |                                             |                        |            |        |  |
| 4                         | XCOUT       | (P4_4)    |                                             |                        |            |        |  |
| 5                         | VSS         |           |                                             |                        |            |        |  |
| 6                         | XCIN        | (P4_3)    |                                             |                        |            |        |  |
| 7                         | VCC         |           |                                             |                        |            |        |  |
| 8                         | MODE        |           |                                             |                        |            |        |  |
| 9                         |             | P4_5      | INT0                                        |                        |            |        |  |
| 10                        |             | P1_7      | INT1                                        | TRAIO                  |            |        |  |
| 11                        |             | P1_6      |                                             |                        | CLK0       | VCOUT2 |  |
| 12                        |             | P1_5      | ( <del>INT1</del> ) <sup>(1)</sup>          | (TRAIO) <sup>(1)</sup> | RXD0       |        |  |
| 13                        |             | P1_4      |                                             |                        | TXD0       |        |  |
| 14                        |             | P1_3      | KI3                                         | TRBO                   |            | VCOUT1 |  |
| 15                        |             | P1_2      | KI2                                         | TRFO02                 |            | CVREF  |  |
| 16                        |             | P6_5      |                                             | TREO                   | CLK2       |        |  |
| 17                        |             | P1_1      | KI1                                         | TRFO01                 |            | VCMP2  |  |
| 18                        |             | P1_0      | KI0                                         | TRFO00                 |            | VCMP1  |  |
| 19                        |             | P3_3      |                                             | TRFO10/TRFI            |            |        |  |
| 20                        |             | P6_3      |                                             |                        | TXD2       |        |  |

Pin Name Information by Pin Number of R8C/2H Group Table 1.5

NOTE: 1. Can be assigned to the pin in parentheses by a program.



2. Confirm the pin 1 position on the package by referring to the package dimensions. NC...Non-Connection

Figure 1.6 Pin Assignment (Top View) of R8C/2J Group

| Pin<br>Number Co | Control Pin       | Port | I/O Pin Functions for of Peripheral Modules |                        |                  |            |  |
|------------------|-------------------|------|---------------------------------------------|------------------------|------------------|------------|--|
|                  | Control Fill      |      | Interrupt                                   | Timer                  | Serial Interface | Comparator |  |
| 1                | NC <sup>(2)</sup> |      |                                             |                        |                  |            |  |
| 2                |                   | P3_7 |                                             | TRAO/TRFO11            |                  |            |  |
| 3                | RESET             |      |                                             |                        |                  |            |  |
| 4                | NC <sup>(2)</sup> |      |                                             |                        |                  |            |  |
| 5                | VSS               |      |                                             |                        |                  |            |  |
| 6                | NC <sup>(2)</sup> |      |                                             |                        |                  |            |  |
| 7                | VCC               |      |                                             |                        |                  |            |  |
| 8                | MODE              |      |                                             |                        |                  |            |  |
| 9                |                   | P4_5 | ĪNT0                                        |                        |                  |            |  |
| 10               |                   | P1_7 | INT1                                        | TRAIO                  |                  |            |  |
| 11               |                   | P1_6 |                                             |                        | CLK0             | VCOUT2     |  |
| 12               |                   | P1_5 | (INT1) <sup>(1)</sup>                       | (TRAIO) <sup>(1)</sup> | RXD0             |            |  |
| 13               |                   | P1_4 |                                             |                        | TXD0             |            |  |
| 14               |                   | P1_3 | KI3                                         | TRBO                   |                  | VCOUT1     |  |
| 15               |                   | P1_2 | KI2                                         | TRFO02                 |                  | CVREF      |  |
| 16               |                   | P6_5 |                                             |                        |                  |            |  |
| 17               |                   | P1_1 | KI1                                         | TRFO01                 |                  | VCMP2      |  |
| 18               |                   | P1_0 | KI0                                         | TRFO00                 |                  | VCMP1      |  |
| 19               |                   | P3_3 |                                             | TRFO10/TRFI            |                  |            |  |
| 20               | NC <sup>(2)</sup> |      |                                             |                        |                  |            |  |

 Table 1.6
 Pin Name Information by Pin Number of R8C/2J Group

NOTES:

1. Can be assigned to the pin in parentheses by a program.

2. NC(Non-Connection)

## 1.5 Pin Functions

Table 1.7 lists Pin Functions of R8C/2H Group and Table 1.8 lists Pin Functions of R8C/2J Group.

|                                                          |                                       | -        |                                                                                                                        |  |
|----------------------------------------------------------|---------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------|--|
| Туре                                                     | Symbol                                | I/O Type | Description                                                                                                            |  |
| Power supply input                                       | VCC, VSS                              | -        | Apply 2.2 V to 5.5 V to the VCC pin. Apply 0 V to the VSS pin.                                                         |  |
| Reset input                                              | RESET                                 | I        | Input "L" on this pin resets the MCU.                                                                                  |  |
| MODE                                                     | MODE                                  | I        | Connect this pin to VCC via a resistor.                                                                                |  |
| XCIN clock input                                         | XCIN                                  | Ι        | These pins are provided for XCIN clock generation circuit I/O. Connect a crystal oscillator between the XCIN and XCOUT |  |
| XCIN clock output XCOUT                                  |                                       | 0        | pins. <sup>(1)</sup> To use an external clock, input it to the XCIN pir leave the XCOUT pin open.                      |  |
| INT interrupt input                                      | INTO, INT1                            | I        | INT interrupt input pins                                                                                               |  |
| Key input interrupt $\overline{KI0}$ to $\overline{KI3}$ |                                       | I        | Key input interrupt input pins                                                                                         |  |
| Timer RA                                                 | TRAIO                                 | I/O      | Timer RA I/O pin                                                                                                       |  |
|                                                          | TRAO                                  | 0        | Timer RA output pin                                                                                                    |  |
| Timer RB                                                 | TRBO                                  | 0        | Timer RB output pin                                                                                                    |  |
| Timer RE                                                 | TREO                                  | 0        | Divided clock output pin                                                                                               |  |
| Timer RF                                                 | TRFI                                  | I        | Timer RF input pin                                                                                                     |  |
|                                                          | TRFO00 to TRFO02,<br>TRFO10 to TRFO11 | 0        | Timer RF output pins                                                                                                   |  |
| Serial interface                                         | CLK0, CLK2                            | I/O      | Clock I/O pin                                                                                                          |  |
|                                                          | RXD0, RXD2                            | I        | Serial data input pin                                                                                                  |  |
|                                                          | TXD0, TXD2                            | 0        | Serial data output pin                                                                                                 |  |
| Comparator                                               | VCMP1, VCMP2                          | I        | Analog input pins to comparator                                                                                        |  |
|                                                          | CVREF                                 | I        | Reference voltage input pin to comparator                                                                              |  |
|                                                          | VCOUT1, VCOUT2                        | 0        | Comparator output pins                                                                                                 |  |
| I/O port                                                 | P1_0 to P1_7,                         | I/O      | CMOS I/O ports. Each port has an I/O select direction                                                                  |  |
|                                                          | P3_3, P3_7,                           |          | register, allowing each pin in the port to be directed for input                                                       |  |
|                                                          | P4_3, P4_5,                           |          | or output individually.                                                                                                |  |
|                                                          | P6_3 to P6_5                          |          | Any port set to input can be set to use a pull-up resistor or not by a program.                                        |  |
| Output port                                              | P4_4                                  | 0        | Output-only port                                                                                                       |  |

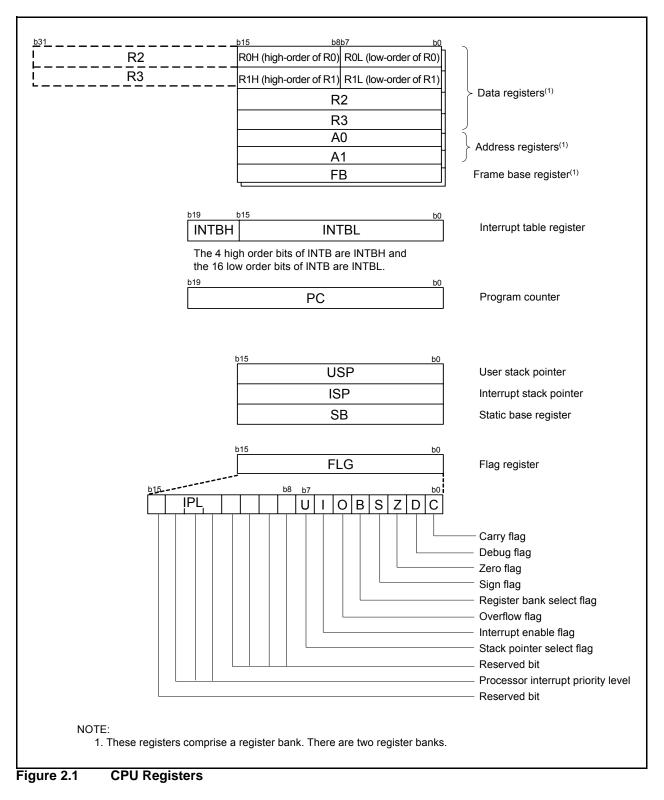
#### Table 1.7 Pin Functions of R8C/2H Group

I: Input O: Output I/O: Input and output

NOTE:

Refer to the oscillator manufacturer for oscillation characteristics.

| Туре                           | Symbol                                     | I/O Type | Description                                                                                                                                                                                                                       |  |
|--------------------------------|--------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Power supply input             | VCC, VSS                                   | _        | Apply 2.2 V to 5.5 V to the VCC pin. Apply 0 V to the VSS pin.                                                                                                                                                                    |  |
| Reset input                    | RESET                                      | I        | Input "L" on this pin resets the MCU.                                                                                                                                                                                             |  |
| MODE                           | MODE                                       | I        | Connect this pin to VCC via a resistor.                                                                                                                                                                                           |  |
| INT interrupt input INT0, INT1 |                                            | I        | INT interrupt input pins                                                                                                                                                                                                          |  |
| Key input interrupt            | KIO to KI3                                 | I        | Key input interrupt input pins                                                                                                                                                                                                    |  |
| Timer RA                       | TRAIO                                      | I/O      | Timer RA I/O pin                                                                                                                                                                                                                  |  |
|                                | TRAO                                       | 0        | Timer RA output pin                                                                                                                                                                                                               |  |
| Timer RB                       | TRBO                                       | 0        | Timer RB output pin                                                                                                                                                                                                               |  |
| Timer RF                       | TRFI                                       | I        | Timer RF input pin                                                                                                                                                                                                                |  |
|                                | TRFO00 to TRFO02,<br>TRFO10 to TRFO11      | 0        | Timer RF output pins                                                                                                                                                                                                              |  |
| Serial interface               | CLK0                                       | I/O      | Clock I/O pin                                                                                                                                                                                                                     |  |
|                                | RXD0                                       | I        | Serial data input pin                                                                                                                                                                                                             |  |
|                                | TXD0                                       | 0        | Serial data output pin                                                                                                                                                                                                            |  |
| Comparator                     | VCMP1, VCMP2                               | I        | Analog input pins to comparator                                                                                                                                                                                                   |  |
|                                | CVREF                                      | I        | Reference voltage input pin to comparator                                                                                                                                                                                         |  |
|                                | VCOUT1, VCOUT2                             | 0        | Comparator output pins                                                                                                                                                                                                            |  |
| I/O port                       | P1_0 to P1_7,<br>P3_3, P3_7,<br>P4_5, P6_5 | I/O      | CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input or output individually.<br>Any port set to input can be set to use a pull-up resistor or not by a program. |  |


#### Table 1.8 Pin Functions of R8C/2J Group

I: Input O: Output

I/O: Input and output

# 2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.



### 2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

### 2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 to be used as a 32-bit address register (A1A0).

### 2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

### 2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of an interrupt vector table.

# 2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

# 2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP, and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

### 2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

### 2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

# 2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

# 2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

# 2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

# 2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

# 2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

### 2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

### 2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupt are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

### 2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

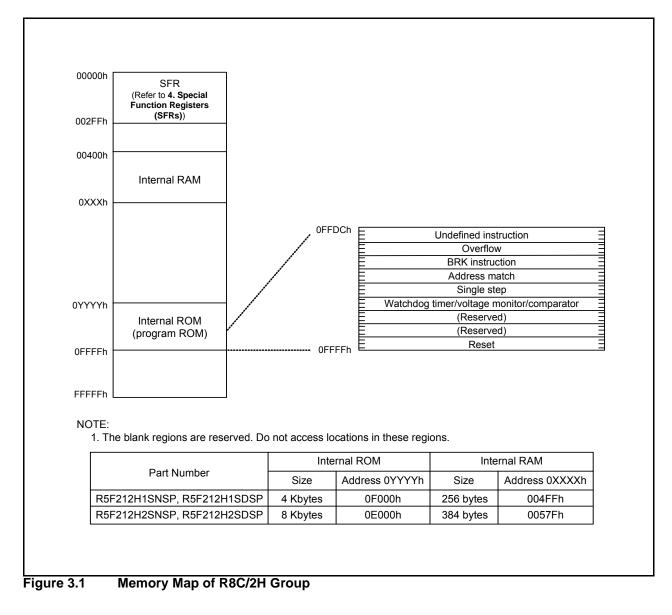
### 2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

### 2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

# 3. Memory


Figure 3.1 is a Memory Map of R8C/2H Group and Figure 3.2 is a Memory Map of R8C/2J Group. The R8C/2H group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM is allocated lower addresses, beginning with address 0FFFFh. For example, a 4-Kbyte internal ROM area is allocated addresses 0F000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal RAM is allocated higher addresses beginning with address 00400h. For example, a 256-bytes internal RAM area is allocated addresses 00400h to 004FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.



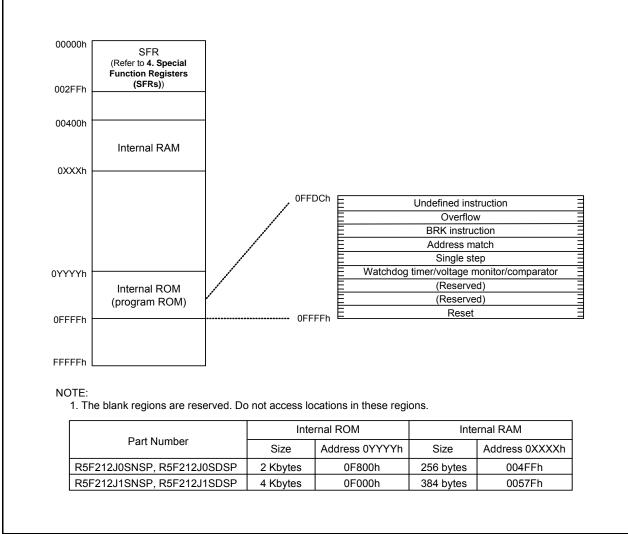



Figure 3.2

Memory Map of R8C/2J Group

#### **Special Function Registers (SFRs)** 4.

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.12 list the special function registers.

| Address         | Register                                                                                      | Symbol    | After reset             |
|-----------------|-----------------------------------------------------------------------------------------------|-----------|-------------------------|
| 0000h           |                                                                                               |           |                         |
| 0001h           |                                                                                               |           |                         |
| 0002h           |                                                                                               |           |                         |
| 0003h           |                                                                                               |           |                         |
| 0004h           | Processor Mode Register 0                                                                     | PM0       | 00h                     |
| 0005h           | Processor Mode Register 1                                                                     | PM1       | 00h                     |
| 0006h           | System Clock Control Register 0                                                               | CM0       | 01011000b               |
| 0007h           | System Clock Control Register 1                                                               | CM1       | 00h                     |
| 0008h           |                                                                                               |           |                         |
| 0009h           |                                                                                               |           |                         |
| 000Ah           | Protect Register                                                                              | PRCR      | 00h                     |
| 000Bh           |                                                                                               |           |                         |
| 000Ch           | System Clock Select Register <sup>(3)</sup>                                                   | OCD       | 00000100b               |
| 000Dh           | Watchdog Timer Reset Register                                                                 | WDTR      | XXh                     |
| 000Eh           | Watchdog Timer Start Register                                                                 | WDTS      | XXh                     |
| 000Fh           | Watchdog Timer Control Register                                                               | WDC       | 00X11111b               |
| 0010h           | Address Match Interrupt Register 0                                                            | RMAD0     | 00h                     |
| 0011h           |                                                                                               |           | 00h                     |
| 0012h           |                                                                                               |           | 00h                     |
| 0013h           | Address Match Interrupt Enable Register                                                       | AIER      | 00h                     |
| 0014h           | Address Match Interrupt Register 1                                                            | RMAD1     | 00h                     |
| 0015h           |                                                                                               |           | 00h                     |
| 0016h           |                                                                                               |           | 00h                     |
| 0017h           |                                                                                               |           |                         |
| 0018h           |                                                                                               |           |                         |
| 0019h           |                                                                                               |           |                         |
| 001Ah           |                                                                                               |           |                         |
| 001Bh           | Court Course Destaction Made Desister                                                         | 0000      | 0.0h                    |
| 001Ch           | Count Source Protection Mode Register                                                         | CSPR      | 00h                     |
|                 |                                                                                               |           | 1000000b <sup>(2)</sup> |
| 001Dh           |                                                                                               |           |                         |
| 001Eh           |                                                                                               |           |                         |
| 001Fh           |                                                                                               |           |                         |
| 0020h           | High-Speed On-Chip Oscillator Control Register 0                                              | HRA0      | 00h                     |
| 0021h           | High-Speed On-Chip Oscillator Control Register 1                                              | HRA1      | When Shipping           |
| 0022h<br>0023h  | High-Speed On-Chip Oscillator Control Register 2                                              | HRA2      | 00h                     |
| 0023h<br>0024h  |                                                                                               |           |                         |
| 0024h<br>0025h  |                                                                                               |           |                         |
| 0025h<br>0026h  |                                                                                               |           |                         |
| 0026h           |                                                                                               |           |                         |
| 0027h<br>0028h  | Cleak Brazalar Baset Elag(3)                                                                  | CPSRF     | 00h                     |
| 0028h           | Clock Prescaler Reset Flag <sup>(3)</sup><br>High-Speed On-Chip Oscillator Control Register 4 | FRA4      | When Shipping           |
| 0029fi<br>002Ah |                                                                                               | FRA4      |                         |
| 002An<br>002Bh  | High-Speed On-Chip Oscillator Control Register 6                                              | FRA6      | When Shipping           |
| 002Bn           |                                                                                               | FRAU      |                         |
| 002Ch           |                                                                                               |           |                         |
| 002Dh           | BGR Trimming Auxiliary Register A                                                             | BGRTRMA   | When Shipping           |
| 002En<br>002Fh  | BGR Trimming Auxiliary Register B                                                             | BGRTRMA   | When Shipping           |
| 002111          | DOIN MINIMING AUXILIARY REGISTER D                                                            | DORTRIVID |                         |

#### Table 4.1 SFR Information (1)<sup>(1)</sup>

X: Undefined
NOTES:

The blank regions are reserved. Do not access locations in these regions.
The CSPROINI bit in the OFS register is set to 0.
This register is not implemented in the R8C/2J Group.

| Table 4.2 | SFR Information (2) <sup>(1)</sup> |
|-----------|------------------------------------|
|-----------|------------------------------------|

| Address         | Register                                                                          | Symbol          | After reset                                          |
|-----------------|-----------------------------------------------------------------------------------|-----------------|------------------------------------------------------|
| 0030h           |                                                                                   |                 | 00001000b                                            |
| 0031h           | Voltage Detection Register 1 <sup>(2)</sup>                                       | VCA1            | 00001000b                                            |
| 0032h           | Voltage Detection Register 2 <sup>(2)</sup>                                       | VCA2            | 00h <sup>(3)</sup><br>00100000b <sup>(4)</sup>       |
| 0033h           |                                                                                   |                 |                                                      |
| 0034h           |                                                                                   |                 |                                                      |
| 0035h           |                                                                                   |                 |                                                      |
| 0036h           | Voltage Monitor 1 Circuit Control Register <sup>(5)</sup>                         | VW1C            | 00001010b                                            |
| 0037h           | Voltage Monitor 2 Circuit Control Register <sup>(5)</sup>                         | VW2C            | 0000010b                                             |
| 0038h           | Voltage Monitor 0 Circuit Control Register <sup>(2)</sup>                         | VW0C            | 1000X010b <sup>(3)</sup><br>1100X011b <sup>(4)</sup> |
| 0039h           |                                                                                   |                 |                                                      |
| 003Ah           |                                                                                   |                 |                                                      |
| 003Bh           | Voltage Detection Circuit External Input Control Register                         | VCAB            | 00h                                                  |
| 003Ch           | Comparator Mode Register                                                          | ALCMR           | 00h                                                  |
| 003Dh           | Voltage Monitor Circuit Edge Select Register                                      | VCAC            | 00h                                                  |
| 003Eh           | BGR Control Register                                                              | BGRCR           | 00h                                                  |
| 003Fh           | BGR Trimming Register                                                             | BGRTRM          | When Shipping                                        |
| 0040h           | Comparator 1 Interrupt Control Deviator                                           | VONDUO          |                                                      |
| 0041h           | Comparator 1 Interrupt Control Register                                           | VCMP1IC         | XXXXX000b                                            |
| 0042h           | Comparator 2 Interrupt Control Register                                           | VCMP2IC         | XXXXX000b                                            |
| 0043h           |                                                                                   |                 |                                                      |
| 0044h<br>0045h  |                                                                                   |                 |                                                      |
| 0045h<br>0046h  |                                                                                   |                 |                                                      |
| 0046N<br>0047h  |                                                                                   |                 |                                                      |
| 004711<br>0048h |                                                                                   |                 |                                                      |
| 0048h           |                                                                                   |                 |                                                      |
| 0049h           | Timer RE Interrupt Control Register <sup>(6)</sup>                                | TREIC           | XXXXX000b                                            |
| 004An           | UART2 Transmit Interrupt Control Register <sup>(6)</sup>                          | S2TIC           | XXXXX000b                                            |
| 004BN           | UART2 Transmit Interrupt Control Register(0)                                      | S2RIC           | XXXXX000b                                            |
|                 | UART2 Receive Interrupt Control Register <sup>(6)</sup>                           |                 |                                                      |
| 004Dh           | Key Input Interrupt Control Register                                              | KUPIC           | XXXXX000b                                            |
| 004Eh           |                                                                                   |                 |                                                      |
| 004Fh<br>0050h  | Compare 1 Interrupt Control Deviator                                              | CMD1IC          | XXXXX000h                                            |
| 0050h           | Compare 1 Interrupt Control Register<br>UART0 Transmit Interrupt Control Register | CMP1IC<br>S0TIC | XXXXX000b<br>XXXXX000b                               |
| 0051h           | UARTO Receive Interrupt Control Register                                          | SORIC           | XXXXX000b                                            |
| 0052h           |                                                                                   | SURIC           | ~~~~~0000b                                           |
| 0053h           |                                                                                   |                 |                                                      |
| 0055h           |                                                                                   |                 |                                                      |
| 0055h           | Timer RA Interrupt Control Register                                               | TRAIC           | XXXXX000b                                            |
| 0057h           |                                                                                   | TRAIC           | ~~~~000b                                             |
| 0058h           | Timer RB Interrupt Control Register                                               | TRBIC           | XXXXX000b                                            |
| 0059h           | INT1 Interrupt Control Register                                                   | INT1IC          | XX00X000b                                            |
| 005Ah           |                                                                                   |                 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,              |
| 005An           | Timer RF Interrupt Control Register                                               | TRFIC           | XXXXX000b                                            |
| 005Ch           | Compare 0 Interrupt Control Register                                              | CMPOIC          | XXXXX000b                                            |
| 005Dh           | INTO Interrupt Control Register                                                   | INTOIC          | XX00X000b                                            |
| 005Eh           |                                                                                   |                 |                                                      |
| 005Fh           | Capture Interrupt Control Register                                                | CAPIC           | XXXXX000b                                            |
| 0060h           |                                                                                   |                 |                                                      |
| 0061h           |                                                                                   |                 |                                                      |
| 0062h           |                                                                                   |                 |                                                      |
| 0063h           |                                                                                   |                 |                                                      |
| 0064h           |                                                                                   |                 |                                                      |
| 0065h           |                                                                                   |                 |                                                      |
| 0066h           |                                                                                   |                 |                                                      |
| 0067h           |                                                                                   |                 |                                                      |
| 0068h           |                                                                                   |                 |                                                      |
| 0069h           |                                                                                   |                 |                                                      |
| 006Ah           |                                                                                   |                 |                                                      |
| 006Bh           |                                                                                   |                 |                                                      |
| 006Ch           |                                                                                   |                 |                                                      |
|                 |                                                                                   |                 |                                                      |
| 006Dh           |                                                                                   |                 |                                                      |
| 006Dh           |                                                                                   |                 |                                                      |

X: Undefined

NOTES:

1.

The blank regions are reserved. Do not access locations in these regions. Software reset, watchdog timer reset, voltage monitor 1 reset, or voltage monitor 2 reset do not affect this register. The LVD0ON bit in the OFS register is set to 1 and hardware reset. Power-on reset, voltage monitor 0 reset, or the LVD0ON bit in the OFS register is set to 0 and hardware reset. Software reset, watchdog timer reset, voltage monitor 1 reset, or voltage monitor 2 reset do not affect b2 and b3. This register is not implemented in the R8C/2J Group.

2. 3. 4. 5. 6.

| Address        | Register                                  | Symbol | After reset |
|----------------|-------------------------------------------|--------|-------------|
| 0070h          |                                           |        |             |
| 0071h          |                                           |        |             |
| 0072h          |                                           |        |             |
| 0073h          |                                           |        |             |
| 0074h          |                                           |        |             |
| 0075h          |                                           |        | 1           |
| 0076h          |                                           |        | 1           |
| 0077h          |                                           |        |             |
| 0078h          |                                           |        |             |
| 0079h          |                                           |        |             |
| 007Ah          |                                           |        |             |
| 007Bh          |                                           |        | 1           |
| 007Ch          |                                           |        | 1           |
| 007Dh          |                                           |        |             |
| 007Eh          |                                           |        |             |
| 007Fh          |                                           |        |             |
| 0080h          |                                           |        |             |
| 0081h          |                                           |        |             |
| 0082h          |                                           |        |             |
| 0083h          |                                           |        |             |
| 0084h          |                                           |        | +           |
| 0085h          |                                           |        |             |
| 0085h          |                                           |        |             |
| 0080h          |                                           |        |             |
| 0087h<br>0088h |                                           |        |             |
| 0088h          |                                           |        |             |
| 0089h          |                                           |        |             |
| 008An          |                                           |        |             |
|                |                                           |        |             |
| 008Ch          |                                           |        |             |
| 008Dh          |                                           |        |             |
| 008Eh          |                                           |        |             |
| 008Fh          |                                           |        |             |
| 0090h          |                                           |        |             |
| 0091h          |                                           |        |             |
| 0092h          |                                           |        |             |
| 0093h          |                                           |        |             |
| 0094h          |                                           |        |             |
| 0095h          |                                           |        |             |
| 0096h          |                                           |        |             |
| 0097h          |                                           |        |             |
| 0098h          |                                           |        |             |
| 0099h          |                                           |        |             |
| 009Ah          |                                           |        |             |
| 009Bh          |                                           |        |             |
| 009Ch          |                                           |        |             |
| 009Dh          |                                           |        |             |
| 009Eh          |                                           |        |             |
| 009Fh          |                                           |        |             |
| 00A0h          | UART0 Transmit/Receive Mode Register      | U0MR   | 00h         |
| 00A1h          | UART0 Bit Rate Register                   | U0BRG  | XXh         |
| 00A2h          | UART0 Transmit Buffer Register            | UOTB   | XXh         |
| 00A3h          | Ĭ                                         |        | XXh         |
| 00A4h          | UART0 Transmit/Receive Control Register 0 | U0C0   | 00001000b   |
| 00A5h          | UART0 Transmit/Receive Control Register 1 | U0C1   | 00000010b   |
| 00A6h          | UARTO Receive Buffer Register             | UORB   | XXh         |
| 00A7h          |                                           |        | XXh         |
| 00A8h          |                                           |        |             |
| 00A9h          |                                           |        |             |
| 00AAh          |                                           |        |             |
| 00AAn<br>00ABh |                                           |        |             |
| 00ABN<br>00ACh |                                           |        |             |
|                |                                           |        |             |
| 00ADh          |                                           |        |             |
| 00AEh          |                                           |        |             |
| 00AFh          |                                           |        |             |

#### SFR Information (3)<sup>(1)</sup> Table 4.3

| Address | Register                   | Symbol | After reset |
|---------|----------------------------|--------|-------------|
| 00B0h   |                            |        |             |
| 00B1h   |                            |        |             |
| 00B2h   |                            |        |             |
| 00B3h   |                            |        |             |
| 00B4h   |                            |        |             |
| 00B5h   |                            |        |             |
| 00B6h   |                            |        |             |
| 00B7h   |                            |        |             |
| 00B8h   |                            |        |             |
| 00B9h   |                            |        |             |
| 00BAh   |                            |        |             |
| 00BBh   |                            |        |             |
| 00BCh   |                            |        |             |
| 00BDh   |                            |        |             |
| 00BEh   |                            |        |             |
| 00BFh   |                            |        |             |
|         |                            |        |             |
| 00C0h   |                            |        |             |
| 00C1h   |                            |        |             |
| 00C2h   |                            |        |             |
| 00C3h   |                            |        |             |
| 00C4h   |                            |        |             |
| 00C5h   |                            |        |             |
| 00C6h   |                            |        |             |
| 00C7h   |                            |        |             |
| 00C8h   |                            |        |             |
| 00C9h   |                            |        |             |
| 00CAh   |                            |        |             |
| 00CBh   |                            |        |             |
| 00CCh   |                            |        |             |
| 00CDh   |                            |        |             |
| 00CEh   |                            |        |             |
| 00CFh   |                            |        |             |
| 00D0h   |                            |        |             |
| 00D0h   |                            |        |             |
| 00D2h   |                            | -      |             |
| 00D2h   |                            |        |             |
| 00D3h   |                            |        |             |
|         |                            |        |             |
| 00D5h   |                            | -      |             |
| 00D6h   |                            |        |             |
| 00D7h   |                            |        |             |
| 00D8h   |                            |        |             |
| 00D9h   |                            |        |             |
| 00DAh   |                            |        |             |
| 00DBh   |                            |        |             |
| 00DCh   |                            |        |             |
| 00DDh   |                            |        |             |
| 00DEh   |                            |        |             |
| 00DFh   |                            |        |             |
| 00E0h   |                            |        |             |
| 00E1h   | Port P1 Register           | P1     | 00h         |
| 00E2h   |                            |        | 1           |
| 00E3h   | Port P1 Direction Register | PD1    | 00h         |
| 00E4h   |                            |        |             |
| 00E5h   | Port P3 Register           | P3     | 00h         |
| 00E6h   |                            |        |             |
| 00E7h   | Port P3 Direction Register | PD3    | 00h         |
| 00E8h   | Port P4 Register           | P4     | 00h         |
| 00E9h   | I UILI TINGYIOLOI          | 1 **   |             |
| 002911  | Part D4 Direction Degister |        | 0.04        |
| 00EAh   | Port P4 Direction Register | PD4    | 00h         |
| 00EBh   | Dert DC Desister           | DC     | 0.01        |
| 00ECh   | Port P6 Register           | P6     | 00h         |
| 00EDh   |                            |        |             |
| 00EEh   | Port P6 Direction Register | PD6    | 00h         |
| 00EFh   |                            |        |             |

#### SFR Information (4)<sup>(1)</sup> Table 4.4

| Table 4.5 | SFR Information (5) <sup>(1)</sup> |
|-----------|------------------------------------|
|-----------|------------------------------------|

| Address                                                                       | Register                                                             | Symbol | After reset |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------|--------|-------------|
| 00F0h                                                                         |                                                                      |        |             |
| 00F1h                                                                         |                                                                      |        |             |
| 00F2h                                                                         |                                                                      |        |             |
| 00F3h                                                                         |                                                                      |        |             |
| 00F4h                                                                         |                                                                      |        |             |
| 00F5h                                                                         |                                                                      |        |             |
| 00F6h                                                                         | Pin Select Register 2                                                | PINSR2 | 00h         |
| 00F7h                                                                         |                                                                      |        |             |
| 00F8h                                                                         | Port Mode Register                                                   | PMR    | 00h         |
| 00F9h                                                                         | External Input Enable Register                                       | INTEN  | 00h         |
| 00FAh                                                                         | INT Input Filter Select Register                                     | INTF   | 00h         |
| 00FBh                                                                         | Key Input Enable Register                                            | KIEN   | 00h         |
| 00FCh                                                                         | Pull-Up Control Register 0                                           | PUR0   | 00h         |
| 00FDh                                                                         | Pull-Up Control Register 1                                           | PUR1   | 00h         |
| 00FEh                                                                         |                                                                      |        |             |
| 00FFh                                                                         |                                                                      |        |             |
| 0100h                                                                         | Timer RA Control Register                                            | TRACR  | 00h         |
| 0100h                                                                         | Timer RA I/O Control Register                                        | TRACK  | 00h         |
| 0101h<br>0102h                                                                | Timer RA Mode Register                                               | TRAIOC | 00h         |
|                                                                               |                                                                      |        |             |
| 0103h                                                                         | Timer RA Prescaler Register                                          | TRAPRE | FFh         |
| 0104h                                                                         | Timer RA Register                                                    | TRA    | FFh         |
| 0105h                                                                         |                                                                      |        | 0.01        |
| 0106h                                                                         | LIN Control Register                                                 | LINCR  | 00h         |
| 0107h                                                                         | LIN Status Register                                                  | LINST  | 00h         |
| 0108h                                                                         | Timer RB Control Register                                            | TRBCR  | 00h         |
| 0109h                                                                         | Timer RB One-Shot Control Register                                   | TRBOCR | 00h         |
| 010Ah                                                                         | Timer RB I/O Control Register                                        | TRBIOC | 00h         |
| 010Bh                                                                         | Timer RB Mode Register                                               | TRBMR  | 00h         |
| 010Ch                                                                         | Timer RB Prescaler Register                                          | TRBPRE | FFh         |
| 010Dh                                                                         | Timer RB Secondary Register                                          | TRBSC  | FFh         |
| 010Eh                                                                         | Timer RB Primary Register                                            | TRBPR  | FFh         |
| 010Fh                                                                         |                                                                      |        |             |
| 0110h                                                                         |                                                                      |        |             |
| 0111h                                                                         |                                                                      |        |             |
| 0112h                                                                         |                                                                      |        |             |
| 0112h                                                                         |                                                                      |        |             |
| 0113h                                                                         |                                                                      |        |             |
| 011411<br>0115h                                                               |                                                                      |        |             |
|                                                                               |                                                                      |        |             |
| 0116h                                                                         |                                                                      |        |             |
| 0117h                                                                         | (0)                                                                  |        |             |
| 0118h                                                                         | Timer RE Second Data Register / Counter Data Register <sup>(2)</sup> | TRESEC | XXh         |
| 0119h                                                                         | Timer RE Minute Data Register / Compare Data Register <sup>(2)</sup> | TREMIN | XXh         |
| 011Ah                                                                         | Timer RE Hour Data Register <sup>(2)</sup>                           | TREHR  | X0XXXXXb    |
| 011Bh                                                                         | Timer RE Day of Week Data Register <sup>(2)</sup>                    | TREWK  | X0000XXXb   |
| 011Ch                                                                         | Timer RE Control Register 1 <sup>(2)</sup>                           | TRECR1 | XXX0X0X0b   |
| 011Dh                                                                         | Timer RE Control Register 2 <sup>(2)</sup>                           | TRECR2 | 00XXXXXb    |
|                                                                               |                                                                      | TRECSR | 00001000b   |
| 011Eh                                                                         | Timer RE Count Source Select Register <sup>(2)</sup>                 |        |             |
| 011Fh                                                                         | Timer RE Real-Time Clock Precision Adjust Register <sup>(2)</sup>    | TREOPR | 00h         |
| 0120h                                                                         |                                                                      |        |             |
| 0121h                                                                         |                                                                      |        |             |
| 0122h                                                                         |                                                                      |        |             |
| 0123h                                                                         |                                                                      |        |             |
|                                                                               |                                                                      |        | 1           |
| 0124h                                                                         |                                                                      | i      | 1           |
| 0124h<br>0125h                                                                |                                                                      |        |             |
|                                                                               |                                                                      |        |             |
| 0125h                                                                         |                                                                      |        |             |
| 0125h<br>0126h<br>0127h                                                       |                                                                      |        |             |
| 0125h<br>0126h<br>0127h<br>0128h                                              |                                                                      |        |             |
| 0125h<br>0126h<br>0127h<br>0128h<br>0129h                                     |                                                                      |        |             |
| 0125h<br>0126h<br>0127h<br>0128h<br>0129h<br>012Ah                            |                                                                      |        |             |
| 0125h<br>0126h<br>0127h<br>0128h<br>0129h<br>0129h<br>012Ah<br>012Bh          |                                                                      |        |             |
| 0125h<br>0126h<br>0127h<br>0128h<br>0129h<br>012Ah<br>012Ah<br>012Bh<br>012Ch |                                                                      |        |             |
| 0125h<br>0126h<br>0127h<br>0128h<br>0129h<br>0129h<br>012Ah<br>012Bh          |                                                                      |        |             |

X: Undefined
NOTES:

The blank regions are reserved. Do not access locations in these regions
This register is not implemented in the R8C/2J Group.

| Address        | Register                                                 | Symbol | After reset |
|----------------|----------------------------------------------------------|--------|-------------|
| 0130h          |                                                          |        |             |
| 0131h          |                                                          |        |             |
| 0132h          |                                                          |        |             |
| 0133h          |                                                          |        |             |
| 0134h          |                                                          |        |             |
| 0135h          |                                                          |        |             |
| 0136h          |                                                          |        |             |
| 0137h          |                                                          |        |             |
| 0138h          |                                                          |        |             |
| 0139h          |                                                          |        |             |
| 013Ah          |                                                          |        |             |
| 013Bh          |                                                          |        |             |
| 013Ch<br>013Dh |                                                          |        |             |
| 013Eh          |                                                          |        |             |
| 013Fh          |                                                          |        |             |
| 0140h          |                                                          |        |             |
| 0141h          |                                                          |        |             |
| 0142h          |                                                          |        |             |
| 0143h          |                                                          |        |             |
| 0144h          |                                                          |        |             |
| 0145h          |                                                          |        |             |
| 0146h          |                                                          |        |             |
| 0147h          |                                                          |        |             |
| 0148h          |                                                          |        |             |
| 0149h          |                                                          |        |             |
| 014Ah<br>014Bh |                                                          |        |             |
| 014Bh          |                                                          |        |             |
| 014Dh          |                                                          |        |             |
| 014Eh          |                                                          |        |             |
| 014Fh          |                                                          |        |             |
| 0150h          |                                                          |        |             |
| 0151h          |                                                          |        |             |
| 0152h          |                                                          |        |             |
| 0153h          |                                                          |        |             |
| 0154h          |                                                          |        |             |
| 0155h          |                                                          |        |             |
| 0156h          |                                                          |        |             |
| 0157h<br>0158h |                                                          |        |             |
| 0158h          |                                                          |        |             |
| 015Ah          |                                                          |        |             |
| 015Bh          |                                                          |        |             |
| 015Ch          |                                                          |        |             |
| 015Dh          |                                                          |        |             |
| 015Eh          |                                                          |        |             |
| 015Fh          |                                                          |        |             |
| 0160h          | UART2 Transmit/Receive Mode Register <sup>(2)</sup>      | U2MR   | 00h         |
| 0161h          | UART2 Bit Rate Register <sup>(2)</sup>                   | U2BRG  | XXh         |
| 0162h          | UART2 Transmit Buffer Register <sup>(2)</sup>            | U2TB   | XXh         |
| 0163h          |                                                          |        | XXh         |
| 0164h          | UART2 Transmit/Receive Control Register 0 <sup>(2)</sup> | U2C0   | 00001000b   |
| 0165h          | UART2 Transmit/Receive Control Register 1 <sup>(2)</sup> | U2C1   | 00000010b   |
| 0166h          | UART2 Receive Buffer Register <sup>(2)</sup>             | U2RB   | XXh         |
| 0167h          |                                                          |        | XXh         |
| 0168h          |                                                          |        |             |
| 0169h          |                                                          |        |             |
| 016Ah          |                                                          |        |             |
| 016Bh          |                                                          |        |             |
| 016Ch          |                                                          |        |             |
| 016Dh<br>016Eh |                                                          |        |             |
| 016En<br>016Fh |                                                          |        |             |
|                |                                                          |        |             |

### SFR Information (6)<sup>(1)</sup> Table 4.6

X: Undefined
NOTES:

The blank regions are reserved. Do not access locations in these regions.
This register is not implemented in the R8C/2J Group.

| Address                 | Register | Symbol | After reset |
|-------------------------|----------|--------|-------------|
| 0170h                   |          |        |             |
| 0171h                   |          |        |             |
| 0172h                   |          |        |             |
| 0173h                   |          |        |             |
| 0174h                   |          |        |             |
| 0175h                   |          |        |             |
| 0176h                   |          |        |             |
| 0177h                   |          |        |             |
| 0178h                   |          |        |             |
| 01701                   |          |        |             |
| 0179h                   |          |        |             |
| 017Ah                   |          |        |             |
| 017Bh                   |          |        |             |
| 017Ch                   |          |        |             |
| 017Dh                   |          |        |             |
| 017Eh                   |          |        |             |
| 017Fh                   |          |        |             |
| 0180h                   |          |        |             |
| 0181h                   |          |        |             |
| 0182h                   |          |        |             |
| 0183h                   |          |        |             |
| 0183h                   |          |        |             |
| 010411                  |          |        |             |
| 0185h                   |          |        |             |
| 0186h                   |          |        | <u> </u>    |
| 0187h                   |          |        |             |
| 0188h                   |          |        |             |
| 0189h                   |          |        |             |
| 018Ah                   |          |        |             |
| 018Bh                   |          |        |             |
| 018Ch                   |          |        |             |
| 018Dh                   |          |        |             |
| 018Eh                   |          |        |             |
| 018Fh                   |          |        |             |
| 010FII                  |          |        |             |
| 0190h                   |          |        |             |
| 0191h                   |          |        |             |
| 0192h                   |          |        |             |
| 0193h                   |          |        |             |
| 0194h                   |          |        |             |
| 0195h                   |          |        |             |
| 0196h                   |          |        |             |
| 0197h                   |          |        |             |
| 0198h                   |          |        |             |
| 0199h                   |          |        |             |
| 019Ah                   |          |        |             |
| 019Ah                   |          |        |             |
| 01980                   |          |        |             |
| 019Ch                   |          |        |             |
| 019Dh                   |          |        | <u> </u>    |
| 019Eh                   |          |        |             |
| 019Fh                   |          |        |             |
| 01A0h                   |          |        |             |
| 01A1h                   |          |        |             |
| 01A2h                   |          |        |             |
| 01A3h                   |          | 1      |             |
| 01A4h                   |          |        |             |
| 01A4h                   |          |        |             |
| 01A6h                   |          |        |             |
|                         |          |        |             |
| 01A7h                   |          |        |             |
| 01A8h                   |          |        |             |
| 01A9h                   |          |        |             |
| 01AAh                   |          |        |             |
| 01ABh                   |          |        |             |
| 01ACh                   |          | 1      |             |
|                         |          |        |             |
| 01ADh                   |          |        |             |
| 01ADh<br>01AEh          |          |        |             |
| 01ADh<br>01AEh<br>01AFh |          |        |             |

#### SFR Information (7)<sup>(1)</sup> Table 4.7

| A               |                                 | Or marked | After       |
|-----------------|---------------------------------|-----------|-------------|
| Address         | Register                        | Symbol    | After reset |
| 01B0h           |                                 |           |             |
| 01B1h           |                                 |           |             |
| 01B2h<br>01B3h  | Flash Memory Control Register 4 | FMR4      | 0100000b    |
| 01B3h<br>01B4h  | Flash Memory Control Register 4 | FINR4     | 80000010    |
| 01B411<br>01B5h | Flash Memory Control Register 1 | FMR1      | 1000000Xb   |
| 01B6h           | Thash Memory Control Register 1 |           | 1000000XD   |
| 01B7h           | Flash Memory Control Register 0 | FMR0      | 0000001b    |
| 01B8h           |                                 | 1 MILO    | 00000015    |
| 01B9h           |                                 |           |             |
| 01BAh           |                                 |           |             |
| 01BBh           |                                 |           |             |
| 01BCh           |                                 |           |             |
| 01BDh           |                                 |           |             |
| 01BEh           |                                 |           |             |
| 01BFh           |                                 |           |             |
| 01C0h           |                                 |           |             |
| 01C1h           |                                 |           |             |
| 01C2h           |                                 |           |             |
| 01C3h<br>01C4h  |                                 |           |             |
| 01C4n<br>01C5h  |                                 |           |             |
| 01C6h           |                                 |           |             |
| 01C7h           |                                 |           |             |
| 01C8h           |                                 |           |             |
| 01C9h           |                                 |           |             |
| 01CAh           |                                 |           |             |
| 01CBh           |                                 |           |             |
| 01CCh           |                                 |           |             |
| 01CDh           |                                 |           |             |
| 01CEh           |                                 |           |             |
| 01CFh           |                                 |           |             |
| 01D0h           |                                 |           |             |
| 01D1h           |                                 |           |             |
| 01D2h           |                                 |           |             |
| 01D3h<br>01D4h  |                                 |           |             |
| 01D411<br>01D5h |                                 |           |             |
| 01D6h           |                                 |           |             |
| 01D7h           |                                 |           |             |
| 01D8h           |                                 |           |             |
| 01D9h           |                                 |           |             |
| 01DAh           |                                 |           |             |
| 01DBh           |                                 |           |             |
| 01DCh           |                                 |           |             |
| 01DDh           |                                 |           |             |
| 01DEh           |                                 |           |             |
| 01DFh           |                                 |           |             |
| 01E0h           |                                 |           |             |
| 01E1h<br>01E2h  |                                 |           |             |
| 01E2h<br>01E3h  |                                 |           |             |
| 01E3h           |                                 |           |             |
| 01E5h           |                                 |           |             |
| 01E6h           |                                 |           |             |
| 01E7h           |                                 |           |             |
| 01E8h           |                                 |           |             |
| 01E9h           |                                 |           |             |
| 01EAh           |                                 |           |             |
| 01EBh           |                                 |           |             |
| 01ECh           |                                 |           |             |
| 01EDh           |                                 |           |             |
| 01EEh           |                                 |           |             |
| 01EFh           |                                 |           |             |

#### SFR Information (8)<sup>(1)</sup> Table 4.8

| Address        | Register | Symbol | After reset |
|----------------|----------|--------|-------------|
| 01F0h          |          |        |             |
| 01F1h          |          |        |             |
| 01F2h          |          |        |             |
| 01F3h          |          |        |             |
| 011 311        |          |        |             |
| 01F4h          |          |        |             |
| 01F5h          |          |        |             |
| 01F6h          |          |        |             |
| 01F7h          |          |        |             |
| 01F8h          |          |        |             |
| 01F9h          |          |        |             |
| 01FAh          |          |        |             |
| 01FBh          |          |        |             |
| UTFBII         |          |        |             |
| 01FCh          |          |        |             |
| 01FDh          |          |        |             |
| 01FEh          |          |        |             |
| 01FFh          |          |        |             |
| 0200h          |          |        |             |
| 0201h          |          |        |             |
| 0201h<br>0202h |          |        |             |
| 020211         |          |        |             |
| 0203h          |          |        | <u> </u>    |
| 0204h          |          |        |             |
| 0205h          |          |        |             |
| 0206h          |          |        |             |
| 0207h          |          |        |             |
| 0208h          |          |        |             |
| 0209h          |          |        |             |
| 020911         |          |        |             |
| 020Ah          |          |        |             |
| 020Bh          |          |        |             |
| 020Ch          |          |        |             |
| 020Dh          |          |        |             |
| 020Eh          |          |        |             |
| 020Fh          |          |        |             |
| 0210h          |          |        |             |
|                |          |        |             |
| 0211h          |          |        |             |
| 0212h          |          |        |             |
| 0213h          |          |        |             |
| 0214h          |          |        |             |
| 0215h          |          |        |             |
| 0216h          |          |        |             |
| 0217h          |          |        |             |
| 021711         |          |        |             |
| 0218h          |          |        |             |
| 0219h          |          |        |             |
| 021Ah          |          |        |             |
| 021Bh          |          |        |             |
| 021Ch          |          |        |             |
| 021Dh          |          |        |             |
| 021Eh          |          |        |             |
| 021L11         |          |        |             |
| 021Fh          |          |        |             |
| 0220h          |          |        | <u> </u>    |
| 0221h          |          |        |             |
| 0222h          |          |        |             |
| 0223h          |          |        |             |
| 0224h          |          |        |             |
| 0225h          |          |        |             |
|                |          |        |             |
| 0226h          |          |        |             |
| 0227h          |          |        |             |
| 0228h          |          |        |             |
| 0229h          |          |        |             |
| 022Ah          |          |        |             |
| 022Bh          |          |        |             |
| 022Bn          |          |        | <u> </u>    |
|                |          |        |             |
| 022Dh          |          |        | <u> </u>    |
| 022Eh          |          |        |             |
| 022Fh          |          |        |             |
| X: Undefined   |          |        |             |

### SFR Information (9)<sup>(1)</sup> Table 4.9

| Address         | Register | Symbol   | After reset |
|-----------------|----------|----------|-------------|
| 0230h           | •        |          |             |
| 0231h           |          |          |             |
| 0232h           |          |          |             |
| 0233h           |          |          |             |
| 0234h           |          |          |             |
| 0235h           |          |          |             |
| 0236h           |          |          |             |
| 0237h           |          |          |             |
| 0238h           |          |          |             |
| 0239h           |          |          |             |
| 023Ah           |          |          |             |
| 023Bh           |          |          |             |
| 023Ch           |          |          |             |
| 023Dh           |          |          |             |
| 023Eh           |          |          |             |
| 023Fh           |          |          |             |
| 0240h           |          |          |             |
| 0241h           |          |          |             |
| 024111<br>0242h |          |          |             |
| 024211<br>0243h |          | <u> </u> |             |
| 024311<br>0244h |          |          |             |
| 024411<br>0245h |          |          |             |
| 024511<br>0246h |          |          |             |
| 024011<br>0247h |          |          |             |
| 024711<br>0248h |          |          |             |
| 024811<br>0249h |          |          |             |
| 024911          |          |          |             |
| 024Ah           |          |          |             |
| 024Bh           |          |          |             |
| 024Ch           |          |          |             |
| 024Dh           |          |          |             |
| 024Eh           |          |          |             |
| 024Fh           |          |          |             |
| 0250h           |          |          |             |
| 0251h           |          |          |             |
| 0252h           |          |          |             |
| 0253h           |          |          |             |
| 0254h           |          |          |             |
| 0255h           |          |          |             |
| 0256h           |          |          |             |
| 0257h           |          |          |             |
| 0258h           |          |          |             |
| 0259h           |          |          |             |
| 025Ah           |          |          |             |
| 025Bh           |          |          |             |
| 025Ch           |          |          |             |
| 025Dh           |          |          |             |
| 025Eh           |          |          |             |
| 025Fh           |          |          |             |
| 0260h           |          |          |             |
| 0261h           |          |          |             |
| 0262h           |          |          |             |
| 0263h           |          |          |             |
| 0264h           |          |          |             |
| 0265h           |          |          |             |
| 0266h           |          |          |             |
| 0267h           |          |          |             |
| 0268h           |          |          |             |
| 0269h           |          |          |             |
| 026Ah           |          | 1        |             |
| 026Bh           |          | 1        |             |
| 026Ch           |          |          |             |
| 026Dh           |          |          |             |
| 026Eh           |          |          |             |
| 026En           |          |          |             |
|                 |          | 1        | 1           |

#### SFR Information (10)<sup>(1)</sup> Table 4.10

| Address                 | Register                                                                                                                                   | Symbol | After reset          |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------|
| 0270h                   |                                                                                                                                            |        |                      |
| 0271h                   |                                                                                                                                            |        |                      |
| 0272h                   |                                                                                                                                            |        |                      |
| 0273h                   |                                                                                                                                            |        |                      |
| 0274h                   |                                                                                                                                            |        |                      |
| 0275h                   |                                                                                                                                            |        |                      |
| 0276h                   |                                                                                                                                            |        |                      |
| 0277h                   |                                                                                                                                            |        |                      |
| 0278h                   |                                                                                                                                            |        |                      |
| 0279h                   |                                                                                                                                            |        |                      |
| 027Ah                   |                                                                                                                                            |        |                      |
| 027Bh                   |                                                                                                                                            |        |                      |
| 027Ch                   |                                                                                                                                            |        |                      |
| 027Dh                   |                                                                                                                                            |        |                      |
| 027Eh                   |                                                                                                                                            |        |                      |
| 027Fh                   |                                                                                                                                            |        |                      |
| 0280h                   |                                                                                                                                            |        |                      |
| 0281h                   |                                                                                                                                            |        |                      |
| 0282h                   |                                                                                                                                            |        |                      |
| 0283h                   |                                                                                                                                            |        | 1                    |
| 0284h                   |                                                                                                                                            |        |                      |
| 0285h                   |                                                                                                                                            |        |                      |
| 0286h                   |                                                                                                                                            |        | 1                    |
| 0287h                   |                                                                                                                                            |        |                      |
| 0288h                   |                                                                                                                                            |        |                      |
| 0289h                   |                                                                                                                                            |        |                      |
| 028Ah                   |                                                                                                                                            |        |                      |
| 028Bh                   |                                                                                                                                            |        |                      |
| 028Ch                   |                                                                                                                                            |        |                      |
| 028Dh                   |                                                                                                                                            |        |                      |
| 028Eh                   |                                                                                                                                            |        |                      |
| 028Fh                   |                                                                                                                                            |        |                      |
| 0290h                   | Timer RF Register                                                                                                                          | TRF    | 00h                  |
| 0291h                   |                                                                                                                                            |        | 00h                  |
| 0292h                   |                                                                                                                                            |        |                      |
| 0293h                   |                                                                                                                                            |        |                      |
| 0294h                   |                                                                                                                                            |        |                      |
| 0295h                   |                                                                                                                                            |        |                      |
| 0296h                   |                                                                                                                                            |        |                      |
| 0297h                   |                                                                                                                                            |        |                      |
| 0298h                   |                                                                                                                                            |        |                      |
| 0299h                   | Timer RE Control Register 2 <sup>(4)</sup>                                                                                                 | TRFCR2 | 00h                  |
| 029Ah                   | Timer RF Control Register 2 <sup>(4)</sup><br>Timer RF Control Register 0<br>Timer RF Control Register 1<br>Capture and Compare 0 Register | TRFCR0 | 00h                  |
| 029Bh                   | Timer RE Control Register 1                                                                                                                | TRFCR1 | 00h                  |
| 029Ch                   | Capture and Compare 0 Register                                                                                                             | TRFM0  | 0000h <sup>(2)</sup> |
| 029Ch                   |                                                                                                                                            |        | FFFFh <sup>(3)</sup> |
| 029Dh<br>029Eh          | Compare 1 Register                                                                                                                         | TRFM1  | FFFn                 |
| 029En<br>029Fh          | Compare i negisier                                                                                                                         |        | FFh                  |
| 029FN<br>02A0h          |                                                                                                                                            |        |                      |
| 02A0h<br>02A1h          |                                                                                                                                            |        |                      |
| 02A111<br>02A2h         |                                                                                                                                            |        |                      |
| 02A2h<br>02A3h          |                                                                                                                                            |        | l                    |
| 02A3h<br>02A4h          |                                                                                                                                            |        |                      |
|                         |                                                                                                                                            |        |                      |
| 02A5h<br>02A6h          |                                                                                                                                            |        |                      |
| 02A6h<br>02A7h          |                                                                                                                                            |        |                      |
|                         |                                                                                                                                            |        |                      |
| 02A8h                   |                                                                                                                                            |        |                      |
| 02A9h                   |                                                                                                                                            |        |                      |
| 02AAh<br>02ABh          |                                                                                                                                            |        |                      |
|                         |                                                                                                                                            |        |                      |
| 02ACh                   |                                                                                                                                            |        |                      |
|                         |                                                                                                                                            |        |                      |
| 02ADh                   |                                                                                                                                            |        |                      |
| 02ADh<br>02AEh<br>02AFh |                                                                                                                                            |        |                      |

#### SFR Information (11)<sup>(1)</sup> Table 4.11

X: Undefined

X: Onderned NOTES:
1. The blank regions are reserved. Do not access locations in these regions.
2. After input capture mode.
3. After output compare mode.
4. This register is not implemented in the R8C/2J Group.

| Address        | Register                         | Symbol | After reset |
|----------------|----------------------------------|--------|-------------|
| 02B0h          |                                  |        |             |
| 02B1h          |                                  |        |             |
| 02B2h          |                                  |        |             |
| 02B3h          |                                  |        |             |
| 02B4h          |                                  |        |             |
| 02B5h          |                                  |        |             |
| 02B6h          |                                  |        |             |
| 02B7h          |                                  |        |             |
| 02B8h          |                                  |        |             |
| 02B9h          |                                  |        |             |
| 02BAh          |                                  |        |             |
| 02BBh          |                                  |        |             |
| 02BCh          |                                  |        |             |
| 02BDh          |                                  |        |             |
| 02BEh          |                                  |        |             |
| 02BFh          |                                  |        |             |
| 02C0h          |                                  |        |             |
| 02C1h          |                                  |        |             |
| 02C2h          |                                  |        |             |
| 02C3h          |                                  |        |             |
| 02C4h          |                                  |        |             |
| 02C5h          |                                  |        |             |
| 02C6h          |                                  |        |             |
| 02C7h          |                                  |        |             |
| 02C8h          |                                  |        |             |
| 02C9h          |                                  |        |             |
| 02CAh          |                                  |        |             |
| 02CBh          |                                  |        |             |
| 02CCh          |                                  |        |             |
| 02CDh          |                                  |        |             |
| 02CEh          |                                  |        |             |
| 02CFh          |                                  |        |             |
| 02D0h          |                                  |        |             |
| 02D1h          |                                  |        |             |
| 02D2h          |                                  |        |             |
| 02D3h          |                                  |        |             |
| 02D4h          |                                  |        |             |
| 02D5h          |                                  |        |             |
| 02D6h          |                                  |        |             |
| 02D7h          |                                  |        |             |
| 02D8h          |                                  |        |             |
| 02D9h          |                                  |        |             |
| 02DAh          |                                  |        |             |
| 02DBh          |                                  |        |             |
| 02DCh          |                                  |        |             |
| 02DDh          |                                  |        |             |
| 02DEh          |                                  |        |             |
| 02DEh<br>02DFh |                                  |        |             |
| 02E0h          |                                  |        |             |
| 022011         |                                  |        |             |
| 02EFh          |                                  |        |             |
| 02EFn<br>02F0h |                                  |        |             |
| 02F01          |                                  |        |             |
| 02F1h<br>02F2h |                                  |        |             |
| 02F2h<br>02F3h |                                  |        |             |
| 025311         |                                  |        |             |
| 02F4h          |                                  |        |             |
| 02F5h          |                                  |        |             |
| 02F6h          |                                  |        |             |
| 02F7h          |                                  |        |             |
| 02F8h          |                                  |        |             |
| 02F9h          |                                  |        |             |
| 02FAh          |                                  |        |             |
| 02FBh          | Pin Select Register 4            | PINSR4 | 00h         |
| 02FCh          |                                  |        |             |
| 02FDh          |                                  |        |             |
| 02FEh          |                                  |        |             |
|                |                                  |        |             |
| 02FFh          | Timer RF Output Control Register | TRFOUT | 00h         |

#### SFR Information (12)<sup>(1)</sup> Table 4.12

X: Undefined

NOTES:
1. The blank regions are reserved. Do not access locations in these regions.
2. The OFS register cannot be changed by a program. Use a flash programmer to write to it.

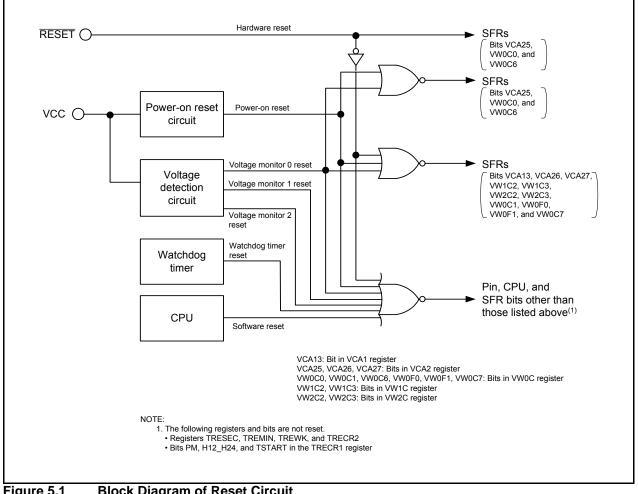
#### 5. Resets

The following resets are implemented: hardware reset, power-on reset, voltage monitor 0 reset, voltage monitor 1 reset, voltage monitor 2 reset, watchdog timer reset, and software reset.

Table 5.1 lists the Reset Names and Sources. Figure 5.1 shows the Block Diagram of Reset Circuit.

Table 5.1 **Reset Names and Sources** 

| Reset Name              | Source                                 |
|-------------------------|----------------------------------------|
| Hardware reset          | Input voltage of RESET pin is held "L" |
| Power-on reset          | VCC rises                              |
| Voltage monitor 0 reset | VCC falls (monitor voltage: Vdet0)     |
| Voltage monitor 1 reset | VCC falls (monitor voltage: Vdet1)     |
| Voltage monitor 2 reset | VCC falls (monitor voltage: Vdet2)     |
| Watchdog timer reset    | Underflow of watchdog timer            |
| Software reset          | Write 1 to PM03 bit in PM0 register    |





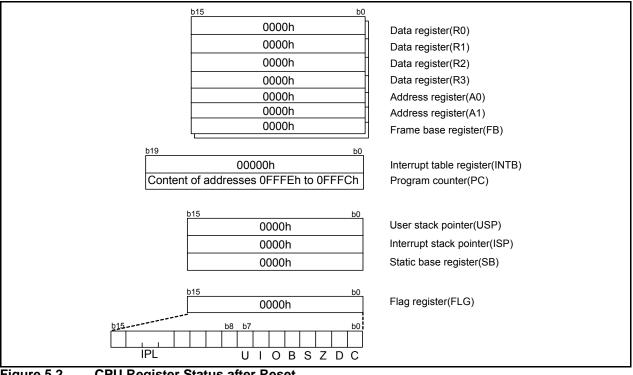
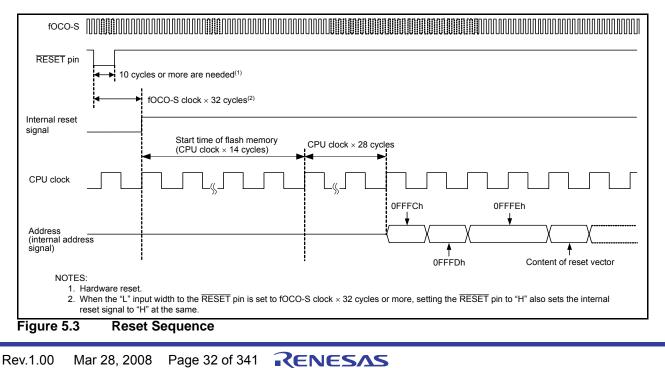


Table 5.2 shows the Pin Functions while **RESET** Pin Level is "L", Figure 5.2 shows the CPU Register Status after Reset, Figure 5.3 shows the Reset Sequence, and Figure 5.4 shows the OFS Register.

Table 5.2 Pin Functions while RESET Pin Level is "L"


| Pin Name                    | Pin Functions |
|-----------------------------|---------------|
| P1, P3_3, P3_7              | Input port    |
| P4_3, P4_5 <sup>(1)</sup>   | Input port    |
| P4_4 <sup>(1)</sup>         | Output port   |
| P6_3 to P6_5 <sup>(1)</sup> | Input port    |

NOTE:

1. Ports P4\_3, P4\_4, P6\_3, and P6\_4 are not available in the R8C/2J Group.







| b7 b6 b5 | 5 b4 b3 b2 b1 b0 |            |                                                         |                                                                                                                                                   |    |
|----------|------------------|------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1        | 1 1              | Symbol     | Address                                                 | When Shipping                                                                                                                                     |    |
| TT       |                  | OFS        | 0FFFFh                                                  | FFh <sup>(3)</sup>                                                                                                                                |    |
|          |                  | Bit Symbol | Bit Name                                                | Function                                                                                                                                          | RW |
|          |                  | WDTON      | Watchdog timer start<br>select bit                      | 0 : Starts w atchdog timer automatically after reset<br>1 : Watchdog timer is inactive after reset                                                | RW |
|          |                  | (b1)       | Reserved bit                                            | Set to 1.                                                                                                                                         | RW |
|          |                  | ROMCR      | ROM code protect<br>disabled bit                        | 0 : ROM code protect disabled<br>1 : ROMCP1 enabled                                                                                               | RW |
|          |                  | ROMCP1     | ROM code protect bit                                    | 0 : ROM code protect enabled<br>1 : ROM code protect disabled                                                                                     | RW |
|          |                  | (b4)       | Reserved bit                                            | Set to 1.                                                                                                                                         | RW |
|          |                  | LVDOON     | Voltage detection 0<br>circuit start bit <sup>(2)</sup> | <ul> <li>0 : Voltage monitor 0 reset enabled after hardw are reset</li> <li>1 : Voltage monitor 0 reset disabled after hardw are reset</li> </ul> | RW |
| ΙL       |                  | <br>(b6)   | Reserved bit                                            | Set to 1.                                                                                                                                         | RW |
|          |                  | CSPROINI   | Count source protect<br>mode after reset select<br>bit  | 0 : Count source protect mode enabled after reset<br>1 : Count source protect mode disabled after reset                                           | RW |

1. The OFS register is on the flash memory. Write to the OFS register with a program. After writing is completed, do not write additions to the OFS register.

2. Setting the LVD0ON bit is only valid after a hardware reset. To use the power-on reset, set the LVD0ON bit to 0 (voltage monitor 0 reset enabled after hardware reset).

3. If the block including the OFS register is erased, FFh is set to the OFS register.



### 5.1 Hardware Reset

A reset is applied using the  $\overline{\text{RESET}}$  pin. When an "L" signal is applied to the  $\overline{\text{RESET}}$  pin while the supply voltage meets the recommended operating conditions, pins, CPU, and SFRs are all reset (refer to **Table 5.2 Pin Functions** while **RESET Pin Level is "L"**). When the input level applied to the **RESET** pin changes from "L" to "H", a program is executed beginning with the address indicated by the reset vector. After reset, the low-speed on-chip oscillator clock divided by 8 is automatically selected as the CPU clock.

Refer to 4. Special Function Registers (SFRs) for the state of the SFRs after reset.

The internal RAM is not reset. If the **RESET** pin is pulled "L" while writing to the internal RAM is in progress, the contents of internal RAM will be undefined.

Figure 5.5 shows an Example of Hardware Reset Circuit and Operation and Figure 5.6 shows an Example of Hardware Reset Circuit (Usage Example of External Supply Voltage Detection Circuit) and Operation.

### 5.1.1 When Power Supply is Stable

- (1) Apply "L" to the  $\overline{\text{RESET}}$  pin.
- (2) Wait for 10  $\mu$ s.
- (3) Apply "H" to the  $\overline{\text{RESET}}$  pin.

### 5.1.2 Power On

- (1) Apply "L" to the  $\overline{\text{RESET}}$  pin.
- (2) Let the supply voltage increase until it meets the recommended operating conditions.
- (3) Wait for td(P-R) or more to allow the internal power supply to stabilize (refer to **22. Electrical Characteristics**).
- (4) Wait for  $10 \ \mu s$ .
- (5) Apply "H" to the  $\overline{\text{RESET}}$  pin.

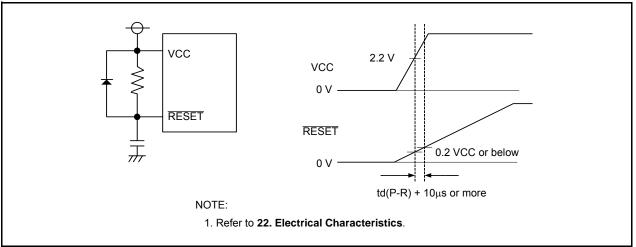
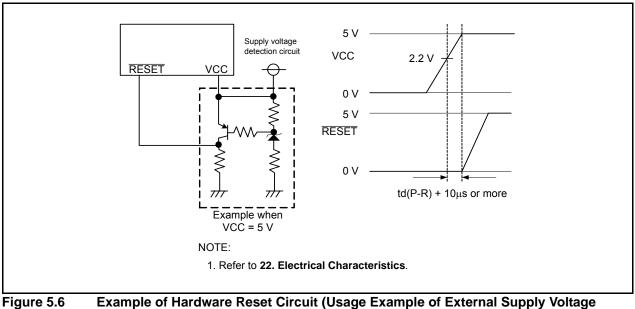
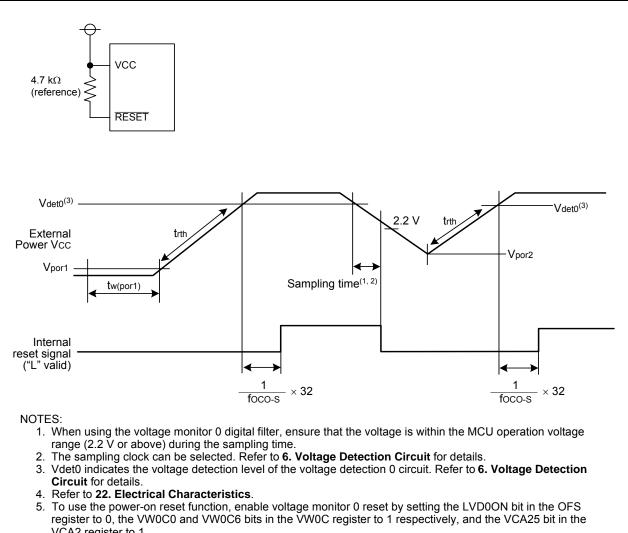



Figure 5.5 Example of Hardware Reset Circuit and Operation





Figure 5.6 Example of Hardware Reset Circuit (Usage Example of External Supply Volt Detection Circuit) and Operation

#### **Power-On Reset Function** 5.2

When the RESET pin is connected to the VCC pin via a pull-up resistor, and the VCC pin voltage level rises while the rise gradient is trth or more, the power-on reset function is enabled and the MCU resets its pins, CPU, and SFR. When a capacitor is connected to the  $\overline{\text{RESET}}$  pin, too, always keep the voltage to the  $\overline{\text{RESET}}$  pin 0.8VCC or more. When the input voltage to the VCC pin reaches the Vdet0 level or above, the low-speed on-chip oscillator clock starts counting. When the low-speed on-chip oscillator clock count reaches 32, the internal reset signal is held "H" and the MCU enters the reset sequence (refer to Figure 5.3). The low-speed on-chip oscillator clock divided by 8 is automatically selected as the CPU clock after reset.

Refer to 4. Special Function Registers (SFRs) for the states of the SFR after power-on reset. The voltage monitor 0 reset is enabled after power-on reset.

Figure 5.7 shows an Example of Power-On Reset Circuit and Operation.



VCA2 register to 1.

Figure 5.7 **Example of Power-On Reset Circuit and Operation** 

### 5.3 Voltage Monitor 0 Reset

A reset is applied using the on-chip voltage detection 0 circuit. The voltage detection 0 circuit monitors the input voltage to the VCC pin. The voltage to monitor is Vdet0.

When the input voltage to the VCC pin reaches the Vdet0 level or below, the pins, CPU, and SFR are reset.

When the input voltage to the VCC pin reaches the Vdet0 level or above, the low-speed on-chip oscillator clock start counting. When the low-speed on-chip oscillator clock count reaches 32, the internal reset signal is held "H" and the MCU enters the reset sequence (refer to **Figure 5.3**). The low-speed on-chip oscillator clock divided by 8 is automatically selected as the CPU clock after reset.

The LVD0ON bit in the OFS register can be used to enable or disable voltage monitor 0 reset after a hardware reset. Setting the LVD0ON bit is only valid after a hardware reset.

To use the power-on reset function, enable voltage monitor 0 reset by setting the LVD0ON bit in the OFS register to 0, the VW0C0 and VW0C6 bits in the VW0C register to 1 respectively, and the VCA25 bit in the VCA2 register to 1.

The LVD0ON bit cannot be changed by a program. To set the LVD0ON bit, write 0 (voltage monitor 0 reset enabled after hardware reset) or 1 (voltage monitor 0 reset disabled after hardware reset) to bit 5 of address 0FFFFh using a flash programmer.

Refer to Figure 5.4 OFS Register for details of the OFS register.

Refer to 4. Special Function Registers (SFRs) for the status of the SFR after voltage monitor 0 reset.

The internal RAM is not reset. When the input voltage to the VCC pin reaches the Vdet0 level or below while writing to the internal RAM is in progress, the contents of internal RAM are undefined.

Refer to 6. Voltage Detection Circuit for details of voltage monitor 0 reset.

### 5.4 Voltage Monitor 1 Reset

A reset is applied using the on-chip voltage detection 1 circuit. The voltage detection 1 circuit monitors the input voltage to the VCC pin. The voltage to monitor is Vdet1.

When the input voltage to the VCC pin reaches the Vdet1 level or below, the pins, CPU, and SFR are reset and a program is executed beginning with the address indicated by the reset vector. After reset, the low-speed on-chip oscillator clock divided by 8 is automatically selected as the CPU clock.

The voltage monitor 1 does not reset some portions of the SFR. Refer to **4. Special Function Registers (SFRs)** for details.

The internal RAM is not reset. When the input voltage to the VCC pin reaches the Vdet1 level or below while writing to the internal RAM is in progress, the contents of internal RAM are undefined.

Refer to 6. Voltage Detection Circuit for details of voltage monitor 1 reset.

### 5.5 Voltage Monitor 2 Reset

A reset is applied using the on-chip voltage detection 2 circuit. The voltage detection 2 circuit monitors the input voltage to the VCC pin. The voltage to monitor is Vdet2.

When the input voltage to the VCC pin reaches the Vdet2 level or below, the pins, CPU, and SFR are reset and the program beginning with the address indicated by the reset vector is executed. After reset, the low-speed on-chip oscillator clock divided by 8 is automatically selected as the CPU clock.

The voltage monitor 2 does not reset some SFRs. Refer to 4. Special Function Registers (SFRs) for details.

The internal RAM is not reset. When the input voltage to the VCC pin reaches the Vdet2 level or below while writing to the internal RAM is in progress, the contents of internal RAM are undefined.

Refer to 6. Voltage Detection Circuit for details of voltage monitor 2 reset.

### 5.6 Watchdog Timer Reset

When the PM12 bit in the PM1 register is set to 1 (reset when watchdog timer underflows), the MCU resets its pins, CPU, and SFR if the watchdog timer underflows. Then the program beginning with the address indicated by the reset vector is executed. After reset, the low-speed on-chip oscillator clock divided by 8 is automatically selected as the CPU clock.

The watchdog timer reset does not reset some SFRs. Refer to **4. Special Function Registers (SFRs)** for details. The internal RAM is not reset. When the watchdog timer underflows, the contents of internal RAM are undefined. Refer to **16. Watchdog Timer** for details of the watchdog timer.

# 5.7 Software Reset

When the PM03 bit in the PM0 register is set to 1 (MCU reset), the MCU resets its pins, CPU, and SFR. The program beginning with the address indicated by the reset vector is executed. After reset, the low-speed on-chip oscillator clock divided by 8 is automatically selected for the CPU clock.

The software reset does not reset some SFRs. Refer to **4. Special Function Registers (SFRs)** for details. The internal RAM is not reset.

# 6. Voltage Detection Circuit

The voltage detection circuit monitors the input voltage to the VCC pin. This circuit can be used to monitor the VCC input voltage by a program. Alternately, voltage monitor 0 reset, voltage monitor 1 interrupt, voltage monitor 1 reset, voltage monitor 2 interrupt, and voltage monitor 2 reset can also be used.

Note that voltage monitor 1 and voltage monitor 2 share the voltage detection circuit with comparator 1 and comparator 2. Either voltage monitor 1 and voltage monitor 2 or comparator 1 and comparator 2 can be selected. Table 6.1 lists the Specifications of Voltage Detection Circuit and Figures 6.1 to 6.4 show the Block Diagrams. Figures 6.5 to 6.10 show the Associated Registers.

|                          | Item                       | Voltage Detection 0                                              | Voltage Detection 1                                                      | Voltage Detection 2                                                      |
|--------------------------|----------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|
| VCC Monitor              | Voltage to monitor         | Vdet0                                                            | Vdet1                                                                    | Vdet2                                                                    |
|                          | Detection target           | Whether passing through Vdet0 by falling                         | Passing through Vdet1 by rising or falling                               | Passing through Vdet2 by rising or falling                               |
|                          | Monitor                    | None                                                             | VW1C3 bit in VW1C<br>register                                            | VCA13 bit in VCA1<br>register                                            |
|                          |                            |                                                                  | Whether VCC is higher or lower than Vdet1                                | Whether VCC is higher or lower than Vdet2                                |
| Process                  | Reset                      | Voltage monitor 0 reset                                          | Voltage monitor 1 reset                                                  | Voltage monitor 2 reset                                                  |
| When Voltage is Detected |                            | Reset at Vdet0 > VCC;<br>restart CPU operation at<br>VCC > Vdet0 | Reset at Vdet1 > VCC;<br>restart CPU operation<br>after a specified time | Reset at Vdet2 > VCC;<br>restart CPU operation<br>after a specified time |
|                          | Interrupt                  | None                                                             | Voltage monitor 1 interrupt                                              | Voltage monitor 2 interrupt                                              |
|                          |                            |                                                                  | Interrupt request at both<br>or either of Vdet1 > VCC<br>and VCC > Vdet1 | Interrupt request at both<br>or either of Vdet2 > VCC<br>and VCC > Vdet2 |
| Digital Filter           | Switch<br>enabled/disabled | Available                                                        | Available                                                                | Available                                                                |
|                          | Sampling time              | (Divide-by-n of fOCO-S)<br>× 4                                   | (Divide-by-n of fOCO-S)<br>× 2                                           | (Divide-by-n of fOCO-S)<br>× 2                                           |
|                          |                            | n: 1, 2, 4, and 8                                                | n: 1, 2, 4, and 8                                                        | n: 1, 2, 4, and 8                                                        |

 Table 6.1
 Specifications of Voltage Detection Circuit

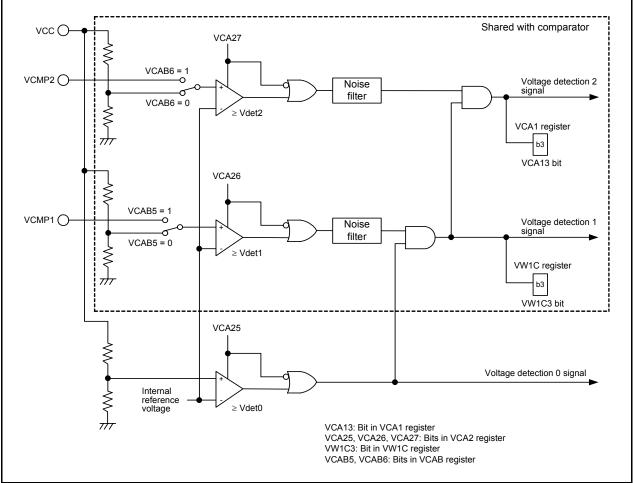



Figure 6.1 Block Diagram of Voltage Detection Circuit

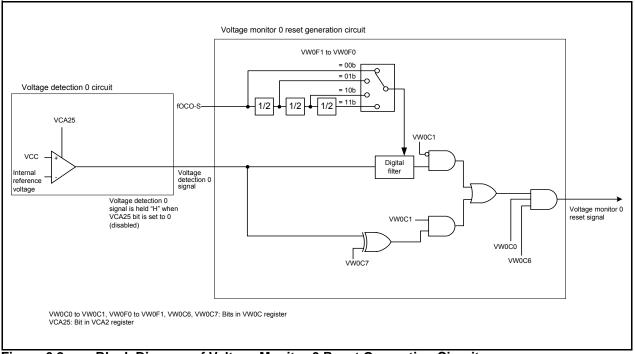
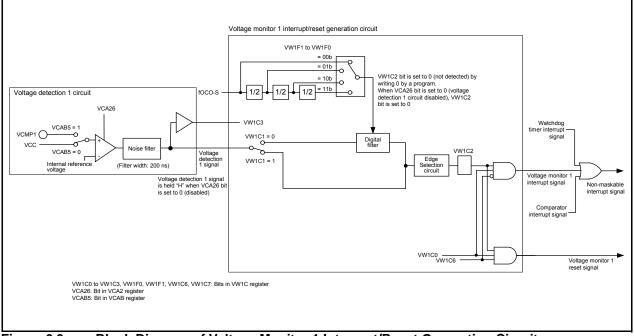
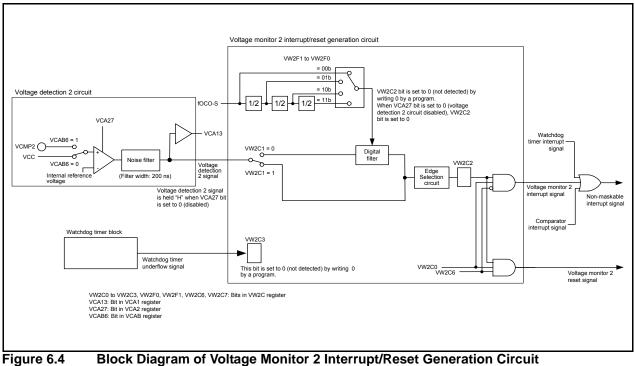





Figure 6.2 Block Diagram of Voltage Monitor 0 Reset Generation Circuit



Block Diagram of Voltage Monitor 1 Interrupt/Reset Generation Circuit Figure 6.3





| Voltage Detection Register 1 |                         |   |    |   |            |                                    |                                             |      |
|------------------------------|-------------------------|---|----|---|------------|------------------------------------|---------------------------------------------|------|
| b7 b6 b5 l                   | b7 b6 b5 b4 b3 b2 b1 b0 |   |    |   |            |                                    |                                             |      |
| 000                          | 0                       | C | 00 | ) | Symbol     | Address                            | After Reset <sup>(2)</sup>                  |      |
|                              |                         |   |    |   | VCA1       | 0031h                              | 00001000b                                   |      |
|                              |                         |   |    |   | Bit Symbol | Bit Name                           | Function                                    | RW   |
|                              |                         |   |    |   | —          | Reserved bits                      | Set to 0.                                   | RW   |
|                              |                         |   |    |   | (b2-b0)    |                                    |                                             | 1.00 |
|                              |                         |   |    |   |            | Voltage detection 2 signal monitor | 0 : VCC < Vdet2                             |      |
|                              |                         | L |    | _ | VCA13      | flag <sup>(1)</sup>                | 1 : VCC $\geq$ Vdet2 or voltage detection 2 | RO   |
|                              |                         |   |    |   |            |                                    | circuit disabled                            |      |
|                              |                         |   |    |   | _          | Reserved bits                      | Set to 0.                                   | RW   |
|                              |                         |   |    |   | (b7-b4)    |                                    |                                             |      |

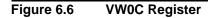
### NOTES:

- The VCA13 bit is enabled when the VCA27 bit in the VCA2 register is set to 1 (voltage detection 2 circuit enabled). The VCA13 bit is set to 1 (VCC ≥ Vdet 2) when the VCA27 bit in the VCA2 register is set to 0 (voltage detection 2 circuit disabled).
- 2. Softw are reset, w atchdog timer reset, voltage monitor 1 reset, and voltage monitor 2 reset do not affect this register.

### Voltage Detection Register 2<sup>(1)</sup>

| b7 | b6 b | 5 b4 b | 3 b2 b1 | b0 |             |                                                              |                                                                                                                     |          |    |
|----|------|--------|---------|----|-------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------|----|
|    |      | 00     |         |    | Symbol      | Address                                                      | After Reset <sup>(5)</sup><br>The LVD0ON bit in the OFS register is                                                 |          |    |
|    |      |        |         |    |             |                                                              | set to 1 and hardware reset : (<br>Pow er-on reset, voltage monitor 0 reset<br>or LVD0ON bit in the OFS register is | 00h      |    |
|    |      |        |         |    | VCA2        | 0032h                                                        | set to 0, and hardw are reset : 0                                                                                   | 00100000 | b  |
|    |      |        |         |    | Bit Symbol  | Bit Name                                                     | Function                                                                                                            |          | RW |
|    |      |        |         |    | VCA20       | Internal pow er low<br>consumption enable bit <sup>(6)</sup> | 0 : Low consumption disabled<br>1 : Low consumption enabled <sup>(7)</sup>                                          |          | RW |
|    |      |        |         |    | <br>(b4-b1) | Reserved bits                                                | Set to 0.                                                                                                           |          | RW |
|    |      |        |         |    | VCA25       | Voltage detection 0 enable bit <sup>(2)</sup>                | 0 : Voltage detection 0 circuit disabled<br>1 : Voltage detection 0 circuit enabled                                 |          | RW |
|    |      |        |         |    | VCA26       | Voltage detection 1 enable bit <sup>(3)</sup>                | 0 : Voltage detection 1 circuit disabled<br>1 : Voltage detection 1 circuit enabled                                 |          | RW |
|    |      |        |         |    | VCA27       | Voltage detection 2 enable bit <sup>(4)</sup>                | 0 : Voltage detection 2 circuit disabled<br>1 : Voltage detection 2 circuit enabled                                 |          | RW |

NOTES:


- 1. Set the PRC3 bit in the PRCR register to 1 (w rite enabled) before rew riting to the VCA2 register.
- To use the voltage monitor 0 reset, set the VCA25 bit to 1. After the VCA25 bit is set to 1 from 0, the voltage detection circuit waits for td(E-A) to elapse before starting operation.
- 3. To use the voltage monitor 1 interrupt/reset or the VW1C3 bit in the VW1C register, set the VCA26 bit to 1. After the VCA26 bit is set to 1 from 0, the voltage detection circuit waits for td(E-A) to elapse before starting operation.
- 4. To use the voltage monitor 2 interrupt/reset or the VCA13 bit in the VCA1 register, set the VCA27 bit to 1. After the VCA27 bit is set to 1 from 0, the voltage detection circuit waits for td(E-A) to elapse before starting operation.
- 5. Software reset, watchdog timer reset, voltage monitor 1 reset, and voltage monitor 2 reset do not affect this register.
- 6. Use the VCA20 bit only when entering to wait mode. To set the VCA20 bit, follow the procedure shown in Figure 11.12 Handling Procedure of Internal Power Low Consumption Using VCA20 Bit.
- When the VCA20 bit is set to 1 (low consumption enabled), do not set the CM10 bit in the CM1 register to 1 (stop mode).

### Figure 6.5 Registers VCA1 and VCA2

|  | 0 | Symbol     | Address                                                                      | After Reset <sup>(2)</sup><br>The LVD0ON bit in the OFS register is<br>set to 1 and hardw are reset : 1000X010                                                           | b  |
|--|---|------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|  |   |            |                                                                              | Pow er-on reset, voltage monitor 0 reset<br>or LVD0ON bit in the OFS register is set                                                                                     |    |
|  |   | VW0C       | 0038h                                                                        | to 0, and hardw are reset : 1100X011                                                                                                                                     | b  |
|  |   | Bit Symbol | Bit Name                                                                     | Function                                                                                                                                                                 | RW |
|  |   | VW0C0      | Voltage monitor 0 reset<br>enable bit <sup>(3)</sup>                         | 0 : Disable<br>1 : Enable                                                                                                                                                | RW |
|  |   | VW0C1      | Voltage monitor 0 digital filter<br>disable mode select bit                  | <ul> <li>0 : Digital filter enabled mode<br/>(digital filter circuit enabled)</li> <li>1 : Digital filter disabled mode<br/>(digital filter circuit disabled)</li> </ul> | RW |
|  |   | VW0C2      | Reserved bit                                                                 | Set to 0.                                                                                                                                                                | RW |
|  |   | (b3)       | Reserved bit                                                                 | When read, the content is undefined.                                                                                                                                     | RO |
|  |   | VW0F0      | Sampling clock select bits                                                   | <sup>b5 b4</sup><br>0 0 : fOCO-S divided by 1<br>0 1 : fOCO-S divided by 2                                                                                               | RW |
|  |   | VW0F1      |                                                                              | 1 0 : fOCO-S divided by 4<br>1 1 : fOCO-S divided by 8                                                                                                                   | RW |
|  |   | VW0C6      | Voltage monitor 0 circuit<br>mode select bit                                 | When the VW0C0 bit is set to 1 (voltage monitor 0 reset enabled), set to 1.                                                                                              | RW |
|  |   | VW0C7      | Voltage monitor 0 reset<br>generation condition select<br>bit <sup>(4)</sup> | When the VW0C1 bit is set to 1 (digital filter disabled mode), set to 1.                                                                                                 | RW |

 The VW0C0 bit is enabled when the VCA25 bit in the VCA2 register is set to 1 (voltage detection 0 circuit enabled Set the VW0C0 bit to 0 (disable), when the VCA25 bit is set to 0 (voltage detection 0 circuit disabled). To set VW0C0 bit to 1 (enable), follow the procedure show n in Table 6.2 Procedure for Setting Bits Associated with Voltage Monitor 0 Reset.

4. The VW0C7 bit is enabled when the VW0C1 bit set to 1 (digital filter disabled mode).

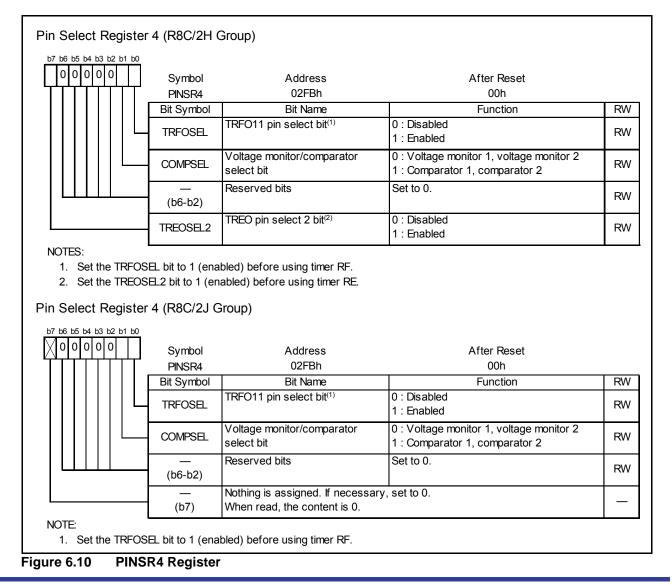


|            | <b>je Monitor 1 (</b><br>b5 b4 b3 b2 b1 b0                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Circuit Cont   | rol Register <sup>(1)</sup>                                                         |                                                                                                                                                                          |           |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Symbol<br>VW1C | Address<br>0036h                                                                    | After Reset <sup>(8)</sup><br>00001010b                                                                                                                                  |           |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bit Symbol     | Bit Name                                                                            | Function                                                                                                                                                                 | RW        |  |
|            | ∟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VW1C0          | Voltage monitor 1 interrupt/reset enable bit <sup>(6)</sup>                         | 0 : Disable<br>1 : Enable                                                                                                                                                | RW        |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VW1C1          | Voltage monitor 1 digital filter<br>disable mode select bit <sup>(2)</sup>          | <ul> <li>0 : Digital filter enabled mode<br/>(digital filter circuit enabled)</li> <li>1 : Digital filter disabled mode<br/>(digital filter circuit disabled)</li> </ul> | RW        |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VW1C2          | Voltage change detection<br>flag <sup>(3, 4, 8)</sup>                               | 0 : Not detected<br>1 : Vdet1 crossing detected                                                                                                                          | RW        |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VW1C3          | Voltage detection 1 signal monitor flag <sup>(3, 8)</sup>                           | 0 : VCC < Vdet1<br>1 : VCC ≥ Vdet1 or voltage detection 1<br>circuit disabled                                                                                            | RO        |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VW1F0          | Sampling clock select bits                                                          | <sup>b5 b4</sup><br>0 0 : fOCO-S divided by 1<br>0 1 : fOCO-S divided by 2                                                                                               | RW        |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VW1F1          |                                                                                     | 1 0 : fOCO-S divided by 4<br>1 1 : fOCO-S divided by 8                                                                                                                   | RW        |  |
| L          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VW1C6          | Voltage monitor 1 circuit mode select bit <sup>(5)</sup>                            | 0 : Voltage monitor 1 interrupt mode<br>1 : Voltage monitor 1 reset mode                                                                                                 | RW        |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VW1C7          | Voltage monitor 1 interrupt/reset generation condition select bit <sup>(7, 9)</sup> | 0 : When VCC reaches Vdet1 or above<br>1 : When VCC reaches Vdet1 or below                                                                                               | RW        |  |
| NOTE<br>1. | Set the PRC3 b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1C register is | R register to 1 (w rite enabled) before<br>rew ritten, the VW1C2 bit may be se      | e rew riting to the VW1C register.<br>t to 1. Set the VW1C2 bit to 0 after rew riting th                                                                                 | ne        |  |
| 2.         | To use the volt<br>1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tage monitor 1 | interrupt to exit stop mode and to re                                               | eturn again, w rite 0 to the VW1C1 bit before w                                                                                                                          | riting    |  |
| 3.         | Bits VW1C2 ar enabled).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nd VW1C3 are   | e enabled w hen the VCA26 bit in the                                                | e VCA2 register is set to 1 (voltage detection ?                                                                                                                         | 1 circuit |  |
| 4.         | Set this bit to 0<br>w ritten to it).                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) by a progran | n. When 0 is w ritten by a program, ii                                              | t is set to 0 (and remains unchanged even if 1                                                                                                                           | is        |  |
|            | The VW1C6 bit is enabled when the VW1C0 bit is set to 1 (voltage monitor 1 interrupt/reset enabled).<br>The VW1C0 bit is enabled when the VCA26 bit in the VCA2 register is set to 1 (voltage detection 1 circuit enabled).<br>Set the VW1C0 bit to 0 (disable) when the VCA26 bit is set to 0 (voltage detection 1 circuit disabled).<br>To set VW1C0 bit to 1 (enable), follow the procedure show n in <b>Table 6.3 Procedure for Setting Bits</b><br>Associated with Voltage Monitor 1 Interrupt and Reset. |                |                                                                                     |                                                                                                                                                                          |           |  |
| 7.         | The VW1C7 bi setting the VC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | hen the VCAC1 bit in the VCAC reg                                                   | ister is set to 0 (one edge). Set the VW1C7 bi                                                                                                                           | t after   |  |
| 8.         | Bits VW1C2 ar<br>or voltage mon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | main unchanged after a softw are re                                                 | set, watchdog timer reset, voltage monitor 1 r                                                                                                                           | eset,     |  |
| 9.         | When the VW1C6 bit is set to 1 (voltage monitor 1 reset mode), set the VW1C7 bit to 1 (when VCC reaches Vdet1 or below). (Do not set to 0.)                                                                                                                                                                                                                                                                                                                                                                    |                |                                                                                     |                                                                                                                                                                          |           |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                     |                                                                                                                                                                          |           |  |
| Figure 6   | 7 VW1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C Register     | ,                                                                                   |                                                                                                                                                                          |           |  |

Figure 6.7 VW1C Register

| - | b3 b2 b1 b0 |                | rol Register <sup>(1)</sup>                                                         |                                                                                                                                                                          |    |
|---|-------------|----------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   |             | Symbol<br>VW2C | Address<br>0037h                                                                    | After Reset <sup>(8)</sup><br>00000010b                                                                                                                                  |    |
|   |             | Bit Symbol     | Bit Name                                                                            | Function                                                                                                                                                                 | RW |
|   | L           | VW2C0          | Voltage monitor 2 interrupt/reset enable bit <sup>(6)</sup>                         | 0 : Disable<br>1 : Enable                                                                                                                                                | RW |
|   |             | VW2C1          | Voltage monitor 2 digital filter<br>disable mode select bit <sup>(2)</sup>          | <ul> <li>0 : Digital filter enabled mode<br/>(digital filter circuit enabled)</li> <li>1 : Digital filter disabled mode<br/>(digital filter circuit disabled)</li> </ul> | RW |
|   |             | VW2C2          | Voltage change detection<br>flag <sup>(3, 4, 8)</sup>                               | 0 : Not detected<br>1 : Vdet2 crossing detected                                                                                                                          | RW |
|   |             | VW2C3          | WDT detection flag <sup>(4, 8)</sup>                                                | 0 : Not detected<br>1 : Detected                                                                                                                                         | RW |
|   |             | VW2F0          | Sampling clock select bits                                                          | <sup>b5 b4</sup><br>0 0 : fOCO-S divided by 1<br>0 1 : fOCO-S divided by 2                                                                                               | RW |
|   |             | VW2F1          |                                                                                     | 1 0 : fOCO-S divided by 4<br>1 1 : fOCO-S divided by 8                                                                                                                   | RW |
|   |             | VW2C6          | Voltage monitor 2 circuit mode select bit <sup>(5)</sup>                            | 0 : Voltage monitor 2 interrupt mode<br>1 : Voltage monitor 2 reset mode                                                                                                 | RW |
|   |             | VW2C7          | Voltage monitor 2 interrupt/reset generation condition select bit <sup>(7, 9)</sup> | 0 : When VCC reaches Vdet2 or above<br>1 : When VCC reaches Vdet2 or below                                                                                               | RW |

- 1. Set the PRC3 bit in the PRCR register to 1 (write enabled) before rewriting to the VW2C register. When the VW2C register is rew ritten, the VW2C2 bit may be set to 1. Set the VW2C2 bit to 0 after rew riting the VW2C register.
- 2. To use the voltage monitor 2 interrupt to exit stop mode and to return again, write 0 to the VW2C1 bit before writing 1.
- 3. The VW2C2 bit is enabled when the VCA27 bit in the VCA2 register is set to 1 (voltage detection 2 circuit enabled).
- 4. Set this bit to 0 by a program. When 0 is written by a program, it is set to 0 (and remains unchanged even if 1 is w ritten to it).
- 5. The VW2C6 bit is enabled when the VW2C0 bit is set to 1 (voltage monitor 2 interrupt/reset enabled).
- 6. The VW2C0 bit is enabled when the VCA27 bit in the VCA2 register is set to 1 (voltage detection 2 circuit enabled). Set the VW2C0 bit to 0 (disable) when the VCA27 bit is set to 0 (voltage detection 2 circuit disabled). To set VW2C0 bit to 1 (enable), follow the procedure show n in Table 6.4 Procedure for Setting Bits Associated with Voltage Monitor 2 Interrupt and Reset.
- 7. The VW2C7 bit is enabled when the VCAC2 bit in the VCAC register is set to 0 (one edge). Set the VW2C7 bit after setting the VCAC2 bit to 0.
- 8. Bits VW2C2 and VW2C3 remain unchanged after a softw are reset, w atchdog timer reset, voltage monitor 1 reset, or voltage monitor 2 reset.
- 9. When the VW2C6 bit is set to 1 (voltage monitor 2 reset mode), set the VW2C7 bit to 1 (when VCC reaches Vdet2 or below ). (Do not set to 0.)


#### Figure 6.8 VW2C Register

| Voltage Monitor Circuit Edge Select Register                                                                                  |                |                                                                    |                                |    |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------|--------------------------------|----|--|--|--|
| b7 b6 b5 b4 b3 b2 b1 b0                                                                                                       | Symbol<br>VCAC | Address<br>003Dh                                                   | After Reset<br>00h             |    |  |  |  |
|                                                                                                                               | Bit Symbol     | Bit Name                                                           | Function                       | RW |  |  |  |
|                                                                                                                               | (b0)           | Nothing is assigned. If necessary,<br>When read, the content is 0. | set to 0.                      | -  |  |  |  |
|                                                                                                                               | VCAC1          | Voltage monitor 1 circuit edge select bit <sup>(1)</sup>           | 0 : One edge<br>1 : Both edges | RW |  |  |  |
|                                                                                                                               | VCAC2          | Voltage monitor 2 circuit edge select bit <sup>(2)</sup>           | 0 : One edge<br>1 : Both edges | RW |  |  |  |
|                                                                                                                               | <br>(b7-b3)    | Nothing is assigned. If necessary,<br>When read, the content is 0. | , set to 0.                    | —  |  |  |  |
| NOTES:<br>1. The VW1C7 bit in the VW1C register is enabled when the VCAC1 bit is set to 0 (one edge). Set the VW1C7 bit after |                |                                                                    |                                |    |  |  |  |

1. The VW1C7 bit in the VW1C7 register is enabled when the VCAC1 bit is set to 0 (one edge). Set the VW1C7 bit after setting the VCAC1 bit to 0.

2. The VW2C7 bit in the VW2C register is enabled when the VCAC2 bit is set to 0 (one edge). Set the VW2C7 bit after setting the VCAC2 bit to 0.





# 6.1 VCC Input Voltage

### 6.1.1 Monitoring Vdet0

Vdet0 cannot be monitored.

### 6.1.2 Monitoring Vdet1

Set the VCA26 bit in the VCA2 register to 1 (voltage detection 1 circuit enabled). After td(E-A) has elapsed (refer to **22. Electrical Characteristics**), Vdet1 can be monitored by the VW1C3 bit in the VW1C register.

### 6.1.3 Monitoring Vdet2

Set the VCA27 bit in the VCA2 register to 1 (voltage detection 2 circuit enabled). After td(E-A) has elapsed (refer to **22. Electrical Characteristics**), Vdet2 can be monitored by the VCA13 bit in the VCA1 register.

### 6.2 Voltage Monitor 0 Reset

Table 6.2 lists the Procedure for Setting Bits Associated with Voltage Monitor 0 Reset and Figure 6.11 shows an Example of Voltage Monitor 0 Reset Operation. To use the voltage monitor 0 reset to exit stop mode, set the VW0C1 bit in the VW0C register to 1 (digital filter disabled).

| Step | When Using Digital Filter                                                                             | When Not Using Digital Filter                                         |  |
|------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|
| 1    | Set the VCA25 bit in the VCA2 register to 1 (voltage detection 0 circuit enabled)                     |                                                                       |  |
| 2    | Wait for td(E-A)                                                                                      |                                                                       |  |
| 3    | Select the sampling clock of the digital filter<br>by the VW0F0 to VW0F1 bits in the VW0C<br>register | Set the VW0C7 bit in the VW0C register to 1                           |  |
| 4(1) | Set the VW0C1 bit in the VW0C register to 0 (digital filter enabled)                                  | Set the VW0C1 bit in the VW0C register to 1 (digital filter disabled) |  |
| 5(1) | Set the VW0C6 bit in the VW0C register to 1 (voltage monitor 0 reset mode)                            |                                                                       |  |
| 6    | Set the VW0C2 bit in the VW0C register to 0                                                           |                                                                       |  |
| 7    | Set the CM14 bit in the CM1 register to 0 (low-speed on-chip oscillator on)                           | -                                                                     |  |
| 8    | Wait for 4 cycles of the sampling clock of the digital filter                                         | <ul> <li>– (No wait time required)</li> </ul>                         |  |
| 9    | Set the VW0C0 bit in the VW0C register to 1 (voltage monitor 0 reset enabled)                         |                                                                       |  |

Table 6.2 Procedure for Setting Bits Associated with Voltage Monitor 0 Reset

NOTE:

1. When the VW0C0 bit is set to 0, steps 3, 4, and 5 can be executed simultaneously (with 1 instruction).

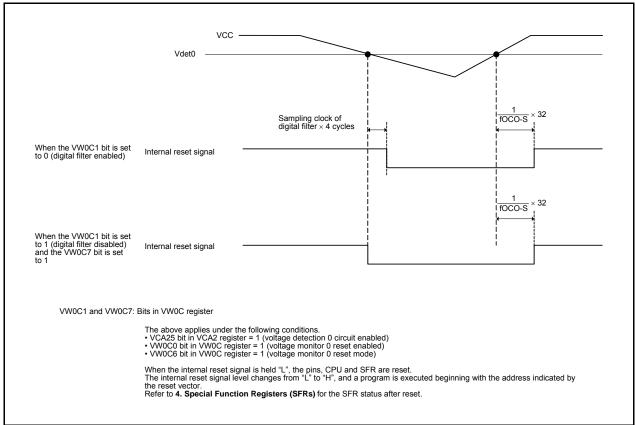



Figure 6.11 Example of Voltage Monitor 0 Reset Operation

### 6.3 Voltage Monitor 1 Interrupt and Voltage Monitor 1 Reset

Table 6.3 lists the Procedure for Setting Bits Associated with Voltage Monitor 1 Interrupt and Reset. Figure 6.12 shows an Example of Voltage Monitor 1 Interrupt and Voltage Monitor 1 Reset Operation. To use the voltage monitor 1 interrupt or voltage monitor 1 reset to exit stop mode, set the VW1C1 bit in the VW1C register to 1 (digital filter disabled).

|              | researce for bearing bits Associated with voltage monitor r interrupt and reset         |                         |                                              |                               |  |
|--------------|-----------------------------------------------------------------------------------------|-------------------------|----------------------------------------------|-------------------------------|--|
|              | When Using Digital Filter                                                               |                         | When Not Usi                                 | When Not Using Digital Filter |  |
| Step         | Voltage Monitor 1                                                                       | Voltage Monitor 1       | Voltage Monitor 1                            | Voltage Monitor 1             |  |
|              | Interrupt                                                                               | Reset                   | Interrupt                                    | Reset                         |  |
| 1            | Set the COMPSEL bit in the PINSR4 register to 0 (voltage monitor 1, voltage monitor 2)  |                         |                                              | , voltage monitor 2)          |  |
| 2            | Set the VCA26 bit in the VCA2 register to 1 (voltage detection 1 circuit enabled)       |                         |                                              |                               |  |
| 3            | Wait for td(E-A)                                                                        |                         |                                              |                               |  |
|              | Select the sampling clock of the digital filter                                         |                         | Set the VW1C1 bit in the VW1C register to 1  |                               |  |
| 4            | by the VW1F0 to VW1F1 bits in the VW1C                                                  |                         | (digital filter disabled)                    |                               |  |
|              | register                                                                                |                         |                                              |                               |  |
| 5(2)         |                                                                                         | he VW1C register to 0   | -                                            |                               |  |
| <b>U</b> ( ) | (digital filter enabled)                                                                |                         |                                              |                               |  |
|              | Select the timing of the interrupt and reset                                            |                         | Select the timing of the interrupt and reset |                               |  |
| 6            | request by the VCAC1 bit in the VCAC                                                    |                         | request by the VCAC1 bit in the VCAC         |                               |  |
| 0            | register and the VW1C7 bit in the VW1C                                                  |                         | register and the VW1C7 bit in the VW1C       |                               |  |
|              | register <sup>(1)</sup>                                                                 |                         | register <sup>(1)</sup>                      |                               |  |
|              | Set the VW1C6 bit in                                                                    | Set the VW1C6 bit in    | Set the VW1C6 bit in                         | Set the VW1C6 bit in          |  |
| 7            | the VW1C register to                                                                    | the VW1C register to    | the VW1C register to                         | the VW1C register to          |  |
| '            | 0 (voltage monitor 1                                                                    | 1 (voltage monitor 1    | 0 (voltage monitor 1                         | 1 (voltage monitor 1          |  |
|              | interrupt mode)                                                                         | reset mode)             | interrupt mode)                              | reset mode)                   |  |
| 8            | Set the VW1C2 bit in the VW1C register to 0 (Vdet1 crossing is not detected)            |                         |                                              |                               |  |
| 9            | Set the CM14 bit in the                                                                 | e CM1 register to 0     | -                                            |                               |  |
| Э            | (low-speed on-chip oscillator on)                                                       |                         |                                              |                               |  |
| 10           | Wait for 2 cycles of the                                                                | e sampling clock of the | ng clock of the   – (No wait time required)  |                               |  |
| 10           | digital filter                                                                          |                         |                                              |                               |  |
| 11           | Set the VW1C0 bit in the VW1C register to 1 (voltage monitor 1 interrupt/reset enabled) |                         |                                              |                               |  |
| NOTES        |                                                                                         |                         |                                              |                               |  |

| Table 6.3 | Procedure for Setting Bits Associated | d with Voltage Monitor 1 Interrupt and Reset |
|-----------|---------------------------------------|----------------------------------------------|
|-----------|---------------------------------------|----------------------------------------------|

NOTES:

1. Set the VW1C7 bit to 1 (when VCC reaches Vdet1 or below) for the voltage monitor 1 reset.

2. When the VW1C0 bit is set to 0, steps 4 and 5 can be executed simultaneously (with 1 instruction).

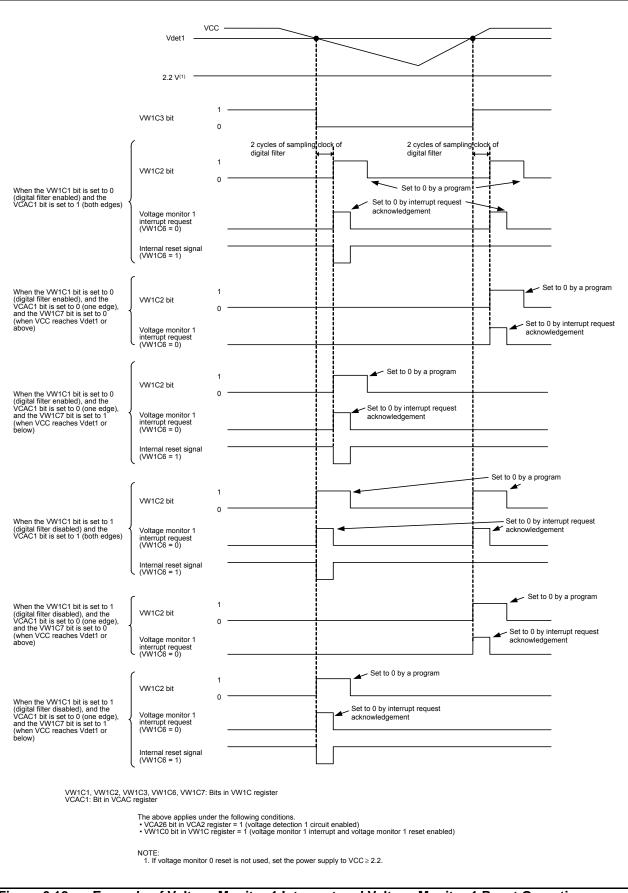



Figure 6.12 Example of Voltage Monitor 1 Interrupt and Voltage Monitor 1 Reset Operation

## 6.4 Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset

Table 6.4 lists the Procedure for Setting Bits Associated with Voltage Monitor 2 Interrupt and Reset. Figure 6.13 shows an Example of Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset Operation. To use the voltage monitor 2 interrupt or voltage monitor 2 reset to exit stop mode, set the VW2C1 bit in the VW2C register to 1 (digital filter disabled).

|      |                                                                                                                                                                            | <b>y</b> =               | r tonago montor 2 m                                                                                  |                                                                                     |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|      | When Using                                                                                                                                                                 | Digital Filter           | When Not Usi                                                                                         | ng Digital Filter                                                                   |
| Step | Voltage Monitor 2                                                                                                                                                          | Voltage Monitor 2        | Voltage Monitor 2                                                                                    | Voltage Monitor 2                                                                   |
|      | Interrupt                                                                                                                                                                  | Reset                    | Interrupt                                                                                            | Reset                                                                               |
| 1    | Set the COMPSEL bit                                                                                                                                                        | in the PINSR4 register   | to 0 (voltage monitor 1                                                                              | , voltage monitor 2)                                                                |
| 2    | Set the VCA27 bit in the                                                                                                                                                   | ne VCA2 register to 1 (v | voltage detection 2 circ                                                                             | uit enabled)                                                                        |
| 3    | Wait for td(E-A)                                                                                                                                                           |                          |                                                                                                      |                                                                                     |
| 4    | Select the sampling clo<br>by the VW2F0 to VW2<br>register                                                                                                                 | •                        | Set the VW2C1 bit in t (digital filter disabled)                                                     | he VW2C register to 1                                                               |
| 5(2) | Set the VW2C1 bit in the (digital filter enabled)                                                                                                                          | he VW2C register to 0    | -                                                                                                    |                                                                                     |
| 6    | Select the timing of the<br>request by the VCAC2<br>register and the VW2C<br>register <sup>(1)</sup>                                                                       | bit in the VCAC          | Select the timing of the<br>request by the VCAC2<br>register and the VW20<br>register <sup>(1)</sup> | bit in the VCAC                                                                     |
| 7    | Set the VW2C6 bit in<br>the VW2C register to<br>0 (voltage monitor 2<br>interrupt mode)Set the VW2C6 bit in<br>the VW2C register to<br>1 (voltage monitor 2<br>reset mode) |                          | Set the VW2C6 bit in<br>the VW2C register to<br>0 (voltage monitor 2<br>interrupt mode)              | Set the VW2C6 bit in<br>the VW2C register to<br>1 (voltage monitor 2<br>reset mode) |
| 8    | Set the VW2C2 bit in t                                                                                                                                                     | he VW2C register to 0    | (Vdet2 crossing is not o                                                                             | detected)                                                                           |
| 9    | Set the CM14 bit in the (low-speed on-chip os                                                                                                                              | •                        | _                                                                                                    |                                                                                     |
| 10   | Wait for 2 cycles of the<br>digital filter                                                                                                                                 | e sampling clock of the  | <ul> <li>– (No wait time require</li> </ul>                                                          | ed)                                                                                 |
| 11   | Set the $\frac{1}{10000000000000000000000000000000000$                                                                                                                     | he VW2C register to 1    | (voltage monitor 2 inter                                                                             | runt/reset enabled)                                                                 |

| Table 6.4 | Procedure for Setting Bits Associated | with Voltage Monitor 2 Interrupt and Reset |
|-----------|---------------------------------------|--------------------------------------------|
|-----------|---------------------------------------|--------------------------------------------|

NOTES:

1. Set the VW2C7 bit to 1 (when VCC reaches Vdet2 or below) for the voltage monitor 2 reset.

2. When the VW2C0 bit is set to 0, steps 4 and 5 can be executed simultaneously (with 1 instruction).

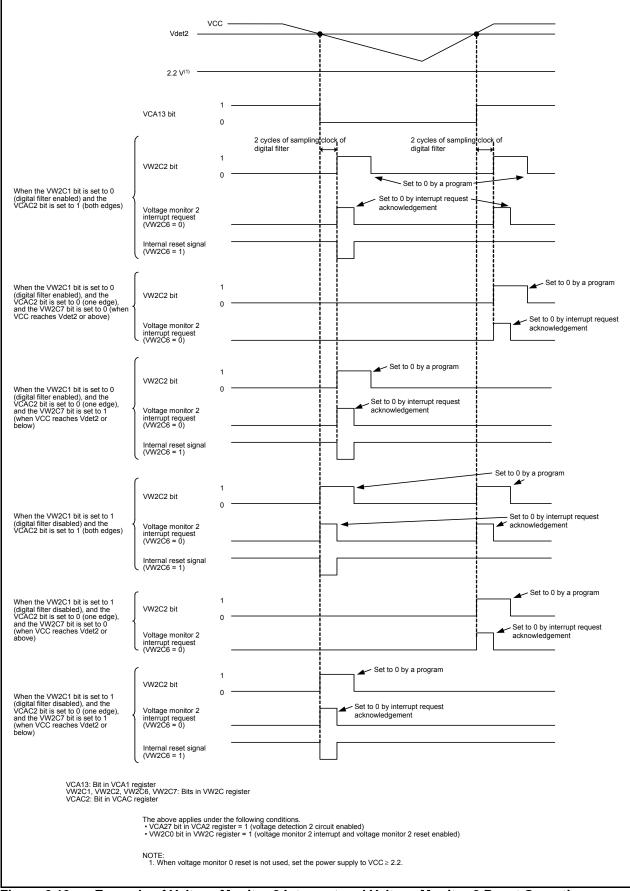



Figure 6.13 Example of Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset Operation

# 7. Comparator

The comparators compare a reference input voltage and an analog input voltage. Comparator 1 and comparator 2 are independent of each other. Note that comparator 1 and comparator 2 share the voltage detection circuit with voltage monitor 1 and voltage monitor 2. Either comparator 1 and comparator 2 or voltage monitor 1 and voltage monitor 2 can be selected to use the voltage detection circuit.

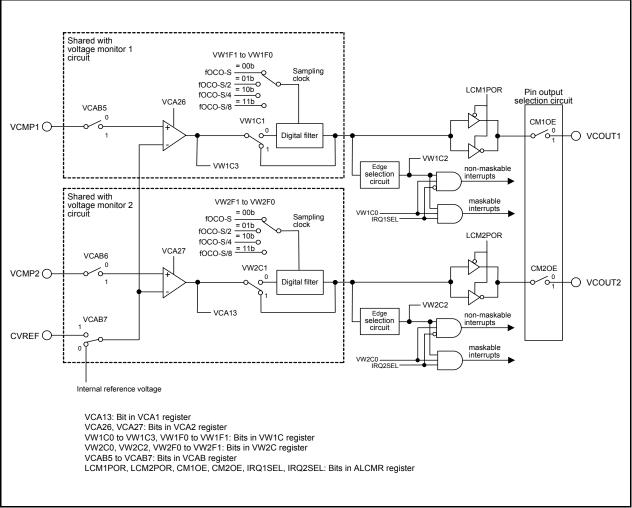
# 7.1 Overview

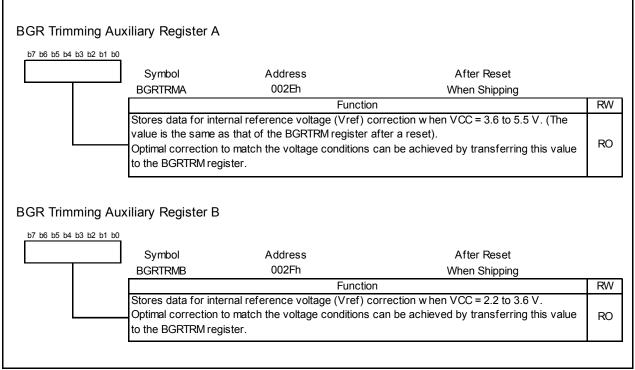
The comparison result of the reference input voltage and analog input voltage can be read by software. The result also can be output from the VCOUTi (i = 1 or 2) pin. An internal reference voltage or input voltage to the CVREF pin can be selected as the reference input voltage. The comparator 1 interrupt and comparator 2 interrupt also can be used.

Table 7.1 lists the Specifications of Comparator, Figure 7.1 shows the Block Diagram of Comparator, and Table 7.2 lists the Pin Configuration of Comparator.

| Item                 |                            | Comparator 1                                                                                                                                                  | Comparator 2                                                                                                                                                  |  |  |
|----------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Analog input voltage |                            | Input voltage to VCMP1 pin                                                                                                                                    | Input voltage to VCMP2 pin                                                                                                                                    |  |  |
| Referen              | ce input voltage           | Internal reference voltage or input voltage to CVREF pin                                                                                                      |                                                                                                                                                               |  |  |
| Comparison target    |                            | Whether passing thorough reference input                                                                                                                      | voltage by rising or falling                                                                                                                                  |  |  |
| Compar               | ison result monitor        | VW1C3 bit in VW1C register                                                                                                                                    | VCA13 bit in VCA1 register                                                                                                                                    |  |  |
|                      |                            | Whether higher or lower than reference inp                                                                                                                    | ut voltage                                                                                                                                                    |  |  |
| Interrupt            |                            | Comparator 1 interrupt (non-makable or maskable selectable)                                                                                                   | Comparator 2 interrupt (non-makable or maskable selectable)                                                                                                   |  |  |
|                      |                            | Interrupt request at both or either of<br>reference input voltage > input voltage to<br>VCMP1 pin and input voltage to VCMP1<br>pin > reference input voltage | Interrupt request at both or either of<br>reference input voltage > input voltage to<br>VCMP2 pin and input voltage to VCMP2<br>pin > reference input voltage |  |  |
| Digital<br>Filter    | Switch<br>enabled/disabled | Available                                                                                                                                                     |                                                                                                                                                               |  |  |
|                      | Sampling time              | (fOCO-S divided by n) × 2<br>n: 1, 2, 4, 8                                                                                                                    |                                                                                                                                                               |  |  |
| Compa                | rison result output        | Output from VCOUT1 pin (Whether the comparison result output is inverted or not can be selected)                                                              | Output from VCOUT2 pin (Whether the comparison result output is inverted or not can be selected)                                                              |  |  |

#### Table 7.1 Specifications of Comparator





Figure 7.1 Block Diagram of Comparator

#### Table 7.2 Pin Configuration of Comparator

| Pin Name | I/O    | Function                                  |
|----------|--------|-------------------------------------------|
| VCMP1    | Input  | Comparator 1 analog pin                   |
| VCOUT1   | Output | Comparator 1 comparison result output pin |
| VCMP2    | Input  | Comparator 2 analog pin                   |
| VCOUT2   | Output | Comparator 2 comparison result output pin |
| CVREF    | Input  | Comparator reference voltage pin          |

# 7.2 Register Description

Figures 7.2 to 7.11 show the registers associated with the comparator when comparator 1 or comparator 2 is selected.



#### Figure 7.2 Registers BGRTRMA and BGRTRMB

| -                    | e Detection                                                                                                             | Register 1                                                                                   |                                                                                                                                                                            |                                                                                                                                                                                                                                                       |            |
|----------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                      | b5         b4         b3         b2         b1         b0           0         0         0         0         0         0 | Symbol                                                                                       | Address                                                                                                                                                                    | After Reset <sup>(2)</sup>                                                                                                                                                                                                                            |            |
|                      |                                                                                                                         | VCA1                                                                                         | 0031h                                                                                                                                                                      | 00001000b                                                                                                                                                                                                                                             |            |
|                      |                                                                                                                         | Bit Symbol                                                                                   | Bit Name                                                                                                                                                                   | Function                                                                                                                                                                                                                                              | RW         |
|                      |                                                                                                                         | <br>(b2-b0)                                                                                  | Reserved bits                                                                                                                                                              | Set to 0.                                                                                                                                                                                                                                             | RW         |
|                      |                                                                                                                         | VCA13                                                                                        | Comparator 2 signal monitor                                                                                                                                                | flag <sup>(1)</sup> 0: VCMP2 < reference voltage                                                                                                                                                                                                      | RO         |
|                      |                                                                                                                         | <br>(b7-b4)                                                                                  | Reserved bits                                                                                                                                                              | Set to 0.                                                                                                                                                                                                                                             | RW         |
|                      | The VCA13 bi<br>VCA13 bit is s<br>2 circuit disab                                                                       | et to 1 (VCMF<br>led).                                                                       |                                                                                                                                                                            | 12 register is set to 1 (comparator 2 circuit enable<br>the VCA27 bit in the VCA2 register is set to 0 (c                                                                                                                                             |            |
| √oltag               | e Detection                                                                                                             |                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                                                                       |            |
|                      | b5 b4 b3 b2 b1 b0                                                                                                       | Symbol                                                                                       | Address                                                                                                                                                                    | After Reset <sup>(2)</sup><br>The LVD0ON bit in the OFS register is<br>set to 1 and hardw are reset : 00h                                                                                                                                             |            |
|                      |                                                                                                                         | VCA2                                                                                         | 0032h                                                                                                                                                                      | Pow er-on reset, voltage monitor 0 reset<br>or the LVD0ON bit in the OFS register is                                                                                                                                                                  | 0000b      |
|                      |                                                                                                                         | Bit Symbol                                                                                   | Bit Name                                                                                                                                                                   | Function                                                                                                                                                                                                                                              | RW         |
|                      |                                                                                                                         | VCA20                                                                                        | Internal pow er low<br>consumption enable bit <sup>(3)</sup>                                                                                                               | 0: Low consumption disabled<br>1: Low consumption enabled <sup>(7)</sup>                                                                                                                                                                              | RW         |
|                      |                                                                                                                         | <br>(b4-b1)                                                                                  | Reserved bits                                                                                                                                                              | Set to 0.                                                                                                                                                                                                                                             | RW         |
|                      |                                                                                                                         | - VCA25                                                                                      | Voltage detection 0 enable bit <sup>(4)</sup>                                                                                                                              | 0: Voltage detection 0 circuit disabled<br>1: Voltage detection 0 circuit enabled                                                                                                                                                                     | RW         |
| ΙL                   |                                                                                                                         | VCA26                                                                                        | Comparator 1 enable bit <sup>(5)</sup>                                                                                                                                     | 0: Comparator 1 circuit disabled<br>1: Comparator 1 circuit enabled                                                                                                                                                                                   | RW         |
|                      |                                                                                                                         | VCA27                                                                                        | Comparator 2 enable bit <sup>(6)</sup>                                                                                                                                     | 0: Comparator 2 circuit disabled<br>1: Comparator 2 circuit enabled                                                                                                                                                                                   | RW         |
| NOTE<br>1.           | Set the PRC3 Softw are rese                                                                                             | et and watcho<br>0 bit only whe                                                              | log timer reset do not affect th<br>en the MCU enters w ait mode                                                                                                           | before rew riting the VCA2 register.<br>his register.<br>. To set the VCA20 bit, follow the procedure sho<br>Low Consumption Using VCA20 Bit.                                                                                                         | w n in     |
| 2.<br>3.<br>4.<br>5. | Figure 11.12<br>To use the vol<br>After the VCA<br>operation.<br>To use the con<br>After the VCA<br>To use the con      | tage monitor (<br>25 bit is set to<br>mparator 1 into<br>26 bit is set to<br>mparator 2 into | o reset, set the VCA25 bit to 1<br>o 1 from 0, the voltage detection<br>errupt or the VW1C3 bit in the<br>o 1 from 0, the comparator 1 c<br>errupt or the VCA13 bit in the | on circuit w aits for td(E-A) to elapse before star<br>VW1C register, set the VCA26 bit to 1.<br>ircuit w aits for td(E-A) to elapse before starting<br>VCA1 register, set the VCA27 bit to 1.<br>ircuit w aits for td(E-A) to elapse before starting | operation. |



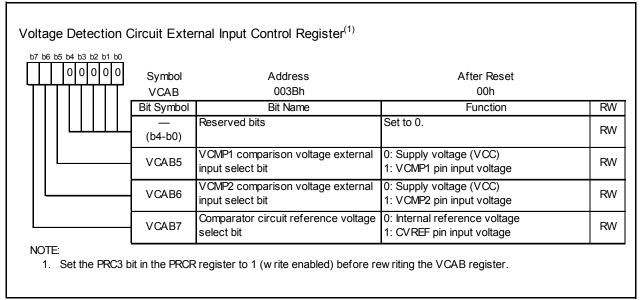
|  | Symbol<br>VW1C | Address<br>0036h                                                      | After Reset <sup>(2)</sup><br>00001010b                                                                                                  |    |
|--|----------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----|
|  | Bit Symbol     | Bit Name                                                              | Function                                                                                                                                 | RW |
|  | VW1C0          | Comparator 1 interrupt enable bit <sup>(3)</sup>                      | 0: Disable<br>1: Enable                                                                                                                  | RW |
|  | VW1C1          | Comparator 1 digital filter disable<br>mode select bit <sup>(4)</sup> | 0: Digital filter enable mode<br>(digital filter circuit enabled)<br>1: Digital filter disable mode<br>(digital filter circuit disabled) | RV |
|  | VW1C2          | Comparator 1 interrupt<br>flag <sup>(2, 5, 6)</sup>                   | [Source for setting this bit to 0]<br>0: Write 0<br>[Source for setting this bit to 0]<br>1: When interrupt request is generated         | RW |
|  | VW1C3          | Comparator 1 signal monitor<br>flag <sup>(2, 5)</sup>                 | 0: VCMP1 < reference voltage<br>1: VCMP1 ≥ reference voltage or<br>comparator 1 circuit disabled                                         | RC |
|  | VW1F0          | Sampling clock select bits                                            | <sup>b5 b4</sup><br>0 0: fOCO-S divided by 1<br>0 1: fOCO-S divided by 2                                                                 | RW |
|  | VW1F1          |                                                                       | 1 0: fOCO-S divided by 4<br>1 1: fOCO-S divided by 8                                                                                     | RW |
|  | VW1C6          | Reserved bit                                                          | Set to 0.                                                                                                                                | RW |
|  | • VW1C7        | Comparator 1 interrupt generation condition select bit <sup>(7)</sup> | 0: When VCMP1 reaches reference<br>voltage or above<br>1: When VCMP1 reaches reference<br>voltage or below                               | RW |

- 2. Bits VW1C2 and VW1C3 remain unchanged after a software reset or watchdog timer reset.
- The VW1C0 is enabled when the VCA26 bit in the VCA2 register is set to 1 (comparator 1 circuit enabled). When the VCA26 bit is set to 0 (comparator 1 circuit disabled), set the VW1C0 bit to 0 (disable). To set the VW1C0 bit to 1 (enable), follow the procedure show n in Table 7.3 Procedure for Setting Bits Associated with Comparator 1 Interrupt.
- 4. To use the comparator 1 interrupt to exit stop mode and to return again, write 1 to the VW1C1 bit after writing 0.
- 5. Bits VW1C2 and VW1C3 are enabled when the VCA26 bit in the VCA2 register is set to 1 (comparator 1 circuit enabled).
- 6. Set this bit to 0 by a program. When 0 is written by a program, it is set to 0 (and remains unchanged even if 1 is written to it).
- 7. The VW1C7 bit is enabled when the VCAC1 bit in the VCAC register is set to 0 (one edge). Set the VW1C7 bit after setting the VCAC1 bit to 0.



| 0 | b2 b1 b0 | Symbol<br>VW2C | Address<br>0037h                                                      | After Reset <sup>(2)</sup><br>00000010b                                                                                                    |    |
|---|----------|----------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----|
|   |          | Bit Symbol     | Bit Name                                                              | Function                                                                                                                                   | RW |
|   |          | VW2C0          | Comparator 2 interrupt enable bit <sup>(3)</sup>                      | 0: Disable<br>1: Enable                                                                                                                    | RW |
|   |          | VW2C1          | Comparator 2 digital filter disable mode select bit <sup>(4)</sup>    | 0: Digital filter enabled mode<br>(digital filter circuit enabled)<br>1: Digital filter disabled mode<br>(digital filter circuit disabled) | RW |
|   |          | VW2C2          | Comparator 2 interrupt<br>flag <sup>(2, 5, 6)</sup>                   | [Source for setting this bit to 0]<br>0: Write 0<br>[Source for setting this bit to 0]<br>1: When interrupt request is generated           | RW |
|   |          | VW2C3          | WDT detection flag <sup>(2, 6)</sup>                                  | 0: Not detected<br>1: Detected                                                                                                             | RW |
|   |          | VW2F0          | Sampling clock select bits                                            | <sup>b5 b4</sup><br>0 0: fOCO-S divided by 1<br>0 1: fOCO-S divided by 2                                                                   | RW |
|   |          | VW2F1          |                                                                       | 1 0: fOCO-S divided by 4<br>1 1: fOCO-S divided by 8                                                                                       | RW |
|   |          | VW2C6          | Reserved bit                                                          | Set to 0.                                                                                                                                  | RW |
|   |          | VW2C7          | Comparator 2 interrupt generation condition select bit <sup>(7)</sup> | <ul> <li>0: When VCMP2 reaches reference<br/>voltage or above</li> <li>1: When VCMP2 reaches reference<br/>voltage or below</li> </ul>     | RW |

NOTES:


 Set the PRC3 bit in the PRCR register to 1 (w rite enabled) before rew riting the VW2C register. When the VW2C register is rew ritten, the VW2C2 bit may be set to 1. Set the VW2C2 bit to 0 after rew riting the VW2C register.

2. Bits VW2C2 and VW2C3 remain unchanged after a softw are reset or w atchdog timer reset.

The VW2C0 bit is enabled when the VCA27 bit in the VCA2 register is set to 1 (comparator 2 circuit enabled). Set the VW2C0 bit to 0 (disable) when the VCA27 bit is set to 0 (comparator 2 circuit disabled). To set the VW2C0 bit to 1 (enable), follow the procedure show n in Table 7.4 Procedure for Setting Bits Associated with Comparator 2 Interrupt.

- 4. To use the comparator 2 interrupt to exit stop mode and to return again, write 1 to the VW2C1 bit after writing 0.
- 5. The VW2C2 is enabled when the VCA27 bit in the VCA2 register is set to 1 (comparator 2 circuit enabled).
- 6. Set this bit to 0 by a program. When 0 is written by a program, it is set to 0 (and remains unchanged even if 1 is written to it).
- 7. The VW2C7 bit is enabled when the VCAC2 bit in the VCAC register is set to 0 (one edge). Set the VW2C7 bit after setting the VCAC2 bit to 0.







| b7 b6 b | 5 b4 b3 b2 b1 b0 | 1           |                                                               |                                                                                                                                                                     |     |
|---------|------------------|-------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| XX      |                  | Symbol      | Address                                                       | After Reset                                                                                                                                                         |     |
| TT      |                  | ALCMR       | 003Ch                                                         | 00h                                                                                                                                                                 |     |
|         |                  | Bit Symbol  | Bit Name                                                      | Function                                                                                                                                                            | RW  |
|         |                  | LCM1POR     | VCOUT1 output polarity select<br>bit                          | <ol> <li>Non-inverted comparator 1 comparison<br/>result is output to VCOUT1</li> <li>Inverted comparator 1 comparison<br/>result is output to VCOUT1</li> </ol>    | RW  |
|         |                  | LCM2POR     | VCOUT2 output polarity select<br>bit                          | <ul><li>0: Non-inverted comparator 2 comparison<br/>result is output to VCOUT2</li><li>1: Inverted comparator 2 comparison<br/>result is output to VCOUT2</li></ul> | RW  |
|         |                  | CM1OE       | VCOUT1 output enable bit                                      | 0: Output disabled<br>1: Output enabled                                                                                                                             | RW  |
|         |                  | CM2OE       | VCOUT2 output enable bit                                      | 0: Output disabled<br>1: Output enabled                                                                                                                             | RW  |
|         |                  | IRQ1SEL     | Comparator 1 interrupt type select bit                        | 0: Non-maskable interrupt<br>1: Maskable interrupt                                                                                                                  | RW  |
|         |                  | IRQ2SEL     | Comparator 2 interrupt type select bit                        | 0: Non-maskable interrupt<br>1: Maskable interrupt                                                                                                                  | RW  |
|         |                  | <br>(b7-b6) | Nothing is assigned. If necessar When read, the content is 0. | y, set to 0.                                                                                                                                                        | 1 – |

Figure 7.7 ALCMR Register

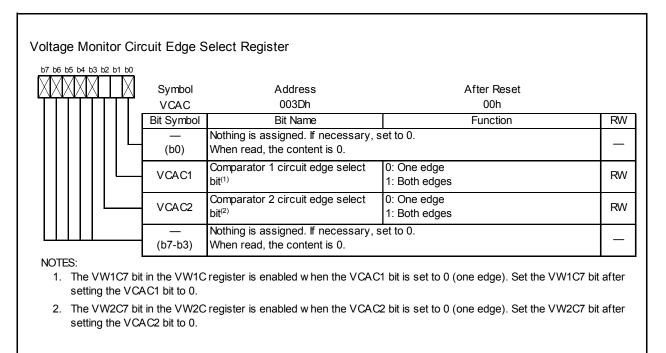
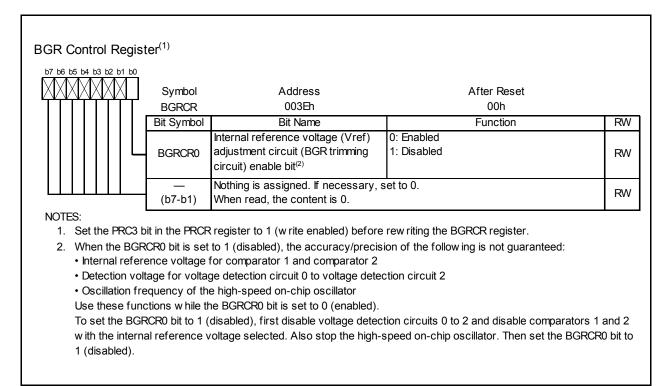




Figure 7.8 V

VCAC Register







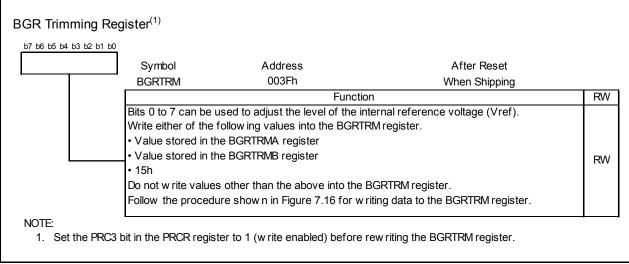



Figure 7.10 BGRTRM Register

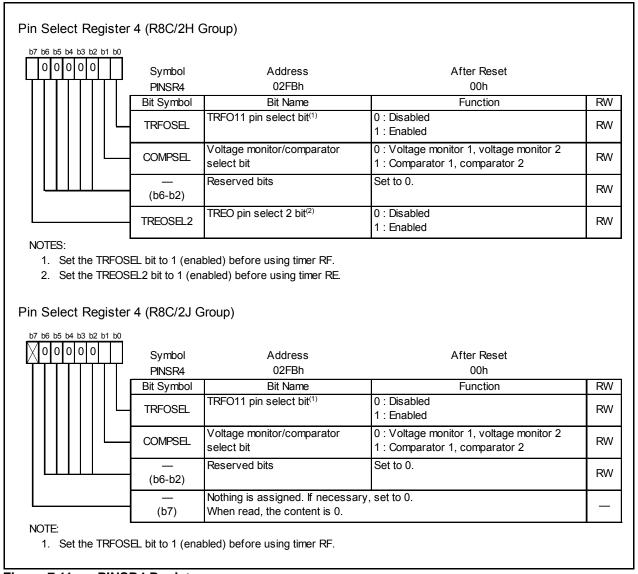



Figure 7.11 PINSR4 Register

# 7.3 Monitoring Comparison Results

#### 7.3.1 Monitoring Comparator 1

After the following settings are made, the comparison result of comparator 1 can be monitored by the VW1C3 bit in the VW1C register after td(E-A) has elapsed (refer to **22. Electrical Characteristics**).

- (1) Set the COMPSEL bit in the PINSR4 register is set to 1 (comparator 1, comparator 2).
- (2) Set the VCAB5 bit in the VCAB register to 1 (VCMP1 pin input voltage).
- (3) Set the VCA26 bit in the VCA2 register to 1 (comparator 1 circuit enabled).

### 7.3.2 Monitoring Comparator 2

After the following settings are made, the comparison result of comparator 2 can be monitored by the VCA13 bit in the VCA1 register after td(E-A) has elapsed (refer to **22. Electrical Characteristics**).

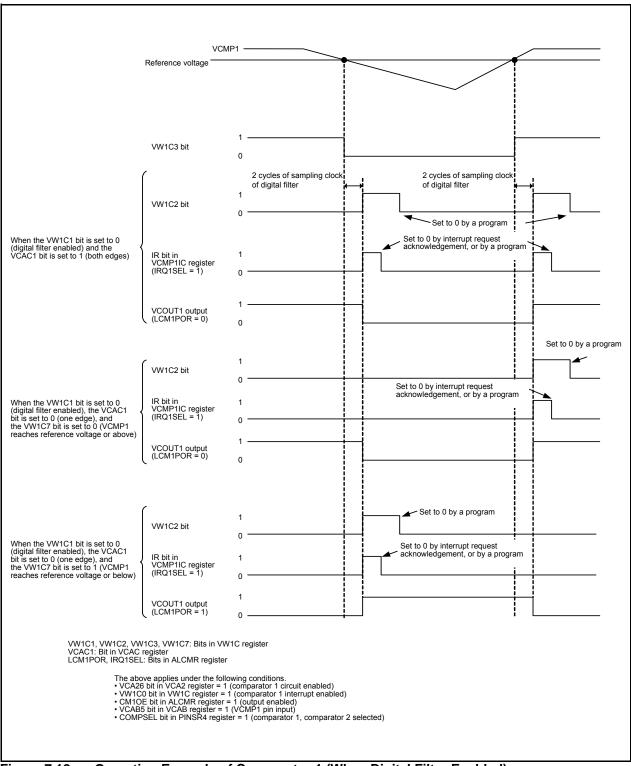
- (1) Set the COMPSEL bit in the PINSR4 register to 1 (comparator 1, comparator 2).
- (2) Set the VCAB6 bit in the VCAB register to 1 (VCMP2 pin input voltage).
- (3) Set the VCA27 bit in the VCA2 register to 1 (comparator 2 circuit enabled).

### 7.4 Functional Description

Comparator 1 and comparator 2 operate independently.

The comparison result of the reference input voltage and analog input voltage can be read by software. The result can also be output from the VCOUTi (i = 1 or 2) pin. An internal reference voltage or input voltage to the CVREF pin can be selected as the reference input voltage. The comparator 1 interrupt or the comparator 2 interrupt also can be used by selecting non-maskable or maskable for each interrupt.

### 7.4.1 Comparator 1


Table 7.3 lists the Procedure for Setting Bits Associated with Comparator 1 Interrupt, Figure 7.12 shows an Operating Example of Comparator 1 (When Digital Filter Enabled), and Figure 7.13 shows an Operating Example of Comparator 1 (When Digital Filter Disabled).

| Table 7.3 | Procedure for Setting Bits Associated with Comparator 1 Interrupt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | The second contraction of the second contrac |

|      | 1                                                                                              |                                                      |  |  |  |  |
|------|------------------------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|--|
| Step | When Using Digital Filter                                                                      | When Not Using Digital Filter                        |  |  |  |  |
| 1    | Set the COMPSEL bit in the PINSR4 register to 1 (comparator 1, comparator 2)                   |                                                      |  |  |  |  |
| 2    | Set the VCAB5 bit in the VCAB register to                                                      | 1 (VCMP1 pin input voltage)                          |  |  |  |  |
| 3    | Set the VCA26 bit in the VCA2 register to                                                      | 1 (comparator 1 circuit enabled)                     |  |  |  |  |
| 4    | Wait for td(E-A)                                                                               |                                                      |  |  |  |  |
| 5    | Select the interrupt type by the IRQ1SEL b                                                     | it in the ALCMR register                             |  |  |  |  |
| 6    | Select the sampling clock by bits VW1F0                                                        | Set the VW1C1 bit in the VW1C register to 1 (digital |  |  |  |  |
|      | and VW1F1 in the VW1C register                                                                 | filter disabled)                                     |  |  |  |  |
| 7(1) | Set the VW1C1 bit in the VW1C register                                                         | -                                                    |  |  |  |  |
|      | to 0 (digital filter enabled)                                                                  |                                                      |  |  |  |  |
| 8    | Select the interrupt request timing by the VCAC1 bit in the VCAC register and the VW1C7 bit in |                                                      |  |  |  |  |
|      | the VW1C register                                                                              |                                                      |  |  |  |  |
| 9    | Set the VW1C2 bit in the VW1C register to                                                      | 0                                                    |  |  |  |  |
| 10   | Set the CM14 bit in the CM1 register to 0                                                      | _                                                    |  |  |  |  |
|      | (low-speed on-chip oscillator on)                                                              |                                                      |  |  |  |  |
| 11   | Wait for 2 cycles of the sampling clock of                                                     | <ul> <li>– (No wait time required)</li> </ul>        |  |  |  |  |
|      | the digital filter.                                                                            |                                                      |  |  |  |  |
| 12   | Set the VW1C0 bit in the VW1C register to                                                      | 1 (comparator 1 interrupt enabled)                   |  |  |  |  |
|      |                                                                                                |                                                      |  |  |  |  |

NOTE:

1. When the VW1C0 bit is set to 0, steps 6 and 7 can be executed at the same time (with one instruction)





Operating Example of Comparator 1 (When Digital Filter Enabled)

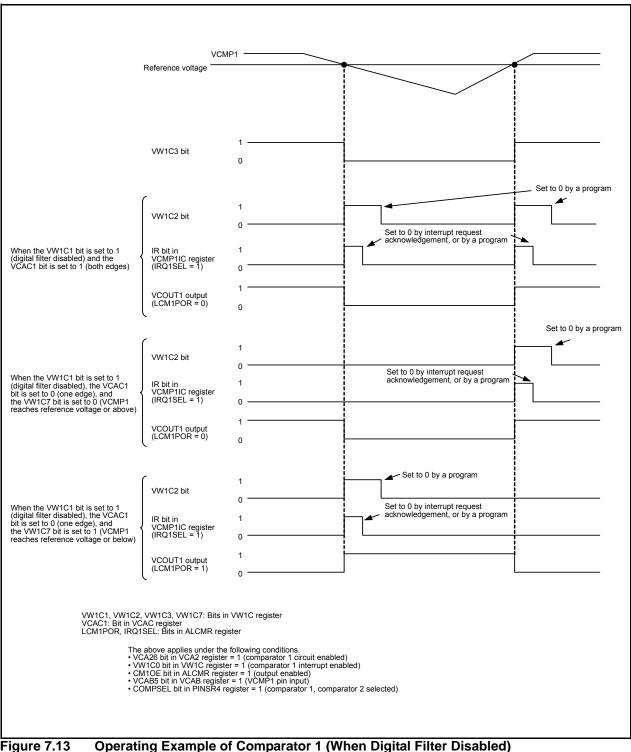



Figure 7.13

### 7.4.2 Comparator 2

Table 7.4 lists the Procedure for Setting Bits Associated with Comparator 2 Interrupt, Figure 7.14 shows an Operating Example of Comparator 2 (When Digital Filter Enabled), and Figure 7.15 shows an Operating Example of Comparator 2 (When Digital Filter Disabled).

| Table 7.4 | Procedure for Setting Bits Associated with Comparator 2 Interrupt |
|-----------|-------------------------------------------------------------------|
|-----------|-------------------------------------------------------------------|

| Step | When Using Digital Filter                                                                      | When Not Using Digital Filter                        |  |  |  |
|------|------------------------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|
| 1    | Set the COMPSEL bit in the PINSR4 register to 1 (comparator 1, comparator 2)                   |                                                      |  |  |  |
| 2    | Set the VCAB6 bit in the VCAB register to 1 (VCMP2 pin input voltage)                          |                                                      |  |  |  |
| 3    | Set the VCA27 bit in the VCA2 register to                                                      | 1 (comparator 2 circuit enabled)                     |  |  |  |
| 4    | Wait for td(E-A)                                                                               |                                                      |  |  |  |
| 5    | Select the interrupt type by the IRQ2SEL t                                                     | pit in the ALCMR register                            |  |  |  |
| 6    | Select the sampling clock by bits VW2F0                                                        | Set the VW2C1 bit in the VW2C register to 1 (digital |  |  |  |
| 0    | and VW2F1 in the VW2C register                                                                 | filter disabled)                                     |  |  |  |
| 7(1) | Set the VW2C1 bit in the VW2C register                                                         | -                                                    |  |  |  |
| 1    | to 0 (digital filter enabled)                                                                  |                                                      |  |  |  |
| 8    | Select the interrupt request timing by the VCAC2 bit in the VCAC register and the VW2C7 bit in |                                                      |  |  |  |
| 0    | the VW2C register                                                                              |                                                      |  |  |  |
| 9    | Set the VW2C2 bit in the VW2C register to                                                      | 0 0                                                  |  |  |  |
| 10   | Set the CM14 bit in the CM1 register to 0                                                      | -                                                    |  |  |  |
| 10   | (low-speed on-chip oscillator on)                                                              |                                                      |  |  |  |
| 11   | Wait for 2 cycles of the sampling clock of                                                     | <ul> <li>– (No wait time required)</li> </ul>        |  |  |  |
| 11   | the digital filter.                                                                            |                                                      |  |  |  |
| 12   | Set the VW2C0 bit in the VW2C register to                                                      | o 1 (comparator 2 interrupt enabled)                 |  |  |  |
|      |                                                                                                |                                                      |  |  |  |

NOTE:

1. When the VW2C0 bit is set to 0, steps 6 and 7 can be executed at the same time (with one instruction).

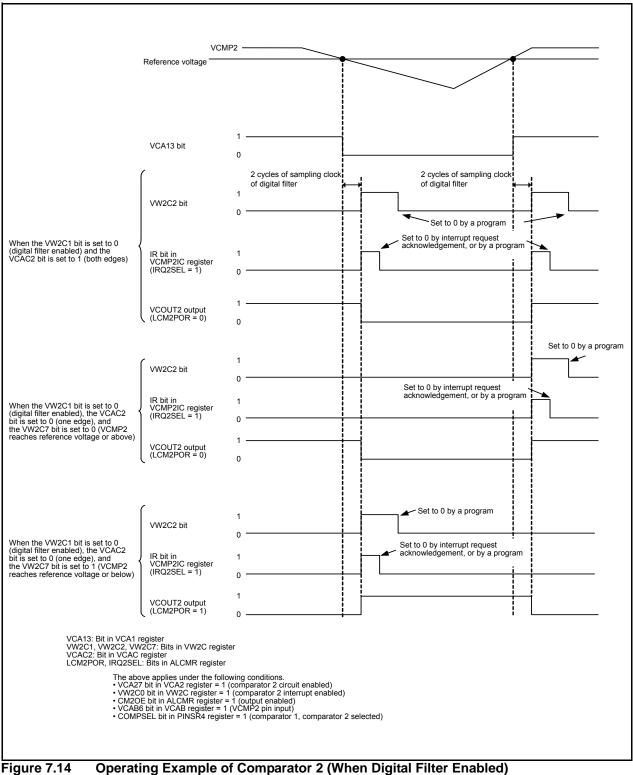
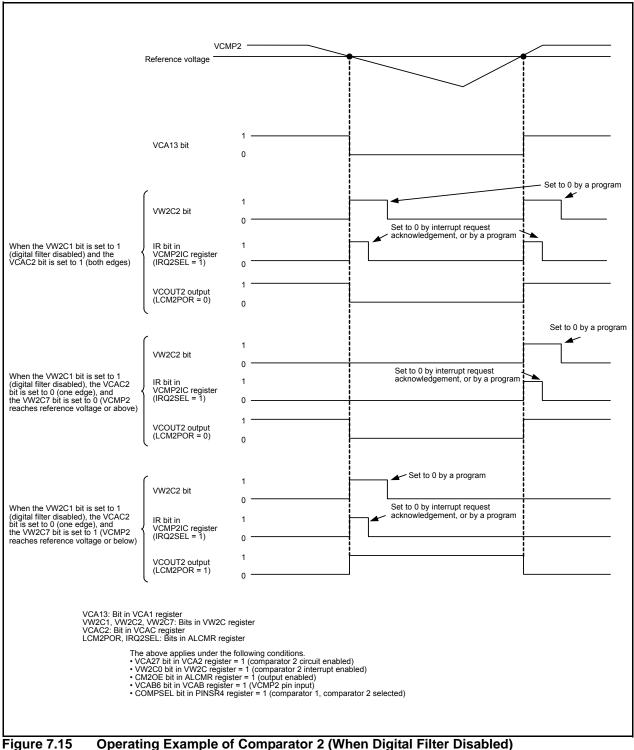




Figure 7.14



## 7.5 Comparator 1 and Comparator 2 Interrupts

Two interrupt requests are generated, one each for comparator 1 and comparator 2. Non-maskable or maskable can be selected for each interrupt type. Refer to **13. Interrupts** for interrupts.

## 7.5.1 Non-Maskable Interrupts

When IRQiSEL (i = 1 or 2) bit in the ALCMR register is set to 0, the comparator i interrupt functions as a nonmaskable interrupt. When the selected interrupt request timing occurs, the VWiC2 bit in the VWiC register is set to 1. At this time, a non-maskable interrupt request for comparator i is generated.

### 7.5.2 Maskable Interrupts

When the IRQiSEL (i = 1 or 2) bit in the ALCMR register is set to 1, the comparator i interrupt functions as a maskable interrupt. The comparator i interrupt uses the single VCMPiIC register (bits IR and ILVL0 to ILVL2) and a single vector. When the selected interrupt request timing occurs, the VWiC2 bit in the VWiC register is set to 1. At this time, the IR bit in the VCMPiIC register is set to 1 (interrupt requested).

Refer to **13.1.6 Interrupt Control** for the VCMPiIC register and **13.1.5.2 Relocatable Vector Tables** for interrupt vectors.

# 7.6 Adjusting Internal Reference Voltage (Vref)

The level of the internal reference voltage (Vref) can be adjusted with the value of the BGRTRM register. The values for correcting the Vref are stored in registers BGRTRMA and BGRTRMB before shipping the MCU. The value of the BGRTRMA register is the same as that of the BGRTRM register after reset.

To use separate correction values to match the supply voltage ranges, transfer them from registers BGRTRMA and BGRTRMB to the BGRTRM register. Figure 7.16 shows the Procedure for Adjusting Internal Reference Voltage (Vref).

When the BGRCR0 bit in the BGRCR register to 1 (disabled), the internal reference voltage (Vref) adjustment circuit (BGR trimming circuit) is disabled and the value of the BGRTRM register is also disabled.

When the BGR trimming circuit is disabled, the accuracy of the internal reference voltage (Vref) is not guaranteed. Disable voltage detection circuits 0 to 2 and disable comparators 1 and 2 with the internal reference voltage selected. The high-speed on-chip oscillator should also be stopped as necessary because the precision of its oscillation frequency is not also guaranteed.

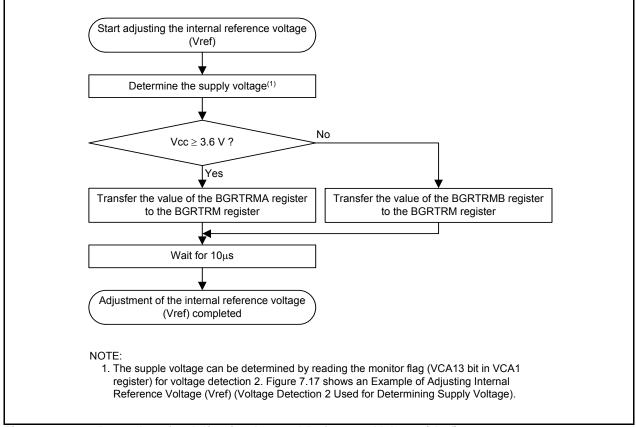
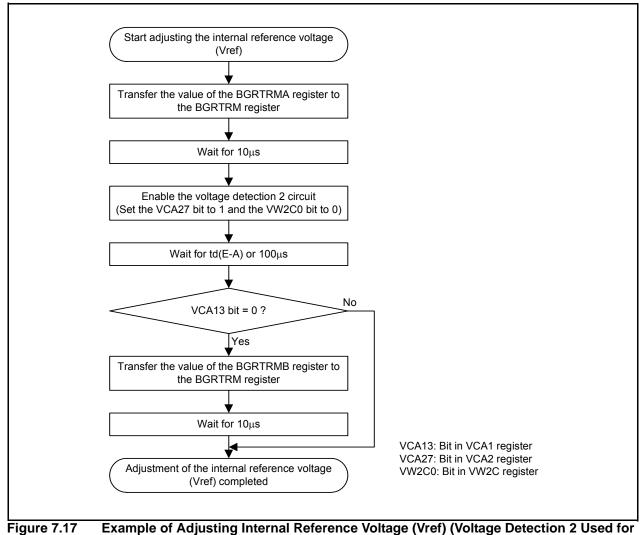




Figure 7.16 Procedure for Adjusting Internal Reference Voltage (Vref)



Determining Supply Voltage)

# 8. I/O Ports

There are 15 input/output (I/O) ports P1, P3\_3, P3\_7, P4\_3, P4\_5, and P6\_3 to P6\_5 in the R8C/2H Group. When the XCIN clock oscillation circuit is not used, P4\_3 can be used as an I/O port and P4\_4 can be used as an output port.

Table 8.1 lists an Overview of I/O Ports for R8C/2H Group.

| Ports      | I/O    | Type of Output | I/O Setting                | Internal Pull-Up Resister       |
|------------|--------|----------------|----------------------------|---------------------------------|
| P1         | I/O    | CMOS3 State    | Set per bit                | Set every 4 bits <sup>(1)</sup> |
| P3_3, P3_7 | I/O    | CMOS3 State    | Set per bit                | Set every bit <sup>(1)</sup>    |
| P4_3       | I/O    | CMOS3 State    | Set per bit                | Set every bit <sup>(2)</sup>    |
| P4_4       | Output | CMOS3 State    | Set per bit <sup>(3)</sup> | None                            |
| P4_5       | I/O    | CMOS3 State    | Set per bit                | Set every bit <sup>(2)</sup>    |
| P6_3       | I/O    | CMOS3 State    | Set per bit                | Set every bit <sup>(2)</sup>    |
| P6_4, P6_5 | I/O    | CMOS3 State    | Set per bit                | Set every 2 bits <sup>(2)</sup> |

Table 8.1 Overview of I/O Ports for R8C/2H Group

NOTES:

- 1. In input mode, whether an internal pull-up resistor is connected or not can be selected by PUR0 register.
- 2. In input mode, whether an internal pull-up resistor is connected or not can be selected by PUR1 register.
- 3. Do not use port P4\_4 as an input port (input mode).

There are 12 input/output (I/O) ports P1, P3\_3, P3\_7, P4\_5, and P6\_5 in the R8C/2J Group. Table 8.2 lists an Overview of I/O Ports for R8C/2H Group.

| Ports      | I/O | Type of Output | I/O Setting | Internal Pull-Up Resister       |
|------------|-----|----------------|-------------|---------------------------------|
| P1         | I/O | CMOS3 State    | Set per bit | Set every 4 bits <sup>(1)</sup> |
| P3_3, P3_7 | I/O | CMOS3 State    | Set per bit | Set every bit <sup>(1)</sup>    |
| P4_5       | I/O | CMOS3 State    | Set per bit | Set every bit <sup>(2)</sup>    |
| P6_5       | I/O | CMOS3 State    | Set per bit | Set every bit <sup>(2)</sup>    |

#### Table 8.2 Overview of I/O Ports for R8C/2J Group

NOTES:

- 1. In input mode, whether an internal pull-up resistor is connected or not can be selected by PUR0 register.
- 2. In input mode, whether an internal pull-up resistor is connected or not can be selected by PUR1 register.

## 8.1 Functions of I/O Ports

The PDi\_j (j = 0 to 7) bit in the PDi (i = 1, 3, 4, 6) register controls I/O of the following: Ports P1, P3\_3, P3\_7, P4\_3, P4\_5, P6\_3 to P6\_5 in the R8C/2H Group and ports P1, P3\_3, P3\_7, P4\_5, and P6\_5 in the R8C/2J Group. The Pi register consists of a port latch to hold output data and a circuit to read pin states.

Figures 8.1 to 8.3 show the Configurations of I/O Ports. Table 8.3 lists the Functions of I/O Ports. Also, Figure 8.5 shows the PDi (i = 1, 3, 4, or 6) Register (R8C/2H Group). Figure 8.6 shows the Pi (i = 1, 3, 4, or 6) Register (R8C/2H Group), Figure 8.7 shows the PDi (i = 1, 3, 4, or 6) Register (R8C/2J Group), Figure 8.8 shows the Pi (i = 1, 3, 4, or 6) Register (R8C/2J Group), Figure 8.9 shows Registers PINSR2 and PINSR4, Figure 8.10 shows the PMR Register, Figure 8.11 shows Registers PUR0 and PUR1.

| Operation When           | Value of PDi_j B                        | it in PDi Register <sup>(1)</sup>                                                    |  |  |
|--------------------------|-----------------------------------------|--------------------------------------------------------------------------------------|--|--|
| Accessing<br>Pi Register | When PDi_j Bit is Set to 0 (Input Mode) | When PDi_j Bit is Set to 1 (Output Mode)                                             |  |  |
| Reading                  | Read pin input level                    | Read the port latch                                                                  |  |  |
| Writing                  | Write to the port latch                 | Write to the port latch. The value written to the port latch is output from the pin. |  |  |

i = 1, 3, 4, 6, j = 0 to 7 NOTE:

1. In the R8C/2H Group, nothing is assigned to bits PD4\_0 to PD4\_2, PD4\_6, PD4\_7, PD6\_1, PD6\_2, and PD6\_7. Bits PD3\_0 to PD3\_2, PD3\_4 to PD3\_6, PD6\_0, and PD6\_6 are reserved.

In the R8C/2J Group, nothing is assigned to bits PD4\_0 to PD4\_2, PD4\_6, PD4\_7, PD6\_1, PD6\_2, and PD6\_7. Bits PD3\_0 to PD3\_2, PD3\_4 to PD3\_6, PD4\_3, PD4\_4, PD6\_0, PD6\_3, PD6\_4, and PD6\_6 are reserved.

## 8.2 Effect on Peripheral Functions

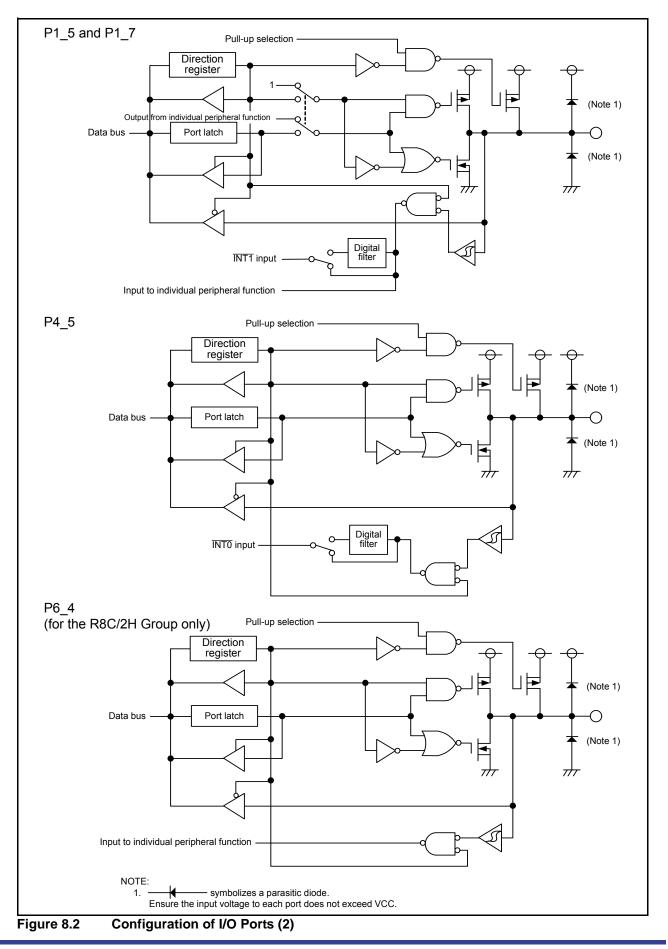
I/O ports function as I/O ports for peripheral functions (refer to **Table 1.5 Pin Name Information by Pin Number of R8C/2H Group** and **Table 1.6 Pin Name Information by Pin Number of R8C/2J Group**).

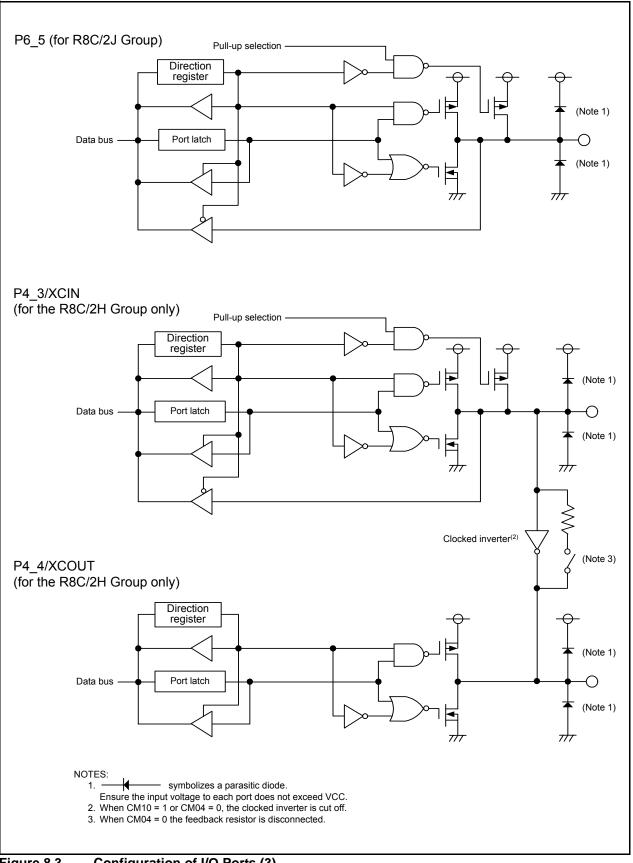
Table 8.4 lists the Setting of PDi\_j Bit when Functioning as I/O Ports for Peripheral Functions (i = 1, 3, 4, 6, j = 0 to 7). Refer to the description of each function for information on how to set peripheral functions.

| Table 8.4 | Setting of PDi_j Bit when Functioning as I/O Ports for Peripheral Functions (i = 1, 3, 4, 6, j = 0 to 7) |
|-----------|----------------------------------------------------------------------------------------------------------|
|-----------|----------------------------------------------------------------------------------------------------------|

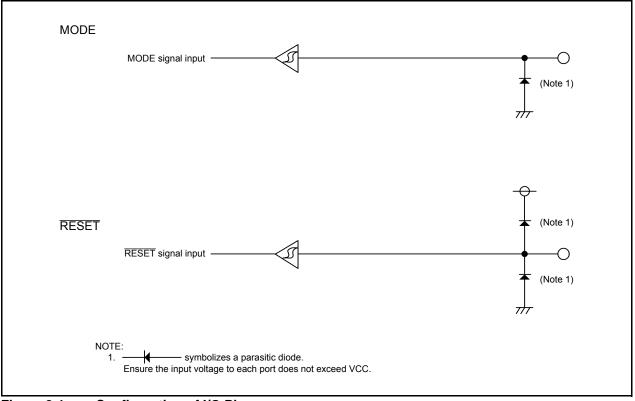
| I/O of Peripheral Functions | PDi_j Bit Settings for Shared Pin Functions <sup>(1)</sup>                   |
|-----------------------------|------------------------------------------------------------------------------|
| Input                       | Set this bit to 0 (input mode).                                              |
| Output                      | This bit can be set to either 0 or 1 (output regardless of the port setting) |

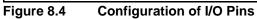
NOTE:

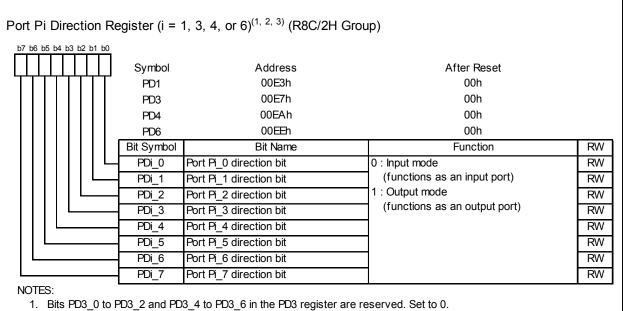

1. In the R8C/2H Group, nothing is assigned to bits PD4\_0 to PD4\_2, PD4\_6, PD4\_7, PD6\_1, PD6\_2, and PD6\_7. Bits PD3\_0 to PD3\_2, PD3\_4 to PD3\_6, PD6\_0, and PD6\_6 are reserved. In the R8C/2J Group, nothing is assigned to bits PD4\_0 to PD4\_2, PD4\_6, PD4\_7, PD6\_1, PD6\_2, and PD6\_7. Bits PD3\_0 to PD3\_2, PD3\_4 to PD3\_6, PD4\_3, PD4\_4, PD6\_0, PD6\_3, PD6\_4, and


PD6 6 are reserved.

# 8.3 Pins Other than Programmable I/O Ports


Figure 8.4 shows the Configuration of I/O Pins.

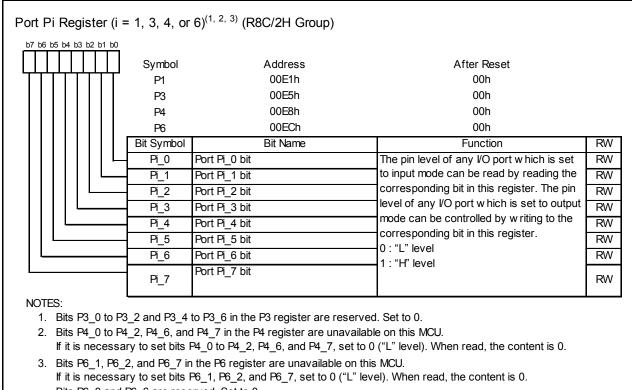




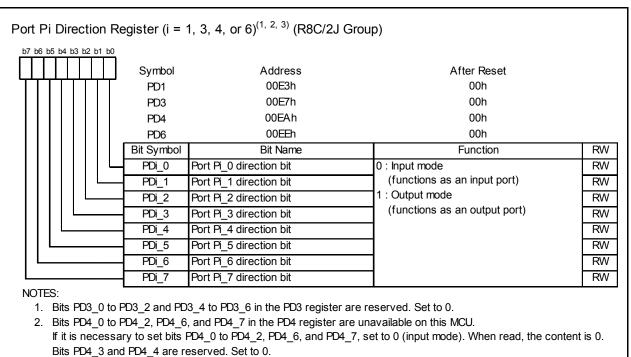

Configuration of I/O Ports (3) Figure 8.3








Bits PD4\_0 to PD4\_2, PD4\_6, and PD4\_7 in the PD4 register are unavailable on this MCU.
 If it is necessary to set bits PD4\_0 to PD4\_2, PD4\_6, and PD4\_7, set to 0 (input mode). When read, the content is 0.
 To use port P4\_4 as an output port, set the PD4\_4 bit to 1 (output mode). Do not use port P4\_4 as an input port.


Bits PD6\_1, PD6\_2, and PD6\_7 in the PD6 register are unavailable on this MCU.
 If it is necessary to set bits PD6\_1, PD6\_2, and PD6\_7, set to 0 (input mode). When read, the content is 0.
 Bits PD6\_0 and PD6\_6 are reserved. Set to 0.

#### Figure 8.5 PDi (i = 1, 3, 4, or 6) Register (R8C/2H Group)



Bits P6\_0 and P6\_6 are reserved. Set to 0.

#### Figure 8.6 Pi (i = 1, 3, 4, or 6) Register (R8C/2H Group)



3. Bits PD6\_1, PD6\_2, and PD6\_7 in the PD6 register are unavailable on this MCU. If it is necessary to set bits PD6\_1, PD6\_2, and PD6\_7, set to 0 (input mode). When read, the content is 0. Bits PD6\_0, PD6\_3, PD6\_4, and PD6\_6 are reserved. Set to 0.

Figure 8.7 PDi (i = 1, 3, 4, or 6) Register (R8C/2J Group)

| b7 b6 t | b5 b4 b3 b2 b1 b0 |                   |                                                                                                                   |                                                                                |    |
|---------|-------------------|-------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----|
|         |                   | Symbol            | Address                                                                                                           | After Reset                                                                    |    |
| TT      |                   | P1                | 00E1h                                                                                                             | 00h                                                                            |    |
|         |                   | P3                | 00E5h                                                                                                             | 00h                                                                            |    |
|         |                   | P4                | 00E8h                                                                                                             | 00h                                                                            |    |
|         |                   | P6                | 00ECh                                                                                                             | 00h                                                                            |    |
|         |                   | Bit Symbol        | Bit Name                                                                                                          | Function                                                                       | RW |
|         | L                 | Pi_0              | Port Pi_0 bit                                                                                                     | The pin level of any I/O port which is set                                     | RW |
|         | └──               | Pi_1              | Port Pi_1 bit                                                                                                     | to input mode can be read by reading the                                       | RW |
|         |                   | Pi_2              | Port Pi_2 bit                                                                                                     | corresponding bit in this register. The pin                                    | RV |
|         |                   | Pi_3              | Port Pi_3 bit                                                                                                     | level of any I/O port which is set to output                                   | RW |
|         |                   | - Pi_4            | Port Pi_4 bit                                                                                                     | mode can be controlled by writing to the                                       | RW |
|         |                   | - Pi_5            | Port Pi_5 bit                                                                                                     | <ul> <li>corresponding bit in this register.</li> <li>0 : "L" level</li> </ul> | RW |
|         |                   | - Pi_6            | Port Pi_6 bit                                                                                                     | 1 : "H" level                                                                  | RW |
|         |                   | Pi_7              | Port Pi_7 bit                                                                                                     |                                                                                | RW |
| NOTE    | S:                |                   |                                                                                                                   |                                                                                |    |
|         | -                 |                   | to P3_6 in the P3 register are reserve                                                                            |                                                                                |    |
| 2.      | —                 | _ · _ ·           | P4_7 in the P4 register are unavaila                                                                              |                                                                                |    |
|         |                   | ,                 |                                                                                                                   | 0 ("L" level). When read, the content is 0.                                    |    |
|         | —                 | -                 | erved. Set to 0.                                                                                                  |                                                                                |    |
| 3.      | If it is necessa  | ary to set bits I | n the P6 register are unavailable on th<br>P6_1, P6_2, and P6_7, set to 0 ("L" le<br>P6_6 are reserved. Set to 0. |                                                                                |    |

| Pin Select Register                     | 2                |                                                                         |                                                                            |    |
|-----------------------------------------|------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------|----|
| b7 b6 b5 b4 b3 b2 b1 b0                 | Symbol<br>PINSR2 | Address<br>00F6h                                                        | After Reset<br>00h                                                         |    |
|                                         | Bit Symbol       | Bit Name                                                                | Function                                                                   | RW |
|                                         | (b3-b0)          | Nothing is assigned. If necessary When read, the content is 0.          | , set to 0.                                                                | -  |
|                                         | TRAOSEL          | TRAO pin select bit <sup>(1)</sup>                                      | 0 : Disabled<br>1 : Enabled                                                | RW |
|                                         | (b5)             | Nothing is assigned. If necessary When read, the content is 0.          | , set to 0.                                                                | _  |
|                                         | TRBOSEL          | TRBO pin select bit <sup>(2)</sup>                                      | 0 : Disabled<br>1 : Enabled                                                | RW |
|                                         | _                | Nothing is assigned. If necessary                                       | , set to 0.                                                                |    |
|                                         | (b7)             | When read, the content is 0.                                            |                                                                            |    |
| 2. Set the TRBOS<br>Pin Select Register | ·                | abled) before using timer RB.<br>Group)                                 |                                                                            |    |
| b7 b6 b5 b4 b3 b2 b1 b0                 | Symbol           | Address                                                                 | After Reset                                                                |    |
|                                         | PINSR4           | 02FBh<br>Bit Name                                                       | 00h<br>Function                                                            | RW |
|                                         | Bit Symbol       | TRFO11 pin select bit <sup>(1)</sup>                                    | 0 : Disabled<br>1 : Enabled                                                | RW |
|                                         | COMPSEL          | Voltage monitor/comparator select bit                                   | 0 : Voltage monitor 1, voltage monitor 2<br>1 : Comparator 1, comparator 2 | RW |
|                                         | <br>(b6-b2)      | Reserved bits                                                           | Set to 0.                                                                  | RW |
|                                         | TREOSEL2         | TREO pin select 2 bit <sup>(2)</sup>                                    | 0 : Disabled<br>1 : Enabled                                                | RW |
| 2. Set the TREOS                        | EL2 bit to 1 (en | bled) before using timer RF.<br>abled) before using timer RE.<br>Group) |                                                                            |    |
| b7 b6 b5 b4 b3 b2 b1 b0                 | Symbol<br>PINSR4 | Address<br>02FBh                                                        | After Reset<br>00h                                                         |    |
|                                         | Bit Symbol       | Bit Name                                                                | Function                                                                   | RW |
|                                         | TRFOSEL          | TRFO11 pin select bit <sup>(1)</sup>                                    | 0 : Disabled<br>1 : Enabled                                                | RW |
|                                         | COMPSEL          | Voltage monitor/comparator select bit                                   | 0 : Voltage monitor 1, voltage monitor 2<br>1 : Comparator 1, comparator 2 | RW |
|                                         | <br>(b6-b2)      | Reserved bits                                                           | Set to 0.                                                                  | RW |
|                                         | <br>(b7)         | Nothing is assigned. If necessary When read, the content is 0.          | , set to 0.                                                                | -  |
| NOTE:<br>1. Set the TRFOS               | EL bit to 1 (ena | bled) before using timer RF.                                            |                                                                            |    |
| iqure 8.9 Regis                         | store DINCE      | 2 and PINSR4                                                            |                                                                            |    |



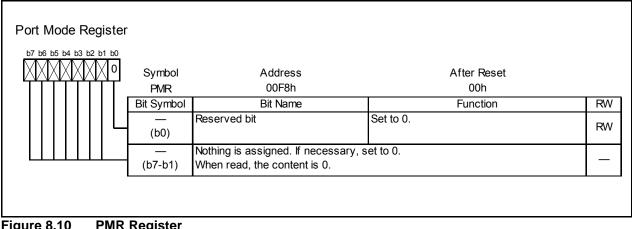



Figure 8.10 **PMR Register** 

|                   | Symbol                                                                                                                              | Address                                                                                                                                                                                                                                                                                       | After Reset                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|                   | PUR0                                                                                                                                | 00FCh                                                                                                                                                                                                                                                                                         | 00h                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |
|                   | Bit Symbol                                                                                                                          | Bit Name                                                                                                                                                                                                                                                                                      | Function                                                                                                                                                                                                                                                                                                                                                                                                  | RM                               |
|                   | (b0)                                                                                                                                | Nothing is assigned. If necessary When read, the content is 0.                                                                                                                                                                                                                                | r, set to 0.                                                                                                                                                                                                                                                                                                                                                                                              | _                                |
|                   | (b1)                                                                                                                                | Reserved bit                                                                                                                                                                                                                                                                                  | Set to 0.                                                                                                                                                                                                                                                                                                                                                                                                 | RW                               |
|                   | PU02                                                                                                                                | P1_0 to P1_3 pull-up <sup>(1)</sup>                                                                                                                                                                                                                                                           | 0 : Not pulled up                                                                                                                                                                                                                                                                                                                                                                                         | RW                               |
|                   |                                                                                                                                     | P1_4 to P1_7 pull-up <sup>(1)</sup>                                                                                                                                                                                                                                                           | 1 : Pulled up                                                                                                                                                                                                                                                                                                                                                                                             | RW                               |
|                   | <br>(b5-b4)                                                                                                                         | Nothing is assigned. If necessary<br>When read, the content is 0.                                                                                                                                                                                                                             | r, set to 0.                                                                                                                                                                                                                                                                                                                                                                                              |                                  |
|                   | PU06                                                                                                                                | P3_3 pull-up <sup>(1)</sup>                                                                                                                                                                                                                                                                   | 0 : Not pulled up                                                                                                                                                                                                                                                                                                                                                                                         | RW                               |
|                   | PU07                                                                                                                                | P3_7 pull-up <sup>(1)</sup>                                                                                                                                                                                                                                                                   | 1 : Pulled up                                                                                                                                                                                                                                                                                                                                                                                             | RW                               |
|                   | )<br>Symbol<br>PUR1                                                                                                                 | Address<br>00FDh                                                                                                                                                                                                                                                                              | After Reset<br>00h                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
|                   | Bit Symbol                                                                                                                          | Bit Name                                                                                                                                                                                                                                                                                      | Function                                                                                                                                                                                                                                                                                                                                                                                                  | RW                               |
|                   | PU10                                                                                                                                | P4_3 pull-up <sup>(1)</sup>                                                                                                                                                                                                                                                                   | 0 : Not pulled up                                                                                                                                                                                                                                                                                                                                                                                         | RW                               |
|                   | PU11                                                                                                                                | P4_5 pull-up <sup>(1)</sup>                                                                                                                                                                                                                                                                   | 1 : Pulled up                                                                                                                                                                                                                                                                                                                                                                                             | RW                               |
|                   | (b3-b2)                                                                                                                             | Nothing is assigned. If necessary<br>When read, the content is 0.                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |
|                   |                                                                                                                                     |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |
|                   | PU14                                                                                                                                | P6_3 pull-up <sup>(1)</sup>                                                                                                                                                                                                                                                                   | 0 : Not pulled up                                                                                                                                                                                                                                                                                                                                                                                         | RW                               |
|                   | PU14<br>PU15                                                                                                                        | P6_3 pull-up <sup>(1)</sup><br>P6_4, P6_5 pull-up <sup>(1)</sup>                                                                                                                                                                                                                              | 0 : Not pulled up<br>1 : Pulled up                                                                                                                                                                                                                                                                                                                                                                        |                                  |
|                   | PU15<br>—<br>(b7-b6)                                                                                                                | P6_4, P6_5 pull-up <sup>(1)</sup><br>Nothing is assigned. If necessary<br>When read, the content is 0.                                                                                                                                                                                        | 1 : Pulled up<br>, set to 0.                                                                                                                                                                                                                                                                                                                                                                              |                                  |
| 1. When this bit  | PU15<br>(b7-b6)<br>t is set to 1 (pull<br>egister 1 (R80<br>Symbol<br>PUR1                                                          | P6_4, P6_5 pull-up <sup>(1)</sup><br>Nothing is assigned. If necessary<br>When read, the content is 0.<br>ed up), the pin w hose direction bit<br>C/2J Group)<br>Address<br>00FDh                                                                                                             | 1 : Pulled up<br>, set to 0.<br>is set to 0 (input mode) is pulled up.<br>After Reset<br>00h                                                                                                                                                                                                                                                                                                              | RV                               |
| 1. When this bit  | PU15<br>(b7-b6)<br>t is set to 1 (pull<br>egister 1 (R80<br>Symbol                                                                  | P6_4, P6_5 pull-up <sup>(1)</sup><br>Nothing is assigned. If necessary<br>When read, the content is 0.<br>ed up), the pin w hose direction bit<br>C/2J Group)<br>Address<br>00FDh<br>Bit Name                                                                                                 | 1 : Pulled up<br>, set to 0.<br>is set to 0 (input mode) is pulled up.<br>After Reset<br>00h<br>Function                                                                                                                                                                                                                                                                                                  | RM                               |
| 1. When this bit  | PU15<br>(b7-b6)<br>t is set to 1 (pull<br>egister 1 (R80<br>Symbol<br>PUR1                                                          | P6_4, P6_5 pull-up <sup>(1)</sup><br>Nothing is assigned. If necessary<br>When read, the content is 0.<br>ed up), the pin w hose direction bit<br>C/2J Group)<br>Address<br>00FDh<br>Bit Name<br>Reserved bit                                                                                 | 1 : Pulled up<br>, set to 0.<br>is set to 0 (input mode) is pulled up.<br>After Reset<br>00h<br>Function<br>Set to 0.                                                                                                                                                                                                                                                                                     | RW                               |
| 1. When this bit  | PU15<br>(b7-b6)<br>t is set to 1 (pull<br>egister 1 (R80<br>Symbol<br>PUR1<br>Bit Symbol<br>—                                       | P6_4, P6_5 pull-up <sup>(1)</sup><br>Nothing is assigned. If necessary<br>When read, the content is 0.<br>ed up), the pin w hose direction bit<br>C/2J Group)<br>Address<br>00FDh<br>Bit Name<br>Reserved bit<br>P4_5 pull-up <sup>(1)</sup>                                                  | 1 : Pulled up         a, set to 0.         is set to 0 (input mode) is pulled up.         After Reset         00h         Function         Set to 0.         0 : Not pulled up         1 : Pulled up                                                                                                                                                                                                      | RW                               |
| 1. When this bit  | PU15<br>(b7-b6)<br>t is set to 1 (pull<br>egister 1 (R86<br>Symbol<br>PUR1<br>Bit Symbol<br>(b0)                                    | P6_4, P6_5 pull-up <sup>(1)</sup> Nothing is assigned. If necessary When read, the content is 0. ed up), the pin w hose direction bit C/2J Group) Address 00FDh Bit Name Reserved bit P4_5 pull-up <sup>(1)</sup> Nothing is assigned. If necessary When read, the content is 0.              | 1 : Pulled up         , set to 0.         is set to 0 (input mode) is pulled up.         After Reset         00h         Function         Set to 0.         0 : Not pulled up         1 : Pulled up         , set to 0.                                                                                                                                                                                   | RW<br>RW<br>RW<br>RW<br>RW<br>RW |
| 1. When this bit  | PU15<br>(b7-b6)<br>t is set to 1 (pull<br>egister 1 (R80<br>PUR1<br>Bit Symbol<br>(b0)<br>PU11<br>                                  | P6_4, P6_5 pull-up <sup>(1)</sup> Nothing is assigned. If necessary When read, the content is 0. ed up), the pin w hose direction bit C/2J Group) Address 00FDh Bit Name Reserved bit P4_5 pull-up <sup>(1)</sup> Nothing is assigned. If necessary When read, the content is 0. Reserved bit | 1 : Pulled up         , set to 0.         is set to 0 (input mode) is pulled up.         After Reset         00h         Function         Set to 0.         0 : Not pulled up         1 : Pulled up         , set to 0.         Set to 0.         Set to 0.         Set to 0.                                                                                                                             | RW                               |
| ull-Up Control Re | PU15<br>(b7-b6)<br>t is set to 1 (pull<br>egister 1 (R80<br>PUR1<br>Bit Symbol<br>PUR1<br>Bit Symbol<br>(b0)<br>PU11<br>(b3-b2)<br> | P6_4, P6_5 pull-up <sup>(1)</sup> Nothing is assigned. If necessary When read, the content is 0. ed up), the pin w hose direction bit C/2J Group) Address 00FDh Bit Name Reserved bit P4_5 pull-up <sup>(1)</sup> Nothing is assigned. If necessary When read, the content is 0.              | 1 : Pulled up         , set to 0.         is set to 0 (input mode) is pulled up.         After Reset         00h         Function         Set to 0.         0 : Not pulled up         1 : Pulled up         , set to 0.         Set to 0.         0 : Not pulled up         1 : Pulled up         , set to 0.         0 : Not pulled up         1 : Pulled up         1 : Pulled up         1 : Pulled up | RW<br>                           |

## 8.4 Port Setting

Table 8.5 to Table 8.22 list the port setting.

| Table 8.5 | Port P1_ | _0/KI0/TRFO00/VCMP1 |
|-----------|----------|---------------------|
|-----------|----------|---------------------|

| Register         | PD1   | TRFOUT  | KIEN  | VCAB  | Function                    |
|------------------|-------|---------|-------|-------|-----------------------------|
| Bit              | PD1_0 | TRFOUT0 | KI0EN | VCAB5 | i uncuon                    |
|                  | 0     | 0       | 0     | 0     | Input port <sup>(1)</sup>   |
|                  | 1     | 0       | 0     | 0     | Output port                 |
| Setting<br>value | Х     | 1       | 0     | 0     | TRFO00 output               |
| value            | 0     | 0       | 1     | 0     | KI0 input <sup>(1, 2)</sup> |
|                  | 0     | 0       | 0     | 1     | VCMP1 input <sup>(1)</sup>  |

X: 0 or 1

NOTES:

1. Pulled up by setting the PU02 bit in the PUR0 register to 1.

2. Set bit 2 (reserved bit) in the PINSR4 register to 0.

| Register         | PD1   | TRFOUT  | KIEN  | VCAB  | Function                    |
|------------------|-------|---------|-------|-------|-----------------------------|
| Bit              | PD1_1 | TRFOUT1 | KI1EN | VCAB6 | Function                    |
|                  | 0     | 0       | 0     | 0     | Input port <sup>(1)</sup>   |
|                  | 1     | 0       | 0     | 0     | Output port                 |
| Setting<br>value | Х     | 1       | 0     | 0     | TRFO01 output               |
| value            | 0     | 0       | 1     | 0     | KI1 input <sup>(1, 2)</sup> |
|                  | 0     | 0       | 0     | 1     | VCMP2 input <sup>(1)</sup>  |

# Table 8.6 Port P1\_1/KI1/TRF001/VCMP2

X: 0 or 1 NOTES:

1. Pulled up by setting the PU02 bit in the PUR0 register to 1.

2. Set bit 3 (reserved bit) in the PINSR4 register to 0.

#### Table 8.7 Port P1\_2/KI2/TRF002/CVREF

| Register         | PD1   | TRFOUT  | KIEN  | VCAB  | Function                   |
|------------------|-------|---------|-------|-------|----------------------------|
| Bit              | PD1_2 | TRFOUT2 | KI2EN | VCAB7 | i uncuon                   |
|                  | 0     | 0       | 0     | 0     | Input port <sup>(1)</sup>  |
|                  | 1     | 0       | 0     | 0     | Output port                |
| Setting<br>value | Х     | 1       | 0     | 0     | TRFO02 output              |
| value            | 0     | 0       | 1     | 0     | KI2 input <sup>(1)</sup>   |
|                  | 0     | 0       | 0     | 1     | CVREF input <sup>(1)</sup> |

X: 0 or 1

NOTE:

1. Pulled up by setting the PU02 bit in the PUR0 register to 1.

| Register         | PD1   | Timer RB Setting                    | KIEN  | ALCMR | Function                  |
|------------------|-------|-------------------------------------|-------|-------|---------------------------|
| Bit              | PD1_3 | _                                   | KI3EN | CM10E | T uncaon                  |
|                  | 0     | Other than TRBO usage conditions    | 0     | 0     | Input port <sup>(1)</sup> |
| 0.11             | 1     | Other than TRBO usage conditions    | 0     | 0     | Output port               |
| Setting<br>value | 0     | Other than TRBO usage conditions    | 1     | 0     | KI3 input <sup>(1)</sup>  |
|                  | Х     | Refer to Table 8.9 TRBO Pin Setting | 0     | 0     | TRBO output               |
|                  | Х     | Other than TRBO usage conditions    | 0     | 1     | VCOUT1 output             |

#### Table 8.8 Port P1\_3/KI3/VCOUT1/TRBO

X: 0 or 1 NOTE:

1. Pulled up by setting the PU02 bit in the PUR0 register to 1.

#### Table 8.9 TRBO Pin Setting

| Register | PINSR2  | TRBIOC               | TRBMR                            |       | Function                                   |  |  |
|----------|---------|----------------------|----------------------------------|-------|--------------------------------------------|--|--|
| Bit      | TRBOSEL | TOCNT <sup>(1)</sup> | TMOD1                            | TMOD0 | Function                                   |  |  |
|          | 1       | 0                    | 0                                | 1     | Programmable waveform generation mode      |  |  |
|          | 1       | 0                    | 1                                | 0     | Programmable one-shot generation mode      |  |  |
| Setting  | 1       | 0                    | 1                                | 1     | Programmable wait one-shot generation mode |  |  |
| value 1  |         | 1                    | 0 1                              |       | P1_3 output port                           |  |  |
|          |         | Other that           | Other than TRBO usage conditions |       |                                            |  |  |

NOTE:

1. Set the TOCNT bit in the TRBIOC register to 0 in modes except for programmable waveform generation mode.

#### Table 8.10Port P1\_4/TXD0

| Register           | PD1   |      | U0MR |      | Function                   |
|--------------------|-------|------|------|------|----------------------------|
| Bit                | PD1_4 | SMD2 | SMD1 | SMD0 | T diretion                 |
|                    | 0     | 0    | 0    | 0    | Input port <sup>(1)</sup>  |
|                    | 1     | 0    | 0    | 0    | Output port                |
| Setting<br>value X | 0     |      | 1    |      |                            |
|                    | Y     | X 1  | 0    | 0    | TXD0 output <sup>(2)</sup> |
|                    | ~     |      |      | 1    |                            |
|                    |       |      | 1    | 0    |                            |

X: 0 or 1

NOTES:

1. Pulled up by setting the PU03 bit in the PUR0 register to 1.

2. N-channel open-drain output by setting the NCH bit in the U0C0 register to 1.

| Register | PD1       | TR     | AIOC                 |       | TRAMR                 |       |        | Function                                 |
|----------|-----------|--------|----------------------|-------|-----------------------|-------|--------|------------------------------------------|
| Bit      | PD1_5     | TIOSEL | TOPCR <sup>(3)</sup> | TMOD2 | TMOD1                 | TMOD0 | INT1EN | Function                                 |
|          |           | 0      | Х                    | Х     | Х                     | Х     |        |                                          |
|          | 0         | 1      | 1                    | 0     | 0                     | 1     | 0      | Input port <sup>(1)</sup>                |
|          |           |        | 0                    | •     | Ŭ                     | 0     |        |                                          |
|          | 1         | 0      | x x                  | Х     | Х                     | Х     | 0      | Output port                              |
|          | I         | 1      | 0                    | 0     | 0                     | 0     | U      |                                          |
| Setting  | Setting 0 | 0      | Х                    | Х     | X X X O               |       | 0      | RXD0 input <sup>(1)</sup>                |
| value    | 0         | 1      | 0                    | 0     | ther than 00          | 1b    | 0      |                                          |
|          | 0         | 0      | 0                    | 0     | 0 0                   | 0     | 1      | INT1 input <sup>(1, 2)</sup>             |
|          | 0         | 1      | 1                    | 0     |                       | 1     |        |                                          |
|          | 0         | 1      | 0                    | Othe  | Other than 000b, 001b |       |        | TRAIO input <sup>(1)</sup>               |
|          | 0         | 1      | 0                    | Othe  | r than 000b,          | 001b  | 1      | TRAIO input/INT1 input <sup>(1, 2)</sup> |
|          | Х         | 1      | 0                    | 0     | 0                     | 1     | Х      | TRAIO output                             |

#### Port P1\_5/RXD0/(TRAIO)/(INT1) **Table 8.11**

X: 0 or 1 NOTES:

1. Pulled up by setting the PU03 bit in the PUR0 register to 1. 2. Set bit 0 (reserved bit) in the PMR register to 0.

3. Set the TOPCR bit in the TRAIOC register to 0 in modes except for pulse output mode.

#### Table 8.12 Port P1\_6/CLK0/VCOUT2

| Register         | PD1   | ALCMR |       | U0              | Function       |               |                           |  |  |
|------------------|-------|-------|-------|-----------------|----------------|---------------|---------------------------|--|--|
| Bit              | PD1_6 | CM2OE | CKDIR | SMD2            | SMD1           | SMD0          | Function                  |  |  |
|                  |       |       | 0     | (               | Other than 001 | Input port(1) |                           |  |  |
|                  | 0     | 0     | 1     | Х               | Х              | Х             | Input port <sup>(1)</sup> |  |  |
| Setting<br>value | 1     | 0     | Х     | Other than 001b |                |               | Output port               |  |  |
| value            | Х     | 0     | 0     | 0               | 0 0 1          |               | CLK0 output               |  |  |
|                  | 0     | 0     | 1     | Х               | Х              | Х             | CLK0 input <sup>(1)</sup> |  |  |
|                  | Х     | 1     | Х     | Х               | Х              | Х             | VCOUT2 output             |  |  |

X: 0 or 1 NOTE:

1. Pulled up by setting the PU03 bit in the PUR0 register to 1.

#### Port P1 7/TRAIO/INT1 Table 8.13

| Register         | PD1   | TRA    | AIOC                 |                       | TRAMR |       |                                          | Function                                         |
|------------------|-------|--------|----------------------|-----------------------|-------|-------|------------------------------------------|--------------------------------------------------|
| Bit              | PD1_7 | TIOSEL | TOPCR <sup>(3)</sup> | TMOD2                 | TMOD1 | TMOD0 | INT1EN                                   | FUNCTION                                         |
|                  |       | 1      | Х                    | Х                     | Х     | Х     |                                          |                                                  |
|                  | 0     | 0      | 1                    | 0                     | 0     | 1     | 0                                        | Input port <sup>(1)</sup>                        |
|                  |       | 0      | 0                    | 0                     | 0     | 0     |                                          |                                                  |
| 0.00             | 1     | 1      | Х                    | Х                     | Х     | Х     | 0                                        | Output port                                      |
| Setting<br>value | I     | 0      | 0                    | 0                     | 0     | 0     | 0                                        |                                                  |
| value            | 0     | 0      | 0                    | 0                     | 0     | 0     | 1                                        | $\overline{\mathbf{NT4}}$ is $\mathbf{nut}(1,2)$ |
|                  | 0     | U      | 1                    | 0                     | 0     | 1     | 1                                        | INT1 input <sup>(1, 2)</sup>                     |
|                  | 0     | 0      | 0                    | Other than 000b, 001b |       | Х     | TRAIO input <sup>(1)</sup>               |                                                  |
|                  | 0     | 0      | 0                    | Other than 000b, 001b |       | 1     | TRAIO input/INT1 input <sup>(1, 2)</sup> |                                                  |
|                  | Х     | 0      | 0                    | 0                     | 0     | 1     | Х                                        | TRAIO output                                     |

X: 0 or 1 NOTES:

1. Pulled up by setting the PU03 bit in the PUR0 register to 1.

2. Set bit 0 (reserved bit) in the PMR register to 0.

3. Set the TOPCR bit in the TRAIOC register to 0 in modes except for pulse output mode.

| Register         | PD3   | TRFOUT  | Function                  |  |
|------------------|-------|---------|---------------------------|--|
| Bit              | PD3_3 | TRFOUT3 | T unction                 |  |
|                  | 0     | 0       | Input port <sup>(1)</sup> |  |
| Setting<br>value | 1     | 0       | Output port               |  |
| value            | X 1   |         | TRFO10 output             |  |
|                  | 0     | 0       | TRFI input <sup>(1)</sup> |  |

#### Table 8.14Port P3\_3/TRFO10/TRFI

X: 0 or 1

NOTE:

1. Pulled up by setting the PU06 bit in the PUR0 register to 1.

#### Table 8.15 Port P3\_7/TRAO/TRFO11

| Register | PD3   | PINSR2  | TRAIOC | PINSR4  | TRFOUT  | Function                  |  |
|----------|-------|---------|--------|---------|---------|---------------------------|--|
| Bit      | PD3_7 | TRAOSEL | TOENA  | TRFOSEL | TRFOUT4 | Function                  |  |
|          | 0     | Х       | 0      | Х       | 0       | Input port <sup>(1)</sup> |  |
| Setting  | 1     | Х       | 0      | Х       | 0       | Output port               |  |
| value    | Х     | 1       | 1      | Х       | 0       | TRAO output               |  |
|          | Х     | Х       | 0      | 1       | 1       | TRFO11 output             |  |

X: 0 or 1 NOTE:

1. Pulled up by setting the PU07 bit in the PUR0 register to 1.

| Register      | PD4   | CM0  | CI   | M1   | Circuit spe           | ecifications         |                                                             |
|---------------|-------|------|------|------|-----------------------|----------------------|-------------------------------------------------------------|
| Bit           | PD4_3 | CM04 | CM10 | CM12 | Oscillation<br>buffer | Feedback<br>resistor | Function                                                    |
|               | 0     | 0    | Х    | Х    | OFF                   | OFF                  | Input port <sup>(1, 2)</sup>                                |
|               | 1     | 0    | Х    | Х    | OFF                   | OFF                  | Output port <sup>(2)</sup>                                  |
|               | Х     | 1    | 0    | 0    | ON                    | ON                   | XCIN clock oscillation (on-chip feedback resistor enabled)  |
| Setting value | х     | 1    | 0    | 1    | ON                    | OFF                  | XCIN clock oscillation (on-chip feedback resistor disabled) |
|               | х     | 1    | 1    | 0    | OFF                   | ON                   | XCIN clock oscillation stop                                 |
|               | ^     | ^    | I    | 1    | OFF                   | OFF                  |                                                             |
|               | х     | 1    | 1 0  | 0    | ON                    | ON                   | External XCIN clock input                                   |
|               | ~     | I    |      | 1    | ON                    | OFF                  |                                                             |

#### Table 8.16 Port P4\_3/(XCIN) (for R8C/2H Group only)

X: 0 or 1 NOTES:

1. Pulled up by setting the PU10 bit in the PUR1 register to 1.

Refer to 8.6.1 Port P4\_3, P4\_4 (for R8C/2H Group only).

| Table 8.17 | Port P4_4/(XC | OUT) (for R8C/2H | Group only) |
|------------|---------------|------------------|-------------|
|------------|---------------|------------------|-------------|

| Register         | PD4   | CM0  | CM1  |      | Circuit specifications |                      |                                                             |
|------------------|-------|------|------|------|------------------------|----------------------|-------------------------------------------------------------|
| Bit              | PD4_4 | CM04 | CM10 | CM12 | Oscillation<br>buffer  | Feedback<br>resistor | Function                                                    |
|                  | 1     | 0    | Х    | Х    | OFF                    | OFF                  | Output port <sup>(1)</sup>                                  |
|                  | Х     | 1    | 0    | 0    | ON                     | ON                   | XCIN clock oscillation (on-chip feedback resistor enabled)  |
| Setting<br>value | Х     | 1    | 0    | 1    | ON                     | OFF                  | XCIN clock oscillation (on-chip feedback resistor disabled) |
| value            | х     | 1    | 1    | 0    | OFF                    | ON                   | XCIN clock oscillation stop                                 |
|                  | ^     | 1    | I    | 1    | OFF                    | OFF                  | Active clock oscillation stop                               |
|                  | х     | 1    | 0    | 0    | ON                     | ON                   | External XCOUT clock output (inverted                       |
|                  | ~     | I    | 0    | 1    | ON                     | OFF                  | output of XCIN clock)                                       |

X: 0 or 1 NOTE:

1. Refer to 8.6.1 Port P4\_3, P4\_4 (for R8C/2H Group only).

#### Table 8.18 Port P4\_5/INT0

| Register         | PD4   | INTEN         | Function                  |
|------------------|-------|---------------|---------------------------|
| Bit              | PD4_5 | <b>INT0EN</b> | T unction                 |
| 0.11             | 0     | 0             | Input port <sup>(1)</sup> |
| Setting<br>value | 1     | 0             | Output port               |
| value            | 0     | 1             | INT0 input                |

NOTE:

1. Pulled up by setting the PU11 bit in the PUR1 register to 1.

| Table 8.19 | Port P6_3/1 | XDZ (TOP ROC/Z | H Group only) |      |                            |  |  |
|------------|-------------|----------------|---------------|------|----------------------------|--|--|
| Register   | PD6         |                | U2MR          |      | Function                   |  |  |
| Bit        | PD6_3       | SMD2           | SMD1          | SMD0 | Function                   |  |  |
|            | 0           | 0              | 0             | 0    | Input port <sup>(1)</sup>  |  |  |
|            | 1           | 0              | 0             | 0    | Output port                |  |  |
| Setting    |             | 0              |               | 1    |                            |  |  |
| value      | х           |                | 0             | 0    | TXD2 output <sup>(2)</sup> |  |  |
|            | X           | 1              |               | 1    |                            |  |  |
|            |             |                | 1             | 0    |                            |  |  |

#### Table 8.19 Port P6\_3/TXD2 (for R8C/2H Group only)

X: 0 or 1 NOTES:

1. Pulled up by setting the PU14 bit in the PUR1 register to 1.

2. N-channel open-drain output by setting the NCH bit in the U2C0 register to 1.

#### Table 8.20 Port P6\_4/RXD2 (for R8C/2H Group only)

| Register         | PD6   | Function                  |
|------------------|-------|---------------------------|
| Bit              | PD6_4 | T diretion                |
| 0                | 0     | Input port <sup>(1)</sup> |
| Setting<br>value | 1     | Output port               |
| value            | 0     | RXD2 input <sup>(1)</sup> |

NOTE:

1. Pulled up by setting the PU15 bit in the PUR1 register to 1.

#### Table 8.21 Port P6\_5/CLK2/TREO (for R8C/2H Group)

| Register | PD6   | PINSR4   | TRECR1 |       | U2                | MR             |      | Function                  |
|----------|-------|----------|--------|-------|-------------------|----------------|------|---------------------------|
| Bit      | PD6_5 | TREOSEL2 | TOENA  | CKDIR | SMD2              | SMD1           | SMD0 | T unction                 |
|          | 0     | 0        | х      | 0     | 0 Other than 001b |                |      | longet a set(1)           |
|          | 0     | 0        | ^      | 1     | Х                 | Х              | Х    | Input port <sup>(1)</sup> |
| Setting  | 1     | 0        | Х      | Х     | C                 | Other than 001 | b    | Output port               |
| value    | Х     | 0        | Х      | 0     | 0                 | 0              | 1    | CLK2 output               |
|          | 0     | 0        | Х      | 1     | Х                 | Х              | Х    | CLK2 input <sup>(1)</sup> |
|          | Х     | 1        | 1      | Х     | Х                 | Х              | Х    | TREO output               |

X: 0 or 1 NOTE:

1. Pulled up by setting the PU15 bit in the PUR1 register to 1.

#### Table 8.22Port P6\_5 (for R8C/2J Group)

| Register | PD6   | Function                  |
|----------|-------|---------------------------|
| Bit      | PD6_5 | T diretion                |
| Setting  | 0     | Input port <sup>(1)</sup> |
| value    | 1     | Output port               |
|          |       |                           |

NOTE:

1. Pulled up by setting the PU15 bit in the PUR1 register to 1.

# 8.5 Unassigned Pin Handling

Table 8.23 lists Unassigned Pin Handling.

| Table 8.23 | Unassigned Pin Handling |
|------------|-------------------------|
|------------|-------------------------|

| Pin Name                                  | Connection                                                                                |
|-------------------------------------------|-------------------------------------------------------------------------------------------|
| Ports P1, P3_3, P3_7,                     | <ul> <li>After setting to input mode, connect each pin to VSS via a resistor</li> </ul>   |
| P4_3 to P4_5, P6_3 to P6_5 <sup>(4)</sup> | (pull-down) or connect each pin to VCC via a resistor (pull-up). <sup>(2)</sup>           |
|                                           | <ul> <li>After setting to output mode, leave these pins open.<sup>(1, 2)</sup></li> </ul> |
| RESET <sup>(3)</sup>                      | Connect to VCC via a pull-up resistor <sup>(2)</sup>                                      |

NOTES:

1. If these ports are set to output mode and left open, they remain in input mode until they are switched to output mode by a program. The voltage level of these pins may be undefined and the power current may increase while the ports remain in input mode.

The content of the direction registers may change due to noise or program runaway caused by noise. In order to enhance program reliability, the program should periodically repeat the setting of the direction registers.

- 2. Connect these unassigned pins to the MCU using the shortest wire length (2 cm or less) possible.
- 3. When the power-on reset function is in use.
- 4. Ports P4\_3, P4\_4, P6\_3, and P6\_4 are not available in the R8C/2J Group. Leave NC pins open.

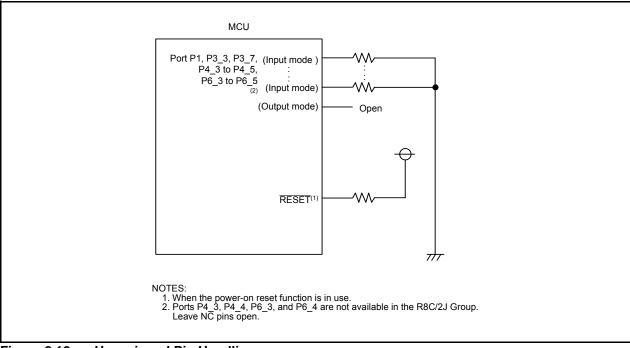



Figure 8.12 Unassigned Pin Handling

# 8.6 Notes on I/O Ports

# 8.6.1 Port P4\_3, P4\_4 (for R8C/2H Group only)

Ports P4\_3 and P4\_4 are also used as the XCIN function and the XCOUT function, respectively. During a reset period and after a reset release, these ports are set to the XCIN and XCOUT functions. Pins P4\_3 and P4\_4 can be switched to the port functions by setting the CM04 bit in the CM0 register to 0 (ports P4\_3 and P4\_4) by a program.

To use ports P4\_3 and P4\_4 as ports, note the following:

• Port P4\_3

After a reset until the CM04 bit is set to 0 (ports P4\_3 and P4\_4) by a program, a typical 10 M $\Omega$  impedance is connected between the P4\_3 pin and the MCU power supply or GND. If the XCIN is set to intermediate-level input or left floating, a shoot-through current flows into the oscillation driver.

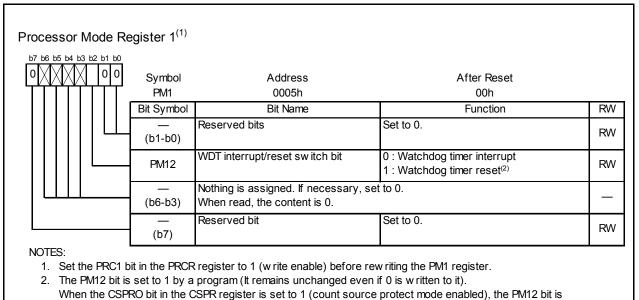
• Port P4\_4

Use port P4\_4 as an output port by setting the PD4\_4 bit in the PD4 register to 1 (output mode). After a reset until the CM04 bit is set to 0 (ports P4\_3 and P4\_4) by a program, the P4\_4 pin may output an intermediate potential of about 2.0 V.

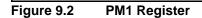
# 9. Processor Mode

# 9.1 Processor Modes

Single-chip mode can be selected as the processor mode.


Table 9.1 lists Features of Processor Mode. Figure 9.1 shows the PM0 Register and Figure 9.2 shows the PM1 Register.

#### Table 9.1 Features of Processor Mode


| Processor Mode   | Accessible Areas                | Pins Assignable as I/O Port Pins     |
|------------------|---------------------------------|--------------------------------------|
| Single-chip mode | SFR, internal RAM, internal ROM | All pins are I/O ports or peripheral |
|                  |                                 | function I/O pins                    |

| Processor Mode Re       | egister 0 <sup>(1)</sup> |                                                                    |                                                                             |    |
|-------------------------|--------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------|----|
| b7 b6 b5 b4 b3 b2 b1 b0 | Symbol<br>PM0            | Address<br>0004h                                                   | After Reset<br>00h                                                          |    |
|                         | Bit Symbol               | Bit Name                                                           | Function                                                                    | RW |
|                         | <br>(b2-b0)              | Reserved bits                                                      | Set to 0.                                                                   | RW |
|                         | PM03                     | Softw are reset bit                                                | The MCU is reset when this bit is set to 1.<br>When read, the content is 0. | RW |
|                         | <br>(b7-b4)              | Nothing is assigned. If necessary,<br>When read, the content is 0. | set to 0.                                                                   | _  |





automatically set to 1.



# 10. Bus

The bus cycles differ when accessing ROM/RAM, and when accessing SFR.

Table 10.1 lists Bus Cycles by Access Space.

ROM/RAM and SFR are connected to the CPU by an 8-bit bus. When accessing in word (16-bit) units, these areas are accessed twice in 8-bit units.

Table 10.2 lists Access Units and Bus Operations.

#### Table 10.1 Bus Cycles by Access Space

| Access Area | Bus Cycle             |
|-------------|-----------------------|
| SFR         | 2 cycles of CPU clock |
| ROM/RAM     | 1 cycle of CPU clock  |

Table 10.2 Access Units and Bus Operations

| Area                        | SFR                         | ROM, RAM                    |
|-----------------------------|-----------------------------|-----------------------------|
| Even address<br>Byte access |                             | CPU Clock                   |
|                             | Address X Even X            | Address X Even X            |
|                             | Data X Data X               | Data X                      |
| Odd address<br>Byte access  | CPU Clock                   | CPU Clock                   |
|                             | Address X Odd X             | Address X Odd X             |
|                             | Data X Data X               | Data X                      |
| Even address<br>Word access | CPU Clock                   | CPU Clock                   |
|                             | Address X Even X Even + 1 X | Address X Even X Even + 1 X |
|                             | Data X Data X Data X        | Data                        |
| Odd address<br>Word access  |                             | CPU Clock                   |
|                             | Address X Odd X Odd + 1 X   | Address X Odd X Odd + 1 X   |
|                             | Data X Data X Data X        | Data X Data X Data X        |

# **11. Clock Generation Circuit**

The clock generation circuit in the R8C/2H Group has:

- XCIN clock oscillation circuit
- Low-speed on-chip oscillator
- High-speed on-chip oscillator

The clock generation circuit in the R8C/2J Group has:

- Low-speed on-chip oscillator
- High-speed on-chip oscillator

Table 11.1 lists Specifications of Clock Generation Circuit for R8C/2H Group. Table 11.2 lists Specifications of Clock Generation Circuit for R8C/2J Group. Figure 11.1 shows a Clock Generation Circuit for R8C/2H Group. Figure 11.2 shows a Clock Generation Circuit for R8C/2J Group. Figures 11.3 to 11.11 show clock associated registers. Figure 11.12 shows a Handling Procedure of Internal Power Low Consumption Using VCA20 Bit.

The XCIN clock oscillation circuit is not implemented in the R8C/2J Group. The description about the XCIN clock oscillation circuit in this chapter applies to the R8C/2H Group only.

| Item                               | XCIN Clock Oscillation Circuit                                                                                                                                         | On-Chip Oscillator                                        |                                                           |  |  |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|--|--|
| nem                                |                                                                                                                                                                        | High-Speed On-Chip Oscillator                             | Low-Speed On-Chip Oscillator                              |  |  |
| Applications                       | CPU clock source     Peripheral function clock     source                                                                                                              | CPU clock source     Peripheral function clock     source | CPU clock source     Peripheral function clock     source |  |  |
| Clock frequency                    | 32.768 kHz                                                                                                                                                             | Approx. 8 MHz                                             | Approx. 125 kHz                                           |  |  |
| Connectable oscillator             | Crystal oscillator                                                                                                                                                     | -                                                         | -                                                         |  |  |
| Oscillator<br>connect pins         | XCIN, XCOUT <sup>(1)</sup>                                                                                                                                             | _(1)                                                      | _(1)                                                      |  |  |
| Oscillation stop, restart function | Usable                                                                                                                                                                 | Usable                                                    | Usable                                                    |  |  |
| Oscillator status after reset      | Oscillate                                                                                                                                                              | Stop                                                      | Oscillate                                                 |  |  |
| Others                             | <ul> <li>Externally generated clock can<br/>be input<sup>(2)</sup></li> <li>On-chip feedback resistor<br/>RfXCIN (connected/ not<br/>connected, selectable)</li> </ul> | _                                                         | _                                                         |  |  |

#### Table 11.1 Specifications of Clock Generation Circuit for R8C/2H Group

NOTES:

- 1. These pins can be used as P4\_3 or P4\_4 when using the on-chip oscillator clock as the CPU clock while the XCIN clock oscillation circuit is not used.
- 2. Set the CM04 bit in the CM0 register to 1 (XCIN-XCOUT pin) when an external clock is input.

#### Table 11.2 Specifications of Clock Generation Circuit for R8C/2J Group

| Item                               | On-Chip Oscillator            |                                                       |  |
|------------------------------------|-------------------------------|-------------------------------------------------------|--|
| item                               | High-Speed On-Chip Oscillator | Low-Speed On-Chip Oscillator                          |  |
| Applications                       |                               | CPU clock source     Peripheral function clock source |  |
| Clock frequency                    | Approx. 8 MHz                 | Approx. 125 kHz                                       |  |
| Oscillation stop, restart function | Usable                        | None                                                  |  |
| Oscillator status after reset      | Stop                          | Oscillate                                             |  |

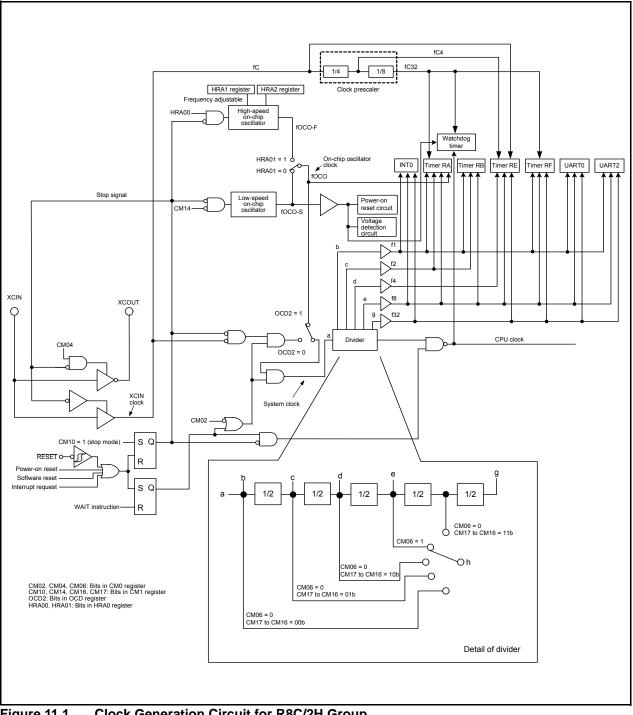



Figure 11.1 **Clock Generation Circuit for R8C/2H Group** 

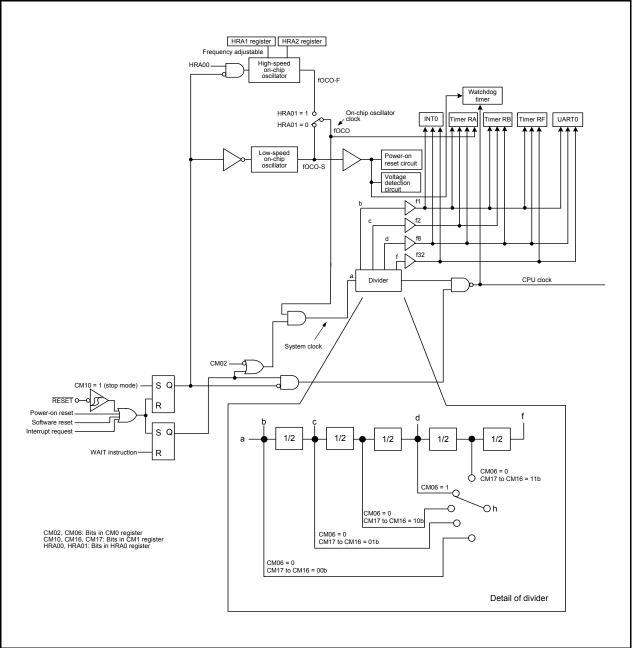
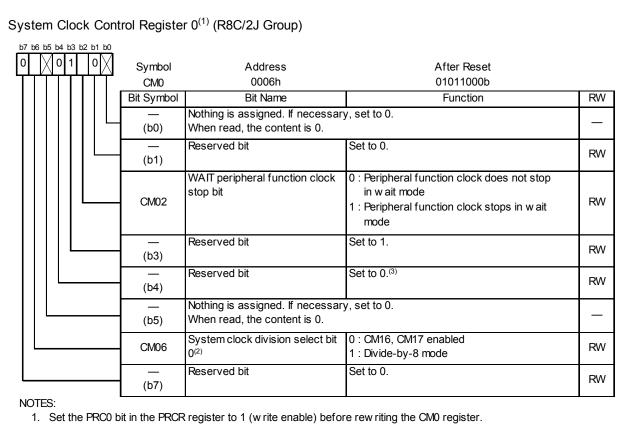




Figure 11.2 Clock Generation Circuit for R8C/2J Group

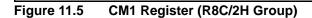
| System Clock Contr      | rol Registe   | r 0 <sup>(1)</sup> (R8C/2H Group)                                |                                                                                                                                                  |    |
|-------------------------|---------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----|
| b7 b6 b5 b4 b3 b2 b1 b0 | Symbol<br>CM0 | Address<br>0006h                                                 | After Reset<br>01011000b                                                                                                                         |    |
|                         | Bit Symbol    | Bit Name                                                         | Function                                                                                                                                         | RW |
|                         | <br>(b0)      | Nothing is assigned. If necessar<br>When read, the content is 0. | y, set to 0.                                                                                                                                     | -  |
|                         | (b1)          | Reserved bit                                                     | Set to 0.                                                                                                                                        | RW |
|                         | CM02          | WAIT peripheral function clock<br>stop bit                       | <ul> <li>0 : Peripheral function clock does not stop<br/>in w ait mode</li> <li>1 : Peripheral function clock stops in w ait<br/>mode</li> </ul> | RW |
|                         | CM03          | XCIN-XCOUT drive capacity select bit <sup>(2)</sup>              | 0 : LOW<br>1 : HIGH                                                                                                                              | RW |
|                         | CM04          | Port, XCIN-XCOUT switch bit <sup>(3, 4)</sup>                    | 0 : Ports P4_3, P4_4<br>1 : XCIN-XCOUT pin                                                                                                       | RW |
|                         | <br>(b5)      | Nothing is assigned. If necessar<br>When read, the content is 0. | y, set to 0.                                                                                                                                     | _  |
|                         | CM06          | System clock division select bit $0^{(5)}$                       | 0 : CM16, CM17 enabled<br>1 : Divide-by-8 mode                                                                                                   | RW |
|                         | (b7)          | Reserved bit                                                     | Set to 0.                                                                                                                                        | RW |

- - 1. Set the PRC0 bit in the PRCR register to 1 (write enable) before rewriting the CM0 register.
  - 2. When entering stop mode, the CM03 bit is set to 1 (HIGH). Rew rite the CM03 bit while the XCIN clock oscillation stabilizes.
  - 3. P4\_3 and P4\_4 can be used as ports when the CM04 bit is set to 0 (ports P4\_3 and P4\_4). To use the XCIN clock, set the CM04 bit to 1 (XCIN-XCOUT pin). Also, set port P4\_3 as input ports without pull-up.
  - 4. If the CM10 bit in the CM1 register is set to 1 (stop mode), when the CM04 bit is set to 1 (XCIN-XCOUT pin), the XCIN(P4\_3) pin is set to the high-impedance state and the XCOUT (P4\_4) pin is set to "H". When the CM04 bit is set to 0 (I/O ports P4\_3 and P4\_4), pins XCIN (P4\_3) and XOUT (P4\_4) retain the I/O status (status just before stop mode is entered).
  - 5. When entering stop mode, the CM06 bit is set to 1 (divide-by-8 mode).

Figure 11.3 CM0 Register (R8C/2H Group)



2. When entering stop mode, the CM06 bit is set to 1 (divide-by-8 mode).


3. The b4 bit is set to 1 after reset. Set this bit to 0 at the beginning of the program.



| System Clock Cor        | ntrol Registe | er 1 <sup>(1)</sup> (R8C/2H Group)                                    |                                                                                 |    |
|-------------------------|---------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------|----|
| b7 b6 b5 b4 b3 b2 b1 b0 | Symbol        | Address                                                               | After Reset                                                                     |    |
|                         | CM1           | 0007h                                                                 | 00h                                                                             |    |
|                         | Bit Symbol    | Bit Name                                                              | Function                                                                        | RW |
|                         | CM10          | All clock stop control bit <sup>(2, 3, 4)</sup>                       | 0 : Clock operates<br>1 : Stops all clocks (stop mode)                          | RW |
|                         | (b1)          | Nothing is assigned. If necessary, se<br>When read, the content is 0. | t to 0.                                                                         | _  |
|                         | CM12          | XCIN-XCOUT on-chip feedback<br>resistor select bit                    | 0 : On-chip feedback resistor enabled<br>1 : On-chip feedback resistor disabled | RW |
|                         | (b3)          | Nothing is assigned. If necessary, se<br>When read, the content is 0. | t to 0.                                                                         | _  |
|                         | CM14          | Low -speed on-chip oscillation stop bit <sup>(4, 5, 6, 7)</sup>       | 0 : Low -speed on-chip oscillator on<br>1 : Low -speed on-chip oscillator off   | RW |
|                         | (b5)          | Nothing is assigned. If necessary, se<br>When read, the content is 0. | t to 0.                                                                         | —  |
|                         | CM16          | System clock division select bits 1 <sup>(8)</sup>                    | <sup>b7 b6</sup><br>0 0 : No division mode<br>0 1 : Divide-by-2 mode            | RW |
|                         | CM17          |                                                                       | 1 0 : Divide-by-4 mode<br>1 1 : Divide-by-16 mode                               | RW |
| NOTES                   | ·             | I                                                                     |                                                                                 |    |

#### NOTES:

- 1. Set the PRC0 bit in the PRCR register to 1 (w rite enable) before rew riting the CM1 register.
- 2. If the CM10 bit is set to 1 (stop mode), the on-chip feedback resistor is disabled.
- 3. If the CM10 bit is set to 1 (stop mode), when the CM04 bit in the CM0 register is set to 1 (XCIN-XCOUT pin), the XCIN(P4\_3) pin is set to the high-impedance state and the XCOUT (P4\_4) pin is set to "H". When the CM04 bit is set to 0 (I/O ports P4\_3 and P4\_4), pins XCIN (P4\_3) and XOUT (P4\_4) retain the I/O status (status just before stop mode is entered).
- 4. When count source protection mode for the w atch dog timer is enabled (refer to **16.2 Count Source Protection Mode Enabled**), the value remains unchanged even if bits CM10 and CM14 are set.
- 5. When the OCD2 bit in the OCD register is set to 0 (XCIN clock selected), the CM14 bit is set to 1 (low-speed on-chip oscillator off). When the OCD2 bit is set to 1 (on-chip oscillator clock selected), the CM14 bit is set to 0 (low-speed on-chip oscillator on). It remains unchanged even if 1 is written to it.
- 6. When using the voltage monitor 1 interrupt or voltage monitor 2 interrupt (when using the digital filter), set the CM14 bit to 0 (low -speed on-chip oscillator on).
- 7. In count source protect mode enabled, the CM14 bit is set to 0 (low-speed on-chip oscillator on). It remains unchanged even if 1 is w ritten to it.
- 8. When the CM06 bit in the CM0 register is set to 0 (bits CM16, CM17 enabled), bits CM16 to CM17 are enabled.



| ystem Clock Con         | trol Registe | r 1 <sup>(1)</sup> (R8C/2J Group)                                      |                                                           |    |
|-------------------------|--------------|------------------------------------------------------------------------|-----------------------------------------------------------|----|
| b7 b6 b5 b4 b3 b2 b1 b0 | Symbol       | Address                                                                | After Reset                                               |    |
|                         | CM1          | 0007h                                                                  | 00h                                                       |    |
|                         | Bit Symbol   | Bit Name                                                               | Function                                                  | RW |
|                         | CM10         | All clock stop control bit <sup>(2)</sup>                              | 0 : Clock operates<br>1 : Stops all clocks (stop mode)    | RW |
|                         | (b1)         | Nothing is assigned. If necessary, set<br>When read, the content is 0. | t to 0.                                                   | _  |
|                         | (b2)         | Reserved bit                                                           | Set to 0.                                                 | RW |
|                         | (b3)         | Nothing is assigned. If necessary, set<br>When read, the content is 0. | t to 0.                                                   | _  |
|                         | (b4)         | Reserved bit                                                           | Set to 0.                                                 | RW |
|                         | (b5)         | Nothing is assigned. If necessary, set<br>When read, the content is 0. | t to 0.                                                   | _  |
|                         | - CM16       | System clock division select bits 1 <sup>(3)</sup>                     | b7 b6<br>0 0 : No division mode<br>0 1 : Divide-by-2 mode | RW |
|                         | CM17         |                                                                        | 1 0 : Divide-by-4 mode<br>1 1 : Divide-by-16 mode         | RW |

1. Set the PRC0 bit in the PRCR register to 1 (w rite enable) before rew riting the CM1 register.

2. When count source protection mode for the watch dog timer is enabled (refer to **16.3 Count Source Protection Mode Enabled**), the value remains unchanged even if the CM10 bit is set.

3. When the CM06 bit in the CM0 register is set to 0 (bits CM16, CM17 enabled), bits CM16 to CM17 are enabled.



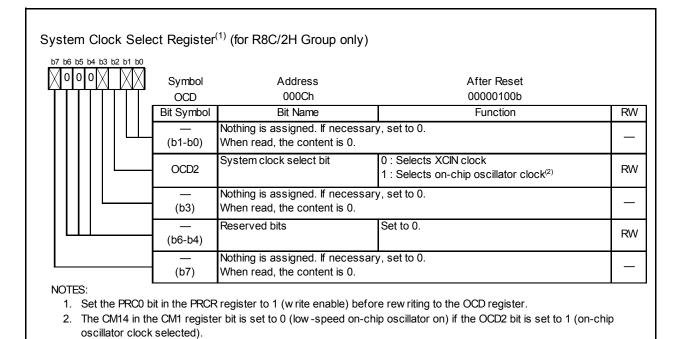
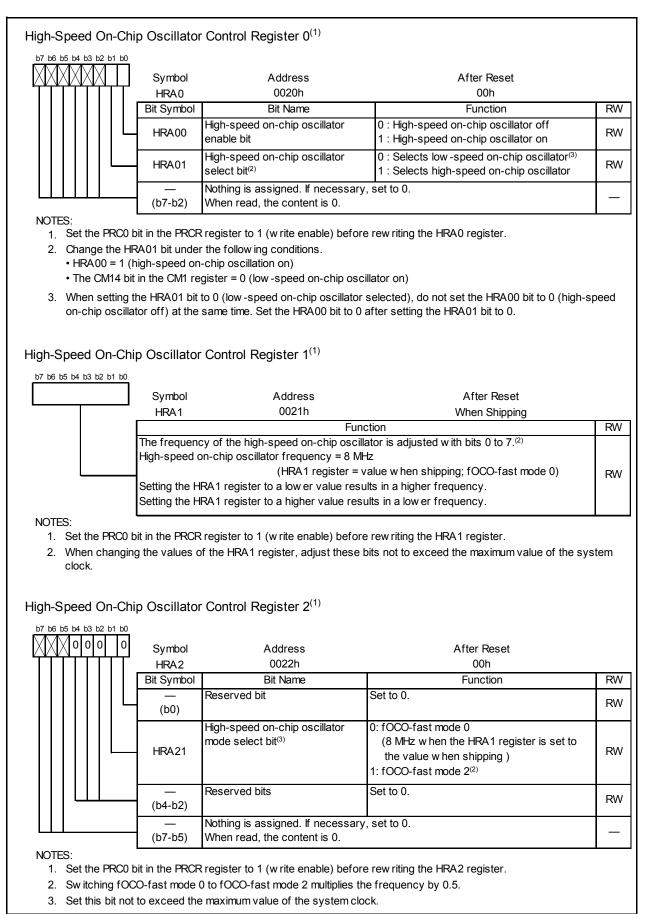




Figure 11.7 OCD Register (for R8C/2H Group only)



### Figure 11.8 Registers HRA0, HRA1, and HRA2

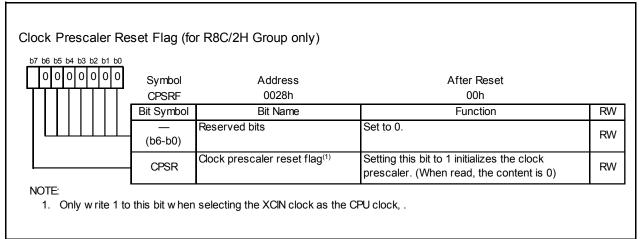



Figure 11.9 CPSRF Register (for R8C/2H Group only)

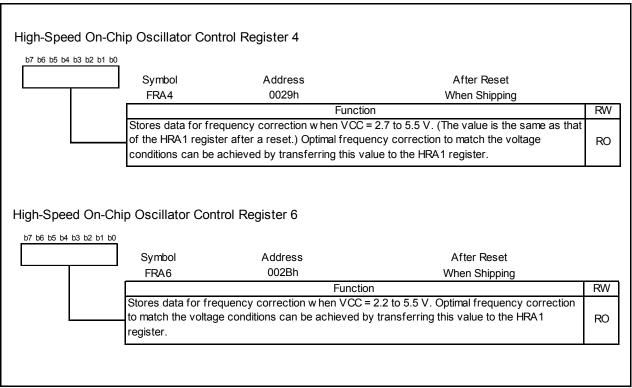
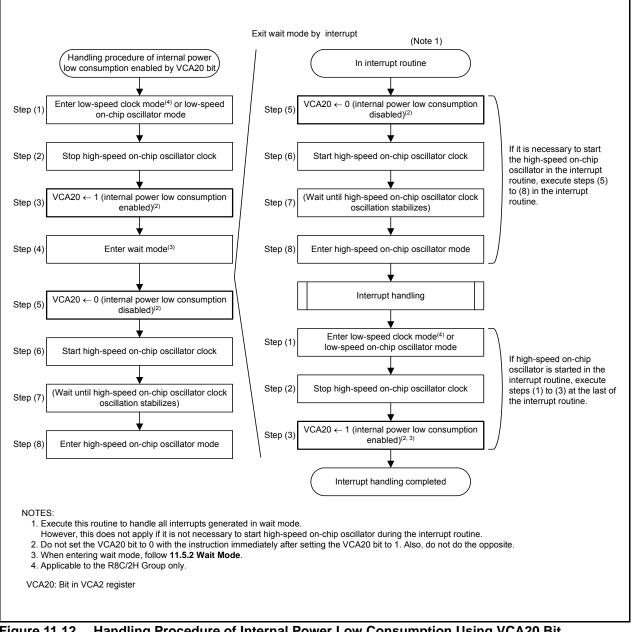




Figure 11.10 Registers FRA4 and FRA6

|           |                                                                                                                                             | $\mathbf{D}$              | )                                                         |                                                                                                                                                                 |      |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| •         | Detection F                                                                                                                                 | kegister 2 <sup>(*)</sup> | 1                                                         |                                                                                                                                                                 |      |
|           | b4 b3 b2 b1 b0                                                                                                                              | Symbol                    | Address                                                   | After Reset <sup>(5)</sup>                                                                                                                                      |      |
|           |                                                                                                                                             |                           |                                                           | The LVD0ON bit in the OFS register is<br>set to 1 and hardw are reset : 00h<br>Pow er-on reset, voltage monitor 0 reset<br>or LVD0ON bit in the OFS register is |      |
|           |                                                                                                                                             | VCA2                      | 0032h                                                     | set to 0, and hardw are reset : 0010000                                                                                                                         | 0b   |
|           |                                                                                                                                             | Bit Symbol                | Bit Name                                                  | Function                                                                                                                                                        | RW   |
|           |                                                                                                                                             | VCA20                     | Internal pow er low consumption enable bit <sup>(6)</sup> | 0 : Low consumption disabled<br>1 : Low consumption enabled <sup>(7)</sup>                                                                                      | RW   |
|           |                                                                                                                                             | <br>(b4-b1)               | Reserved bits                                             | Set to 0.                                                                                                                                                       | RW   |
|           |                                                                                                                                             | VCA25                     | Voltage detection 0 enable bit <sup>(2)</sup>             | 0 : Voltage detection 0 circuit disabled<br>1 : Voltage detection 0 circuit enabled                                                                             | RW   |
|           |                                                                                                                                             | VCA26                     | Voltage detection 1 enable bit <sup>(3)</sup>             | 0 : Voltage detection 1 circuit disabled<br>1 : Voltage detection 1 circuit enabled                                                                             | RW   |
|           |                                                                                                                                             | VCA27                     | Voltage detection 2 enable bit <sup>(4)</sup>             | 0 : Voltage detection 2 circuit disabled<br>1 : Voltage detection 2 circuit enabled                                                                             | RW   |
| 2. T<br>A | Set the PRC3 b<br>o use the volt                                                                                                            | age monitor (             | ) reset, set the VCA25 bit to 1                           | before rew riting to the VCA2 register.<br>on circuit w aits for td(E-A) to elapse before starting                                                              |      |
| 3. T<br>A | o use the volt                                                                                                                              |                           |                                                           | B bit in the VW1C register, set the VCA26 bit to 1.<br>on circuit waits for td(E-A) to elapse before starting                                                   |      |
| А         |                                                                                                                                             | -                         | •                                                         | bit in the VCA1 register, set the VCA27 bit to 1.<br>on circuit waits for td(E-A) to elapse before starting                                                     |      |
|           | oftware rese<br>egister.                                                                                                                    | t, w atchdog f            | timer reset, voltage monitor 1                            | reset, and voltage monitor 2 reset do not affect this                                                                                                           |      |
|           |                                                                                                                                             |                           |                                                           | et the VCA20 bit, follow the procedure show n in Figonsumption Using VCA20 Bit.                                                                                 | jure |
| 7. V      | <ol> <li>When the VCA20 bit is set to 1 (low consumption enabled), do not set the CM10 bit in the CM1 register to 1 (stop mode).</li> </ol> |                           |                                                           |                                                                                                                                                                 |      |
|           |                                                                                                                                             |                           |                                                           |                                                                                                                                                                 |      |

Figure 11.11 VCA2 Register



Handling Procedure of Internal Power Low Consumption Using VCA20 Bit Figure 11.12

The clocks generated by the clock generation circuits are described below.

# 11.1 On-Chip Oscillator Clocks

These clocks are supplied by the on-chip oscillators (high-speed on-chip oscillator and a low-speed on-chip oscillator). The on-chip oscillator clock is selected by the HRA01 bit in the HRA0 register.

# 11.1.1 Low-Speed On-Chip Oscillator Clock

The clock generated by the low-speed on-chip oscillator is used as the clock source for the CPU clock, peripheral function clock, fOCO, and fOCO-S.

After reset, the on-chip oscillator clock generated by the low-speed on-chip oscillator divided by 8 is selected as the CPU clock.

The frequency of the low-speed on-chip oscillator varies depending on the supply voltage and the operating ambient temperature. Application products must be designed with sufficient margin to allow for frequency changes.

# 11.1.2 High-Speed On-Chip Oscillator Clock

The clock generated by the high-speed on-chip oscillator is used as the clock source for the CPU clock, peripheral function clock, fOCO, and fOCO-F.

After reset, the on-chip oscillator clock generated by the high-speed on-chip oscillator stops. Oscillation is started by setting the HRA00 bit in the HRA0 register to 1 (high-speed on-chip oscillator on). The frequency can be adjusted by registers HRA1 and HRA2.

Furthermore, frequency correction data corresponding to the supply voltage ranges listed below is stored in registers FRA4 and FRA6. To use separate correction values to match these voltage ranges, transfer them from register FRA4 or FRA6 to the HRA1 register.

- FRA4 register: Stores data for frequency correction corresponding to VCC = 2.7 V to 5.5 V. (The value is the same as that of the HRA1 register after a reset.)
- FRA6 register: Stores data for frequency correction corresponding to VCC = 2.2 V to 5.5 V.

Since there are differences in the amount of frequency adjustment among the bits in the HRA1 register, make adjustments by changing the settings of individual bits. Adjust the HRA1 register so that the frequency of the high-speed on-chip oscillator clock does not exceed the maximum value of the system clock.

# 11.2 XCIN Clock (for R8C/2H Group only)

This clock is supplied by the XCIN clock oscillation circuit. This clock is used as the clock source for the CPU clock, peripheral function clock. The XCIN clock oscillation circuit is configured by connecting a resonator between the XCIN and XCOUT pins. The XCIN clock oscillation circuit includes an on-chip a feedback resistor, which is disconnected from the oscillation circuit in stop mode in order to reduce the amount of power consumed in the chip. The XCIN clock oscillation circuit may also be configured by feeding an externally generated clock to the XCIN pin.

Figure 11.13 shows Examples of XCIN Clock Connection Circuits.

During and after reset, the XCIN clock oscillates.

The XCIN clock starts oscillating when the CM04 bit in the CM0 register is set to 1 (XCIN-XCOUT pin).

To use the XCIN clock for the CPU clock source, set the OCD2 bit in the OCD register to 0 (selects XCIN clock) after the XCIN clock is oscillating stably.

This MCU has an on-chip feedback resistor and on-chip resistor disable/enable switching is possible by the CM12 bit in the CM1 register.

In stop mode, all clocks including the XCIN clock stop. Refer to 11.4 Power Control for details.

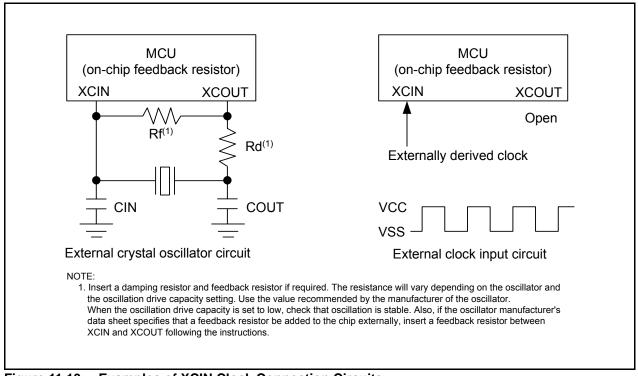



Figure 11.13 Examples of XCIN Clock Connection Circuits

### 11.3 CPU Clock and Peripheral Function Clock

There are a CPU clock to operate the CPU and a peripheral function clock to operate the peripheral functions. Refer to Figure 11.1 Clock Generation Circuit for R8C/2H Group and Figure 11.2 Clock Generation Circuit for R8C/2J Group.

### 11.3.1 System Clock

The system clock is the clock source for the CPU and peripheral function clocks. Either the XCIN clock (for R8C/2H Group only) or the on-chip oscillator clock can be selected.

# 11.3.2 CPU Clock

The CPU clock is an operating clock for the CPU and watchdog timer.

The system clock can be divided by 1 (no division), 2, 4, 8, or 16 to produce the CPU clock. Use the CM06 bit in the CM0 register and bits CM16 to CM17 in the CM1 register to select the value of the division.

Use the XCIN clock while the XCIN clock oscillation stabilizes (for the R8C/2H Group only).

After reset, the low-speed on-chip oscillator clock divided by 8 provides the CPU clock.

When entering stop mode from high-speed clock mode, the CM06 bit is set to 1 (divide-by-8 mode).

# 11.3.3 Peripheral Function Clock (f1, f2, f4, f8, and f32)

The peripheral function clock is the operating clock for the peripheral functions.

The clock fi (i = 1, 2, 4, 8, and 32) is generated by the system clock divided by i. The clock fi is used for timers RA, RB, RE, and RF, and the serial interface.

When the WAIT instruction is executed after setting the CM02 bit in the CM0 register to 1 (peripheral function clock stops in wait mode), the clock fi stop.

# 11.3.4 fOCO

fOCO is an operating clock for the peripheral functions.

fOCO runs at the same frequency as the on-chip oscillator clock and can be used as the source for timer RA. When the WAIT instruction is executed, the clocks fOCO does not stop.

# 11.3.5 fOCO-F

fOCO-F is generated by the high-speed on-chip oscillator and supplied by setting the HRA00 bit to 1. When the WAIT instruction is executed, the clock fOCO-F does not stop.

# 11.3.6 fOCO-S

fOCO-S is an operating clock for the watchdog timer and voltage detection circuit. fOCO-S is supplied by setting the CM14 bit to 0 (low-speed on-chip oscillator on) and uses the clock generated by the low-speed on-chip oscillator. When the WAIT instruction is executed or in count source protect mode of the watchdog timer, fOCO-S does not stop.

# 11.3.7 fC4 and fC32 (for R8C/2H Group only)

The clock fC4 is used for timer RE and the clock fC32 is used for timer RA, timer RF, and watchdog timer. Use fC4 and fC32 while the XCIN clock oscillation stabilizes.

# 11.4 Power Control

There are three power control modes. All modes other than wait mode and stop mode are referred to as standard operating mode.

# 11.4.1 Standard Operating Mode

Standard operating mode is further separated into three modes.

Table 11.3 lists the Settings and Modes of Clock Associated Bits for R8C/2H Group and Table 11.4 lists the Settings and Modes of Clock Associated Bits for R8C/2J Group.

In standard operating mode, the CPU clock and the peripheral function clock are supplied to operate the CPU and the peripheral function clocks. Power consumption control is enabled by controlling the CPU clock frequency. The higher the CPU clock frequency, the more processing power increases. The lower the CPU clock frequency, the more power consumption decreases. When unnecessary oscillator circuits stop, power consumption is further reduced.

Before the clock sources for the CPU clock can be switched over, the new clock source needs to be oscillating and stable. If the new clock source is the XCIN clock, allow sufficient wait time in a program until oscillation is stabilized before exiting (for the R8C/2H Group only).

| Modes              |              | OCD Register | CM1 Reg    | jister | CM0 R | egister | HRA0 Register |       |
|--------------------|--------------|--------------|------------|--------|-------|---------|---------------|-------|
| woulds             | Modes        |              | CM17, CM16 | CM14   | CM06  | CM04    | HRA01         | HRA00 |
| High-speed on-chip | No division  | 1            | 00b        | -      | 0     | -       | 1             | 1     |
| oscillator mode    | Divide-by-2  | 1            | 01b        | -      | 0     | -       | 1             | 1     |
|                    | Divide-by-4  | 1            | 10b        | -      | 0     | -       | 1             | 1     |
|                    | Divide-by-8  | 1            | -          | -      | 1     | -       | 1             | 1     |
|                    | Divide-by-16 | 1            | 11b        | -      | 0     | -       | 1             | 1     |
| Low-speed on-chip  | No division  | 1            | 00b        | 0      | 0     | -       | 0             | -     |
| oscillator mode    | Divide-by-2  | 1            | 01b        | 0      | 0     | -       | 0             | -     |
|                    | Divide-by-4  | 1            | 10b        | 0      | 0     | -       | 0             | -     |
|                    | Divide-by-8  | 1            | -          | 0      | 1     | -       | 0             | -     |
|                    | Divide-by-16 | 1            | 11b        | 0      | 0     | -       | 0             | -     |
| Low-speed clock    | No division  | 0            | 00b        | -      | 0     | 1       | -             | -     |
| mode               | Divide-by-2  | 0            | 01b        | -      | 0     | 1       | -             | -     |
|                    | Divide-by-4  | 0            | 10b        | -      | 0     | 1       | -             | -     |
|                    | Divide-by-8  | 0            | -          | -      | 1     | 1       | -             | -     |
|                    | Divide-by-16 | 0            | 11b        | -      | 0     | 1       | -             | -     |

| Table 11.3 | Settings and Modes of Clock Associated Bits for R8C/2H Group |
|------------|--------------------------------------------------------------|
|------------|--------------------------------------------------------------|

-: Can be 0 or 1, no change in outcome

#### Table 11.4 Settings and Modes of Clock Associated Bits for R8C/2J Group

| Modes              |              | CM1 Register | CM0 Register | HRA0 F | Register |
|--------------------|--------------|--------------|--------------|--------|----------|
| woulds             | ,            | CM17, CM16   | CM06         | HRA01  | HRA00    |
| High-speed on-chip | No division  | 00b          | 0            | 1      | 1        |
| oscillator mode    | Divide-by-2  | 01b          | 0            | 1      | 1        |
|                    | Divide-by-4  | 10b          | 0            | 1      | 1        |
|                    | Divide-by-8  | -            | 1            | 1      | 1        |
|                    | Divide-by-16 | 11b          | 0            | 1      | 1        |
| Low-speed on-chip  | No division  | 00b          | 0            | 0      | -        |
| oscillator mode    | Divide-by-2  | 01b          | 0            | 0      | -        |
|                    | Divide-by-4  | 10b          | 0            | 0      | -        |
|                    | Divide-by-8  | -            | 1            | 0      | -        |
|                    | Divide-by-16 | 11b          | 0            | 0      | _        |

-: Can be 0 or 1, no change in outcome

# 11.4.1.1 High-Speed On-Chip Oscillator Mode

The high-speed on-chip oscillator is used as the on-chip oscillator clock when the HRA00 bit in the HRA0 register is set to 1 (high-speed on-chip oscillator on) and the HRA01 bit in the HRA0 register is set to 1. The on-chip oscillator divided by 1 (no division), 2, 4, 8, or 16 provides the CPU clock. Set the CM06 bit to 1 (divide-by-8 mode) when transiting to high-speed clock mode.

When the CM14 bit is set to 0 (low-speed on-chip oscillator on), fOCO-S can be used as the watchdog timer and voltage detection circuit (for R8C/2H Group only).

# 11.4.1.2 Low-Speed On-Chip Oscillator Mode

If the CM14 bit in the CM1 register is set to 0 (low-speed on-chip oscillator on) or the HRA01 bit in the HRA0 register is set to 0, the low-speed on-chip oscillator provides the on-chip oscillator clock.

The on-chip oscillator clock divided by 1 (no division), 2, 4, 8 or 16 provides the CPU clock. The on-chip oscillator clock is also the clock source for the peripheral function clocks.

When the CM14 bit is set to 0 (low-speed on-chip oscillator on), fOCO-S can be used as the watchdog timer and voltage detection circuit (for R8C/2H Group only).

In this mode, stopping the high-speed on-chip oscillator, and setting the FMR47 bit in the FMR4 register to 1 (flash memory low consumption current read mode enabled) enables low consumption operation.

To enter wait mode from low-speed on-chip oscillator mode, setting the VCA20 bit in the VCA2 register to 1 (internal power low consumption enabled) enables lower consumption current in wait mode.

Refer to 21. Reducing Power Consumption for how to reduce the power consumption.

# 11.4.1.3 Low-Speed Clock Mode (for R8C/2H Group only)

The XCIN clock divided by 1 (no division), 2, 4, 8, or 16 provides the CPU clock. Set the CM06 bit to 1 (divide by-8 mode) when transiting to high-speed on-chip oscillator mode, low-speed on-chip oscillator mode. If the CM14 bit is set to 0 (low-speed on-chip oscillator on) or the HRA00 bit in the HRA0 register is set to 1 (high speed on-chip oscillator on), fOCO can be used as timer RA.

When the CM14 bit is set to 0 (low-speed on-chip oscillator on), fOCO-S can be used as the watchdog timer and voltage detection circuit.

In this mode, stopping the high-speed on-chip oscillator, and setting the FMR47 bit in the FMR4 register to 1 (flash memory low consumption current read mode enabled) enables low consumption operation.

To enter wait mode from low-speed clock mode, setting the VCA20 bit in the VCA2 register to 1 (internal power low consumption enabled) enables lower consumption current in wait mode.

Refer to 21. Reducing Power Consumption for how to reduce the power consumption.

# 11.4.2 Wait Mode

Since the CPU clock stops in wait mode, the CPU, which operates using the CPU clock, and the watchdog timer, when count source protection mode is disabled, stop. The XCIN clock (for R8C/2H Group only) and on-chip oscillator clock do not stop and the peripheral functions using these clocks continue operating.

# 11.4.2.1 Peripheral Function Clock Stop Function

If the CM02 bit is set to 1 (peripheral function clock stops in wait mode), the f1, f2, f4, f8, and f32 clocks stop in wait mode. This reduces power consumption.

# 11.4.2.2 Entering Wait Mode

The MCU enters wait mode when the WAIT instruction is executed.

# 11.4.2.3 Pin Status in Wait Mode

The I/O port is the status before wait mode was entered is maintained.

# 11.4.2.4 Exiting Wait Mode

The MCU exits wait mode by a reset or a peripheral function interrupt.

The peripheral function interrupts are affected by the CM02 bit. When the CM02 bit is set to 0 (peripheral function clock does not stop in wait mode), all peripheral function interrupts can be used to exit wait mode. When the CM02 bit is set to 1 (peripheral function clock stops in wait mode), the peripheral functions using the peripheral function clock stop operating and the peripheral functions operated by external signals or on-chip oscillator clock can be used to exit wait mode.

Table 11.5 lists Interrupts to Exit Wait Mode and Usage Conditions.

#### Table 11.5 Interrupts to Exit Wait Mode and Usage Conditions

| Interrupt                         | CM02 = 0                   | CM02 = 1                                        |
|-----------------------------------|----------------------------|-------------------------------------------------|
| Serial interface interrupt        | Usable when operating with | Usable when operating with external             |
|                                   | internal or external clock | clock                                           |
| Key input interrupt               | Usable                     | Usable                                          |
| Timer RA interrupt                | Usable in all modes        | Can be used if there is no filter in            |
|                                   |                            | event counter mode.                             |
|                                   |                            | Usable by selecting fOCO or fC32 <sup>(1)</sup> |
|                                   |                            | as count source.                                |
| Timer RB interrupt                | Usable in all modes        | (Do not use)                                    |
| Timer RE interrupt <sup>(1)</sup> | Usable in all modes        | Usable when operating in real time              |
|                                   |                            | clock mode                                      |
| Timer RF interrupt                | Usable in all modes        | (Do not use)                                    |
| INT0, INT1 interrupt              | Usable                     | Can be used if there is no filter               |
| Voltage monitor 1 interrupt       | Usable                     | Usable                                          |
| Voltage monitor 2 interrupt       | Usable                     | Usable                                          |

NOTE:

1. Applicable to the R8C/2H Group only.

Figure 11.14 shows the Time from Wait Mode to Interrupt Routine Execution.

When using a peripheral function interrupt to exit wait mode, set up the following before executing the WAIT instruction.

- (1) Set the interrupt priority level in bits ILVL2 to ILVL0 in the interrupt control registers of the peripheral function interrupts to be used for exiting wait mode. Set bits ILVL2 to ILVL0 of the peripheral function interrupts that are not to be used for exiting wait mode to 000b (interrupt disabled).
- (2) Set the I flag to 1.
- (3) Operate the peripheral function to be used for exiting wait mode.

When exiting by a peripheral function interrupt, the time (number of cycles) between interrupt request generation and interrupt routine execution is determined by the settings of the FMSTP bit in the FMR0 register, as described in Figure 11.14.

The CPU clock, when exiting wait mode by a peripheral function interrupt, is the same clock as the CPU clock when the WAIT instruction is executed.

| FMR0 Registe<br>FMSTP Bit    | r                                   | Time until Flash Memory<br>is Activated (T1)                  | Time until CPU Clock<br>is Supplied (T2)                                              |                                    | for Interrupt<br>uence (T3) | Remarks                                         |  |
|------------------------------|-------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------|-----------------------------|-------------------------------------------------|--|
| 0<br>(flash memory operates) |                                     | Period of system clock $\times$ 12 cycles + 30 $\mu$ s (max.) | $\begin{array}{c} \text{Period of CPU clock} \\ \times \ \text{6 cycles} \end{array}$ | Period of CPU clock<br>× 20 cycles |                             | Following total time is the time from wait mode |  |
| 1<br>(flash memory stops)    |                                     | Period of system clock<br>× 12 cycles                         | Same as above                                                                         | ve Same as above                   |                             | until an interrupt<br>routine is<br>executed.   |  |
|                              |                                     |                                                               |                                                                                       |                                    |                             |                                                 |  |
|                              | ┥                                   | T1                                                            | T2                                                                                    |                                    | •                           | Т3                                              |  |
| Wait mode                    | Flash memory<br>activation sequence |                                                               | CPU clock restart sequence Int                                                        |                                    | Interru                     | terrupt sequence                                |  |
|                              | $\wedge$ Inte                       | errupt request generated                                      |                                                                                       |                                    |                             |                                                 |  |

Time from Wait Mode to Interrupt Routine Execution Figure 11.14

### 11.4.3 Stop Mode

Since the oscillator circuits stop in stop mode, the CPU clock and peripheral function clock stop and the CPU and peripheral functions that use these clocks stop operating. The least power required to operate the MCU is in stop mode. If the voltage applied to the VCC pin is VRAM or more, the contents of internal RAM is maintained.

The peripheral functions clocked by external signals continue operating. Table 11.6 lists Interrupts to Exit Stop Mode and Usage Conditions.

| Interrupt                   | Usage Conditions                                                                |
|-----------------------------|---------------------------------------------------------------------------------|
| Key input interrupt         | -                                                                               |
| INT0, INT1 interrupt        | Can be used if there is no filter                                               |
| Timer RA interrupt          | When there is no filter and external pulse is counted in event counter mode     |
| Serial interface interrupt  | When external clock is selected                                                 |
| Voltage monitor 1 interrupt | Usable in digital filter disabled mode (VW1C1 bit in VW1C register is set to 1) |
| Voltage monitor 2 interrupt | Usable in digital filter disabled mode (VW2C1 bit in VW2C register is set to 1) |

### 11.4.3.1 Entering Stop Mode

The MCU enters stop mode when the CM10 bit in the CM1 register is set to 1 (all clocks stop). At the same time, the CM06 bit in the CM0 register is set to 1 (divide-by-8 mode), the CM03 bit in the CM0 register is set to 1 (XCIN clock oscillator circuit drive capacity high) (for the R8C/2H Group only).

### 11.4.3.2 Pin Status in Stop Mode

The status before wait mode was entered is maintained.

In the R8C/2H Group, when the CM04 bit in the CM0 register is set to 1 (XCIN-XOUT pin), the XCIN (P4\_3) pin is set to the high-impedance state and the XCOUT (P4\_4) pin is set to "H". When the CM04 bit is set to 0 (I/O ports P4\_3 and P4\_4), pins XCIN (P4\_3) and XOUT (P4\_4) retain the I/O status (status just before stop mode is entered).

### 11.4.3.3 Exiting Stop Mode

The MCU exits stop mode by a reset or peripheral function interrupt.

Figure 11.15 shows the Time from Stop Mode to Interrupt Routine Execution.

When using a peripheral function interrupt to exit stop mode, set up the following before setting the CM10 bit to 1.

- (1) Set the interrupt priority level in bits ILVL2 to ILVL0 of the peripheral function interrupts to be used for exiting stop mode. Set bits ILVL2 to ILVL0 of the peripheral function interrupts that are not to be used for exiting stop mode to 000b (interrupt disabled).
- (2) Set the I flag to 1.
- (3) Operates the peripheral function to be used for exiting stop mode.

When exiting by a peripheral function interrupt, the interrupt sequence is executed when an interrupt request is generated and the CPU clock supply is started.

If the clock used immediately before stop mode is a system clock and stop mode is exited by a peripheral function interrupt, the CPU clock becomes the previous system clock divided by 8.

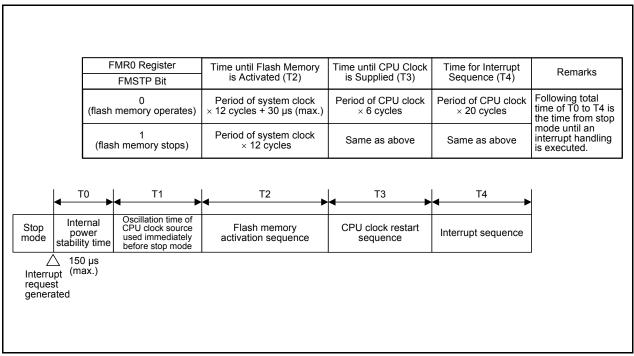



Figure 11.15 Time from Stop Mode to Interrupt Routine Execution

Figure 11.16 shows the State Transitions in Power Control Mode for R8C/2H Group and Figure 11.17 shows the State Transitions in Power Control Mode for R8C/2J Group.

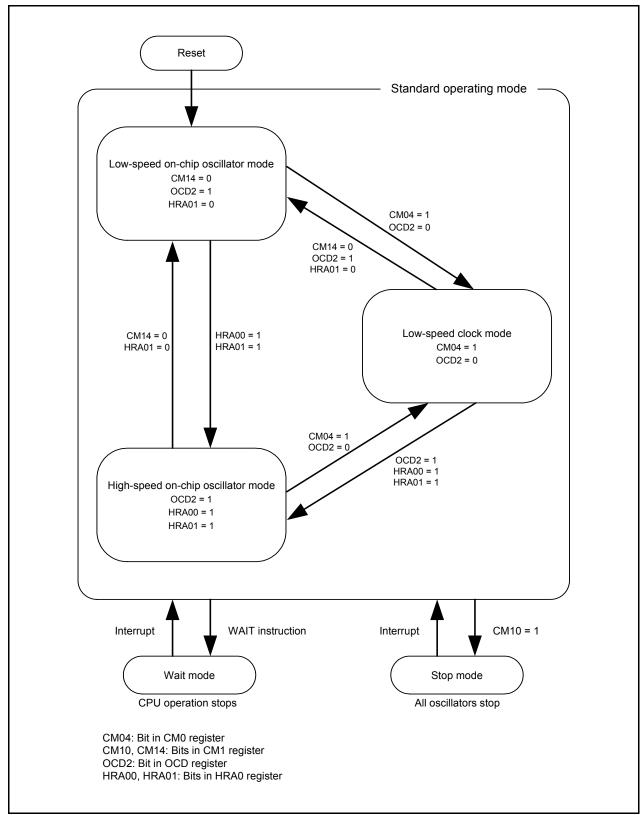



Figure 11.16 State Transitions in Power Control Mode for R8C/2H Group

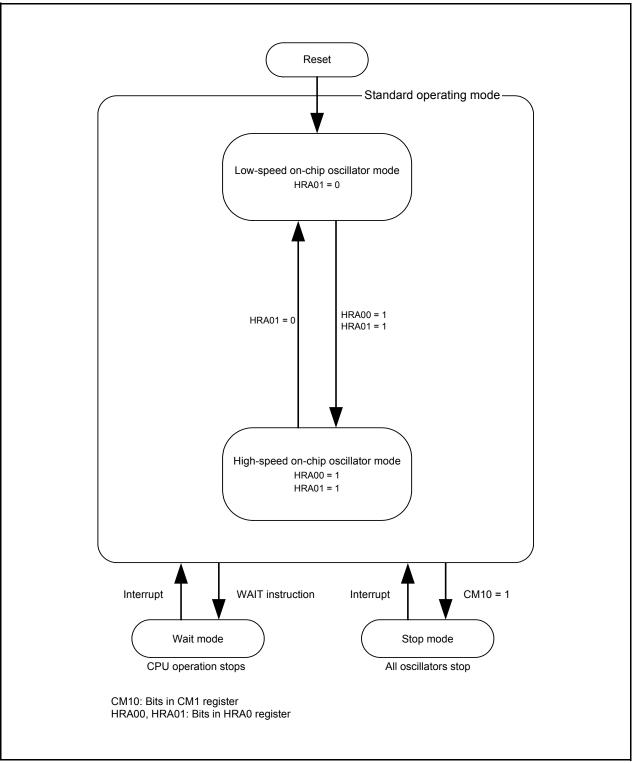



Figure 11.17 State Transitions in Power Control Mode for R8C/2J Group

# 11.5 Notes on Clock Generation Circuit

### 11.5.1 Stop Mode

When entering stop mode, set the FMR01 bit in the FMR0 register to 0 (CPU rewrite mode disabled) and the CM10 bit in the CM1 register to 1 (stop mode). An instruction queue pre-reads 4 bytes from the instruction which sets the CM10 bit to 1 (stop mode) and the program stops.

Insert at least 4 NOP instructions following the JMP.B instruction after the instruction which sets the CM10 bit to 1.

• Program example to enter stop mode

| BCLR        | 1,FMR0    | ; CPU rewrite mode disabled |
|-------------|-----------|-----------------------------|
| BSET        | 0,PRCR    | ; Protect disabled          |
| FSET        | Ι         | ; Enable interrupt          |
| BSET        | 0,CM1     | ; Stop mode                 |
| JMP.B       | LABEL_001 |                             |
| LABEL_001 : |           |                             |
| NOP         |           |                             |

#### 11.5.2 Wait Mode

When entering wait mode, set the FMR01 bit in the FMR0 register to 0 (CPU rewrite mode disabled) and execute the WAIT instruction. An instruction queue pre-reads 4 bytes from the WAIT instruction and the program stops. Insert at least 4 NOP instructions after the WAIT instruction.

• Program example to execute the WAIT instruction

BCLR 1,FMR0 FSET I WAIT NOP NOP NOP NOP ; CPU rewrite mode disabled ; Enable interrupt ; Wait mode

### 11.5.3 Oscillation Circuit Constants

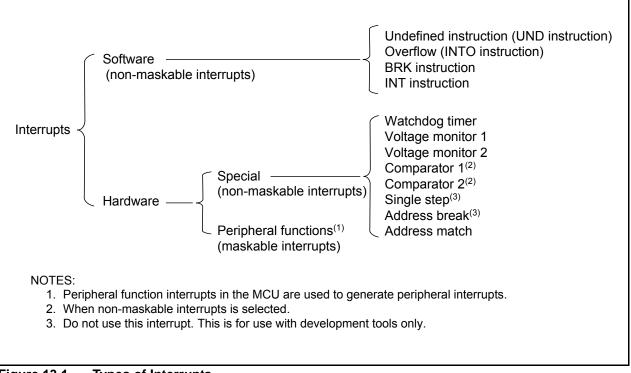
Ask the manufacturer of the oscillator to specify the best oscillation circuit constants for your system.

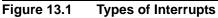
# 12. Protection

The protection function protects important registers from being easily overwritten when a program runs out of control. Figure 12.1 shows the PRCR Register. The registers protected by the PRCR register are listed below.

- Registers protected by PRC0 bit: Registers CM0, CM1, OCD (for the R8C/2H Group only), HRA0, HRA1, and HRA2
- Registers protected by PRC1 bit: Registers PM0 and PM1
- Registers protected by PRC3 bit: Registers VCA2, VW0C, VW1C, VW2C, VCAB, BGRCR, and BGRTRM

| b3 b2 b1 b0 | Symbol      | Address                                                                      | After Reset                                                                                                                                             |    |
|-------------|-------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| ┯┵┯┵┯┙      | PRCR        | 000Ah                                                                        | 00h                                                                                                                                                     |    |
|             | Bit Symbol  | Bit Name                                                                     | Function                                                                                                                                                | RW |
|             | PRC0        | Protect bit 0                                                                | Writing to registers CM0, CM1, OCD (for the<br>R8C/2H Group only), HRA0, HRA1, and HRA2 is<br>enabled.<br>0 : Disables w riting<br>1 : Enables w riting | RW |
|             | PRC1        | Protect bit 1                                                                | Writing to registers PM0 and PM1 is enabled.<br>0 : Disables w riting<br>1 : Enables w riting                                                           | RW |
|             | (b2)        | Reserved bit                                                                 | Set to 0.                                                                                                                                               | RW |
|             | PRC3        | Protect bit 3                                                                | Writing to registers VCA2, VW0C, VW1C, VW2C,<br>VCAB, BGRCR, and BGRTRM is enabled.<br>0 : Disables w riting<br>1 : Enables w riting                    | RW |
|             | <br>(b5-b4) | Reserved bits                                                                | Set to 0.                                                                                                                                               | RW |
| (b7-b6)     |             | Nothing is assigned. If necessary, set to 0.<br>When read, the content is 0. |                                                                                                                                                         |    |


Figure 12.1 PRCR Register


# 13. Interrupts

# 13.1 Interrupt Overview

# 13.1.1 Types of Interrupts

Figure 13.1 shows the Types of Interrupts.





- Maskable Interrupts: The interrupt enable flag (I flag) enables or disables these interrupts. The interrupt priority order can be changed based on the interrupt priority level.
  Non-Maskable Interrupts: The interrupt enable flag (I flag) does not enable or disable these interrupts.
  - on-Maskable interrupts: The interrupt enable flag (1 flag) does not enable or disable these interrupts. The interrupt priority order cannot be changed based on interrupt priority level.

### 13.1.2 Software Interrupts

A software interrupt is generated when an instruction is executed. Software interrupts are non-maskable.

# 13.1.2.1 Undefined Instruction Interrupt

The undefined instruction interrupt is generated when the UND instruction is executed.

### 13.1.2.2 Overflow Interrupt

The overflow interrupt is generated when the O flag is set to 1 (arithmetic operation overflow) and the INTO instruction is executed. Instructions that set the O flag are: ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, and SUB.

### 13.1.2.3 BRK Interrupt

A BRK interrupt is generated when the BRK instruction is executed.

# 13.1.2.4 INT Instruction Interrupt

An INT instruction interrupt is generated when the INT instruction is executed. The INT instruction can select software interrupt numbers 0 to 63. Software interrupt numbers 3 to 31 are assigned to the peripheral function interrupt. Therefore, the MCU executes the same interrupt routine when the INT instruction is executed as when a peripheral function interrupt is generated. For software interrupt numbers 0 to 31, the U flag is saved to the stack during instruction execution and the U flag is set to 0 (ISP selected) before the interrupt sequence is executed. The U flag is restored from the stack when returning from the interrupt routine. For software interrupt numbers 32 to 63, the U flag does not change state during instruction execution, and the selected SP is used.

### 13.1.3 Special Interrupts

Special interrupts are non-maskable. However, the comparator 1 and comparator 2 can select maskable interrupts, too.

# 13.1.3.1 Watchdog Timer Interrupt

The watchdog timer interrupt is generated by the watchdog timer. For details of the watchdog timer, refer to **16.** Watchdog Timer.

# 13.1.3.2 Voltage Monitor 1 Interrupt

The voltage monitor 1 interrupt is generated by the voltage monitor 1 circuit. For details of the voltage monitor 1 circuit, refer to **6. Voltage Detection Circuit**.

# 13.1.3.3 Voltage Monitor 2 Interrupt

The voltage monitor 2 interrupt is generated by the voltage monitor 2 circuit. For details of the voltage monitor 2, refer to **6. Voltage Detection Circuit**.

# 13.1.3.4 Comparator 1 Interrupt

The comparator 1 interrupt is generated by the comparator 1. The non-maskable interrupt or maskable interrupt can be selected. For details of the comparator 1 interrupt, refer to **7. Comparator**.

# 13.1.3.5 Comparator 2 Interrupt

The comparator 2 interrupt is generated by the comparator 2. The non-maskable interrupt or maskable interrupt can be selected. For details of the comparator 2 interrupt, refer to **7. Comparator**.

### 13.1.3.6 Single-Step Interrupt, and Address Break Interrupt

Do not use these interrupts. They are for use by development tools only.

# 13.1.3.7 Address Match Interrupt

The address match interrupt is generated immediately before executing an instruction that is stored at an address indicated by registers RMAD0 to RMAD1 when the AIER0 or AIER1 bit in the AIER register is set to 1 (address match interrupt enable). For details of the address match interrupt, refer to **13.4 Address Match Interrupt**.

# 13.1.4 Peripheral Function Interrupt

The peripheral function interrupt is generated by the internal peripheral function of the MCU and is a maskable interrupt. Refer to **Table 13.2 Relocatable Vector Tables** for sources of the peripheral function interrupt. For details of peripheral functions, refer to the descriptions of individual peripheral functions.

# 13.1.5 Interrupts and Interrupt Vectors

There are 4 bytes in each vector. Set the starting address of an interrupt routine in each interrupt vector. When an interrupt request is acknowledged, the CPU branches to the address set in the corresponding interrupt vector. Figure 13.2 shows an Interrupt Vector.

| ļ                  | (L) Low address |              |  |
|--------------------|-----------------|--------------|--|
| Vector address (L) |                 |              |  |
| -                  | Mid ad          | ddress       |  |
| -                  | 0000            | High address |  |
| Vector address (H) | 0000            | 0000         |  |

| Figure 13.2 | Interrupt Vector |
|-------------|------------------|
|-------------|------------------|

# 13.1.5.1 Fixed Vector Tables

The fixed vector tables are allocated addresses 0FFDCh to 0FFFFh.

Table 13.1 lists the Fixed Vector Tables. The vector addresses (H) of fixed vectors are used by the ID code check function. For details, refer to **20.3 Functions to Prevent Rewriting of Flash Memory**.

| Interrupt Source             | Vector Addresses<br>Address (L) to (H) | Remarks                   | Reference                    |
|------------------------------|----------------------------------------|---------------------------|------------------------------|
| Undefined instruction        | 0FFDCh to 0FFDFh                       | Interrupt on UND          | R8C/Tiny Series Software     |
|                              |                                        | instruction               | Manual                       |
| Overflow                     | 0FFE0h to 0FFE3h                       | Interrupt on INTO         |                              |
|                              |                                        | instruction               |                              |
| BRK instruction              | 0FFE4h to 0FFE7h                       | If the content of address |                              |
|                              |                                        | 0FFE7h is FFh,            |                              |
|                              |                                        | program execution         |                              |
|                              |                                        | starts from the address   |                              |
|                              |                                        | shown by the vector in    |                              |
|                              |                                        | the relocatable vector    |                              |
|                              |                                        | table.                    |                              |
| Address match                | 0FFE8h to 0FFEBh                       |                           | 13.4 Address Match           |
|                              |                                        |                           | Interrupt                    |
| Single step <sup>(1)</sup>   | 0FFECh to 0FFEFh                       |                           |                              |
| Watchdog timer,              | 0FFF0h to 0FFF3h                       |                           | 16. Watchdog Timer           |
| Voltage monitor 1,           |                                        |                           | 6. Voltage Detection Circuit |
| Voltage monitor 2,           |                                        |                           | 7. Comparator                |
| Comparator 1,                |                                        |                           |                              |
| Comparator 2                 |                                        |                           |                              |
| Address break <sup>(1)</sup> | 0FFF4h to 0FFF7h                       |                           |                              |
| (Reserved)                   | 0FFF8h to 0FFFBh                       |                           |                              |
| Reset                        | 0FFFCh to 0FFFFh                       |                           | 5. Resets                    |

#### Table 13.1 Fixed Vector Tables

NOTE:

1. Do not use these interrupts. They are for use by development tools only.

#### 13.1.5.2 **Relocatable Vector Tables**

The relocatable vector tables occupy 256 bytes beginning from the starting address set in the INTB register. Table 13.2 lists the Relocatable Vector Tables.

| Interrupt Source                  | Vector Addresses <sup>(1)</sup><br>Address (L) to Address (H)   | Software<br>Interrupt<br>Number | Interrupt Control<br>Register | Reference                                |
|-----------------------------------|-----------------------------------------------------------------|---------------------------------|-------------------------------|------------------------------------------|
| BRK instruction <sup>(2)</sup>    | +0 to +3(0000h to 0003h)                                        | 0                               | -                             | R8C/Tiny Series Software<br>Manual       |
| Comparator 1                      | +4 to +7(0004h to 0007h)                                        | 1                               | VCMP1IC                       | 7. Comparator                            |
| Comparator 2                      | +8 to +11(0008h to 000Bh)                                       | 2                               | VCMP2IC                       |                                          |
| (Reserved)                        |                                                                 | 3 to 9                          | -                             | -                                        |
| Timer RE <sup>(3)</sup>           | +40 to +43(0028h to 002Bh)                                      | 10                              | TREIC                         | 17.3 Timer RE (for R8C/2H<br>Group only) |
| UART2 transmit <sup>(3)</sup>     | +44 to +47(002Ch to 002Fh)                                      | 11                              | S2TIC                         | 18. Serial Interface                     |
| UART2 receive <sup>(3)</sup>      | +48 to +51(0030h to 0033h)                                      | 12                              | S2RIC                         |                                          |
| Key input                         | +52 to +55(0034h to 0037h)                                      | 13                              | KUPIC                         | 13.3 Key Input Interrupt                 |
| (Reserved)                        |                                                                 | 14                              | -                             | -                                        |
| (Reserved)                        |                                                                 | 15                              | -                             | -                                        |
| Compare 1                         | +64 to +67(0040h to 0043h)                                      | 16                              | CMP1IC                        | 17.4 Timer RF                            |
| UART0 transmit                    | +68 to +71(0044h to 0047h)                                      | 17                              | SOTIC                         | 18. Serial Interface                     |
| UART0 receive                     | +72 to +75(0048h to 004Bh)                                      | 18                              | SORIC                         |                                          |
| (Reserved)                        |                                                                 | 19                              | -                             | -                                        |
| (Reserved)                        |                                                                 | 20                              | -                             | -                                        |
| (Reserved)                        |                                                                 | 21                              | -                             | -                                        |
| Timer RA                          | +88 to +91(0058h to 005Bh)                                      | 22                              | TRAIC                         | 17.1 Timer RA                            |
| (Reserved)                        |                                                                 | 23                              | -                             | -                                        |
| Timer RB                          | +96 to +99(0060h to 0063h)                                      | 24                              | TRBIC                         | 17.2 Timer RB                            |
| INT1                              | +100 to +103(0064h to 0067h)                                    | 25                              | INT1IC                        | 13.2 INT Interrupt                       |
| (Reserved)                        |                                                                 | 26                              | -                             |                                          |
| Timer RF                          | +108 to +111(006Ch to 006Fh)                                    | 27                              | TRFIC                         | 17.4 Timer RF                            |
| Compare 0                         | +112 to +115(0070h to 0073h)                                    | 28                              | CMP0IC                        |                                          |
| INT0                              | +116 to +119(0074h to 0077h)                                    | 29                              | INTOIC                        | 13.2 INT Interrupt                       |
| (Reserved)                        |                                                                 | 30                              | -                             | -                                        |
| Capture                           | +124 to +127(007Ch to 007Fh)                                    | 31                              | CAPIC                         | 17.4 Timer RF                            |
| Software interrupt <sup>(2)</sup> | +128 to +131(0080h to 0083h) to<br>+252 to +255(00FCh to 00FFh) | 32 to 63                        | -                             | R8C/Tiny Series Software<br>Manual       |

Table 13.2 **Relocatable Vector Tables** 

NOTES:

These addresses are relative to those in the INTB register.
 The I flag does not disable these interrupts.

3. Applicable to the R8C/2H Group only.

#### 13.1.6 Interrupt Control

The following describes enabling and disabling the maskable interrupts and setting the priority for acknowledgement. The explanation does not apply to nonmaskable interrupts.

Use the I flag in the FLG register, IPL, and bits ILVL2 to ILVL0 in each interrupt control register to enable or disable maskable interrupts. Whether an interrupt is requested is indicated by the IR bit in each interrupt control register.

Figure 13.3 shows the Interrupt Control Register and Figure 13.4 shows the INTIIC Register (i = 0 or 1).

|                         |            | Symbol                     | Address       | After Reset                                         |    |
|-------------------------|------------|----------------------------|---------------|-----------------------------------------------------|----|
|                         | VCMP1IC    |                            | 0041h         | XXXXX000b                                           |    |
|                         | VCMP2IC    |                            | 0042h         | XXXXX000b                                           |    |
|                         | TREIC (for | R8C/2H Group only)         | 004Ah         | XXXXX000b                                           |    |
|                         | S2TIC (for | R8C/2H Group only)         | 004Bh         | XXXXX000b                                           |    |
|                         | S2RIC (for | r R8C/2H Group only)       | 004Ch         | XXXXX000b                                           |    |
|                         | KUPIC      | ,                          | 004Dh         | XXXXX000b                                           |    |
|                         | CMP1IC     |                            | 0050h         | XXXXX000b                                           |    |
|                         | SOTIC      |                            | 0051h         | XXXXX000b                                           |    |
|                         | SORIC      |                            | 0052h         | XXXXX000b                                           |    |
|                         | TRAIC      |                            | 0056h         | XXXXX000b                                           |    |
|                         | TRBIC      |                            | 0058h         | XXXXX000b                                           |    |
|                         | TRFIC      |                            | 005Bh         | XXXXX000b                                           |    |
| b7 b6 b5 b4 b3 b2 b1 b0 | CMPOIC     |                            | 005Ch         | XXXXX000b                                           |    |
|                         | CAPIC      |                            | 005Fh         | XXXXX000b                                           |    |
|                         | Bit Symbol | Bit Name                   |               | Function                                            | RV |
|                         |            | Interrupt priority level s | elect bits    | b2 b1 b0                                            |    |
|                         | ILVL0      |                            |               | 0 0 0 : Level 0 (interrupt disable)                 | RV |
|                         |            |                            |               | 0 0 1 : Level 1                                     |    |
|                         |            | 1                          |               | 0 1 0 : Level 2                                     |    |
|                         | ILVL1      |                            |               | 0 1 1 : Level 3<br>1 0 0 : Level 4                  | RV |
|                         |            |                            |               | 1 0 0 : Level 4<br>1 0 1 : Level 5                  |    |
|                         |            | 1                          |               | 1 1 0 : Level 6                                     |    |
|                         | ILVL2      |                            |               | 1 1 1 : Level 7                                     | RV |
|                         |            |                            |               | 0 - Deguaate na interrunt                           |    |
|                         | IR         | Interrupt request bit      |               | 0 : Requests no interrupt<br>1 : Requests interrupt | RW |
|                         |            | Nothing is assigned. If    | necessary,    | set to 0.                                           |    |
|                         | (b7-b4)    | When read, the conter      | nt is undefin | ed.                                                 |    |

Refer to 13.5.5 Changing Interrupt Control Register Contents



| 7 b6 b5 b4 b3 b2 | 2 b1 b0 | Symbol      | Address                                                                  | After Reset                                                                                      |                   |
|------------------|---------|-------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------|
| (X 0             |         | INT1IC      | 0059h                                                                    | XX00X000b                                                                                        |                   |
|                  |         | INT0IC      | 005Dh                                                                    | XX00X000b                                                                                        |                   |
|                  |         | Bit Symbol  | Bit Name                                                                 | Function                                                                                         | RW                |
|                  |         | ILVL0       | Interrupt priority level select bits                                     | <sup>b2 b1 b0</sup><br>0 0 0 : Level 0 (interrupt disable)<br>0 0 1 : Level 1<br>0 1 0 : Level 2 | RW                |
|                  |         | ILVL1       |                                                                          | 0 1 0 : Level 2<br>0 1 1 : Level 3<br>1 0 0 : Level 4<br>1 0 1 : Level 5                         | RW                |
|                  |         | ILVL2       |                                                                          | 1 1 0 : Level 6<br>1 1 1 : Level 7                                                               | RW                |
|                  |         | IR          | Interrupt request bit                                                    | 0 : Requests no interrupt<br>1 : Requests interrupt                                              | RW <sup>(1)</sup> |
|                  |         | POL         | Polarity sw itch bit <sup>(4)</sup>                                      | 0 : Selects falling edge<br>1 : Selects rising edge <sup>(3)</sup>                               | RW                |
|                  |         | (b5)        | Reserved bit                                                             | Set to 0.                                                                                        | RW                |
|                  |         | <br>(b7-b6) | Nothing is assigned. If necessary,<br>When read, the content is undefine |                                                                                                  |                   |

1. Only 0 can be written to the IR bit. (Do not write 1.)

2. Rew rite the interrupt control register when the interrupt request which is applicable for the register is not generated. Refer to **13.5.5 Changing Interrupt Control Register Contents**.

3. If the INTIPL bit in the INTEN register is set to 1 (both edges), set the POL bit to 0 (selects falling edge).

4. The IR bit may be set to 1 (requests interrupt) when the POL bit is rewritten. Refer to 13.5.4 Changing Interrupt Sources.

Figure 13.4 INTIIC Register (i = 0 or 1)

### 13.1.6.1 I Flag

The I flag enables or disables maskable interrupts. Setting the I flag to 1 (enabled) enables maskable interrupts. Setting the I flag to 0 (disabled) disables all maskable interrupts.

## 13.1.6.2 IR Bit

The IR bit is set to 1 (interrupt requested) when an interrupt request is generated. Then, when the interrupt request is acknowledged and the CPU branches to the corresponding interrupt vector, the IR bit is set to 0 (= interrupt not requested).

The IR bit can be set to 0 by a program. Do not write 1 to this bit.

### 13.1.6.3 ILVL2 to ILVL0 Bits and IPL

Interrupt priority levels can be set using bits ILVL2 to ILVL0.

Table 13.3 lists the Settings of Interrupt Priority Levels and Table 13.4 lists the Interrupt Priority Levels Enabled by IPL.

The following are conditions under which an interrupt is acknowledged:

- I flag = 1
- IR bit = 1
- Interrupt priority level > IPL

The I flag, IR bit, bits ILVL2 to ILVL0, and IPL are independent of each other. They do not affect one another.

| Table 13.3 | Settings of Interrupt Priority |
|------------|--------------------------------|
|            | Levels                         |

| ILVL2 to ILVL0 Bits | Interrupt Priority Level     | Priority Order |
|---------------------|------------------------------|----------------|
| 000b                | Level 0 (interrupt disabled) | -              |
| 001b                | Level 1                      | Low            |
| 010b                | Level 2                      |                |
| 011b                | Level 3                      |                |
| 100b                | Level 4                      |                |
| 101b                | Level 5                      |                |
| 110b                | Level 6                      | V              |
| 111b                | Level 7                      | High           |

# Table 13.4 Interrupt Priority Levels Enabled by IPL

| IPL  | Enabled Interrupt Priority Levels    |
|------|--------------------------------------|
| 000b | Interrupt level 1 and above          |
| 001b | Interrupt level 2 and above          |
| 010b | Interrupt level 3 and above          |
| 011b | Interrupt level 4 and above          |
| 100b | Interrupt level 5 and above          |
| 101b | Interrupt level 6 and above          |
| 110b | Interrupt level 7 and above          |
| 111b | All maskable interrupts are disabled |

#### 13.1.6.4 Interrupt Sequence

An interrupt sequence is performed between an interrupt request acknowledgement and interrupt routine execution.

When an interrupt request is generated while an instruction is being executed, the CPU determines its interrupt priority level after the instruction is completed. The CPU starts the interrupt sequence from the following cycle. However, for the SMOVB, SMOVF, SSTR, or RMPA instructions, if an interrupt request is generated while the instruction is being executed, the MCU suspends the instruction to start the interrupt sequence. The interrupt sequence is performed as indicated below.

Figure 13.5 shows the Time Required for Executing Interrupt Sequence.

- (1) The CPU gets interrupt information (interrupt number and interrupt request level) by reading address 00000h. The IR bit for the corresponding interrupt is set to 0 (interrupt not requested).
- (2) The FLG register is saved to a temporary register<sup>(1)</sup> in the CPU immediately before entering the interrupt sequence.
- (3) The I, D and U flags in the FLG register are set as follows: The I flag is set to 0 (interrupts disabled). The D flag is set to 0 (single-step interrupt disabled). The U flag is set to 0 (ISP selected). However, the U flag does not change state if an INT instruction for software interrupt number 32 to 63 is executed.
  (4) The CPU's interrupt terrupt register<sup>(1)</sup> is even d to the stack.
- (4) The CPU's internal temporary register<sup>(1)</sup> is saved to the stack.
- (5) The PC is saved to the stack.
- (6) The interrupt priority level of the acknowledged interrupt is set in the IPL.
- (7) The starting address of the interrupt routine set in the interrupt vector is stored in the PC.

After the interrupt sequence is completed, instructions are executed from the starting address of the interrupt routine.

|             | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20                                                                                                 |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| CPU Clock   |                                                                                                                                                    |
| Address Bus | Address Undefined XSP-2XSP-1XSP-4X SP-3 XVECX VEC+1 X VEC+2 X PC                                                                                   |
| Data Bus    | Interrupt Undefined VSP-2 SP-1 SP-4 SP-3 VEC VEC+1 VEC+2 Contents Contents Contents Contents Contents Contents Contents Contents Contents          |
| RD          |                                                                                                                                                    |
| WR          |                                                                                                                                                    |
|             | leterminate state depends on the instruction queue buffer. A read cycle occurs when the instruction queue buffer is<br>o acknowledge instructions. |

#### Figure 13.5 Time Required for Executing Interrupt Sequence

#### NOTE:

1. This register cannot be used by user.

### 13.1.6.5 Interrupt Response Time

Figure 13.6 shows the Interrupt Response Time. The interrupt response time is the period between an interrupt request generation and the execution of the first instruction in the interrupt routine. The interrupt response time includes the period between interrupt request generation and the completion of execution of the instruction (refer to (a) in **Figure 13.6**) and the period required to perform the interrupt sequence (20 cycles, refer to (b) in **Figure 13.6**).

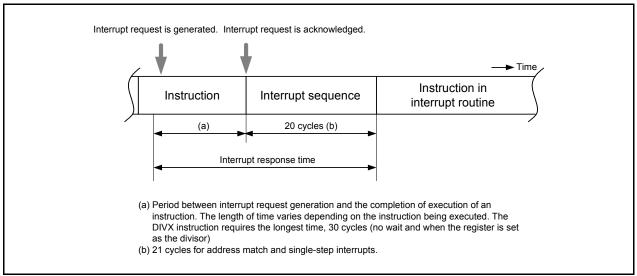



Figure 13.6 Interrupt Response Time

### 13.1.6.6 IPL Change when Interrupt Request is Acknowledged

When an interrupt request of a maskable interrupt is acknowledged, the interrupt priority level of the acknowledged interrupt is set in the IPL.

When a software interrupt or special interrupt request is acknowledged, the level listed in Table 13.5 is set in the IPL.

Table 13.5 lists the IPL Value When Software or Special Interrupt Is Acknowledged.

#### Table 13.5 IPL Value When Software or Special Interrupt Is Acknowledged

| Interrupt Source                                            | Value Set in IPL |
|-------------------------------------------------------------|------------------|
| Watchdog timer, voltage monitor 1, voltage monitor 2,       | 7                |
| comparator $1^{(1)}$ , comparator $2^{(1)}$ , address break |                  |
| Software, address match, single-step                        | Not changed      |

NOTE:

1. When non-maskable interrupts is selected.

#### 13.1.6.7 Saving a Register

In the interrupt sequence, the FLG register and PC are saved to the stack.

After an extended 16 bits, 4 high-order bits in the PC and 4 high-order (IPL) and 8 low-order bits in the FLG register, are saved to the stack, the 16 low-order bits in the PC are saved.

Figure 13.7 shows the Stack State Before and After Acknowledgement of Interrupt Request.

The other necessary registers are saved by a program at the beginning of the interrupt routine. The PUSHM instruction can save several registers in the register bank being currently  $used^{(1)}$  with a single instruction.

#### NOTE:

1. Selectable from registers R0, R1, R2, R3, A0, A1, SB, and FB.

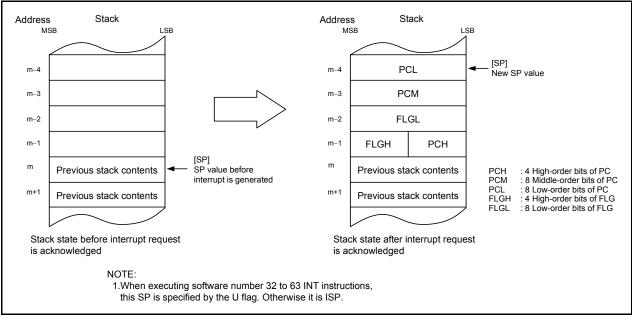



Figure 13.7 Stack State Before and After Acknowledgement of Interrupt Request

The register saving operation, which is performed as part of the interrupt sequence, saved in 8 bits at a time in four steps.

Figure 13.8 shows the Register Saving Operation.

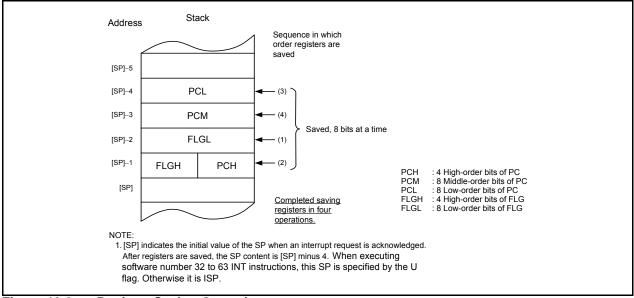


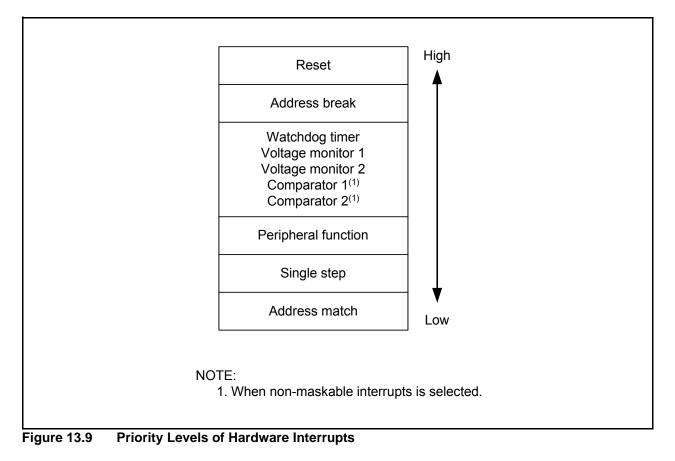

Figure 13.8 Register Saving Operation

## 13.1.6.8 Returning from an Interrupt Routine

When the REIT instruction is executed at the end of an interrupt routine, the FLG register and PC, which have been saved to the stack, are automatically restored. The program, that was running before the interrupt request was acknowledged, starts running again.

Restore registers saved by a program in an interrupt routine using the POPM instruction or others before executing the REIT instruction.

## 13.1.6.9 Interrupt Priority


If two or more interrupt requests are generated while a single instruction is being executed, the interrupt with the higher priority is acknowledged.

Set bits ILVL2 to ILVL0 to select the desired priority level for maskable interrupts (peripheral functions). However, if two or more maskable interrupts have the same priority level, their interrupt priority is resolved by hardware, and the higher priority interrupts acknowledged.

The priority levels of special interrupts, such as reset (reset has the highest priority) and watchdog timer, are set by hardware.

Figure 13.9 shows the Priority Levels of Hardware Interrupts.

The interrupt priority does not affect software interrupts. The MCU jumps to the interrupt routine when the instruction is executed.



## 13.1.6.10 Interrupt Priority Judgement Circuit

The interrupt priority judgement circuit selects the highest priority interrupt, as shown in Figure 13.10.

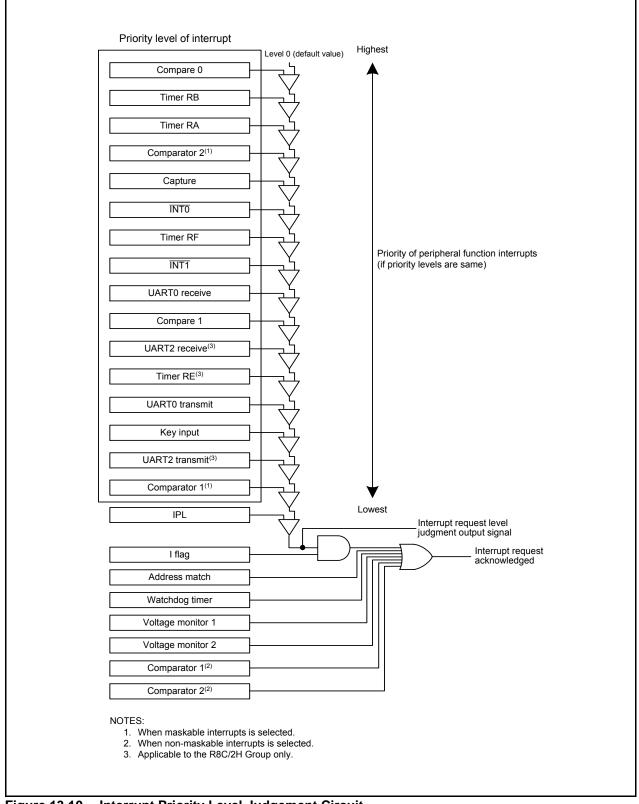



Figure 13.10 Interrupt Priority Level Judgement Circuit

# 13.2 INT Interrupt

# 13.2.1 **INTi** Interrupt (i = 0 or 1)

The INTi interrupt is generated by an INTi input. Table 13.6 lists the Pin Configuration of INT Interrupt. When using the INTi interrupt, the INTiEN bit in the INTEN register is set to 1 (enable). The edge polarity is selected using the INTiPL bit in the INTEN register and the POL bit in the INTIC register. Inputs can be passed through a digital filter with three different sampling clocks. Figure 13.11 shows the INTEN Register. Figure 13.12 shows the INTF Register.

| Table 13.6 Pin Configuration of INT Interrupt | Table 13.6 | Pin Configuration of INT Interrupt |
|-----------------------------------------------|------------|------------------------------------|
|-----------------------------------------------|------------|------------------------------------|

| Pin name                           | Input/Output | Function                                              |
|------------------------------------|--------------|-------------------------------------------------------|
| INT0 (P4_5)                        | Input        | INT0 interrupt input, Timer RB external trigger input |
| INT1 (P1_5 or P1_7) <sup>(1)</sup> | Input        | INT1 interrupt input                                  |

NOTE:

1. The INT1 pin is selected by the TIOSEL bit in the TRAIOC register. Refer to 8. I/O Ports for details.

| External Input Enab     | le Register     |                                                  |                                |    |
|-------------------------|-----------------|--------------------------------------------------|--------------------------------|----|
| b7 b6 b5 b4 b3 b2 b1 b0 | Symbol<br>INTEN | Address<br>00F9h                                 | After Reset<br>00h             |    |
|                         | Bit Symbol      | Bit Name                                         | Function                       | RW |
|                         | INT0EN          | INTO input enable bit                            | 0 : Disable<br>1 : Enable      | RW |
|                         | INTOPL          | INTO input polarity select bit <sup>(1, 2)</sup> | 0 : One edge<br>1 : Both edges | RW |
|                         | INT1EN          | INT1 input enable bit                            | 0 : Disable<br>1 : Enable      | RW |
|                         | INT1PL          | INT1 input polarity select bit <sup>(1, 2)</sup> | 0 : One edge<br>1 : Both edges | RW |
|                         | <br>(b7-b4)     | Reserved bits                                    | Set to 0.                      | RW |
| NOTES:                  |                 | •                                                |                                |    |

1. When setting the INTIPL bit (i = 0, 1) to 1 (both edges), set the POL bit in the INTIIC register to 0 (selects falling edge).

2. The IR bit in the INTilC register may be set to 1 (requests interrupt) when the INTiPL bit is rewritten. Refer to **13.5.4** Changing Interrupt Sources.

Figure 13.11 INTEN Register

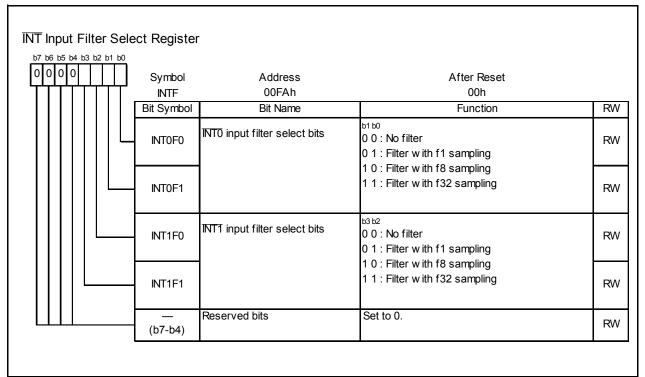



Figure 13.12 INTF Register

## 13.2.2 INTi Input Filter (i = 0 or 1)

The  $\overline{INTi}$  input contains a digital filter. The sampling clock is selected by bits INTiF1 to INTiF0 in the INTF register. The IR bit in the INTIIC register is set to 1 (interrupt requested) when the  $\overline{INTi}$  level is sampled for every sampling clock and the sampled input level matches three times.

Figure 13.13 shows the Configuration of  $\overline{INTi}$  Input Filter. Figure 13.14 shows an Operating Example of  $\overline{INTi}$  Input Filter.

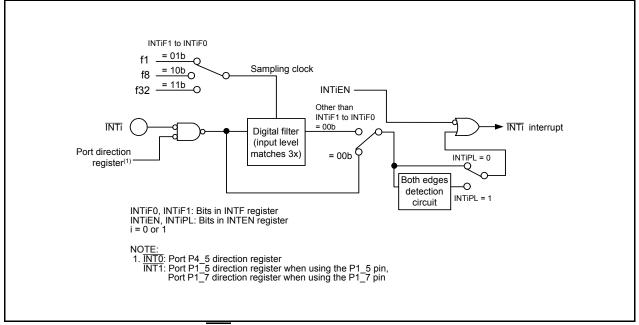



Figure 13.13 Configuration of INTi Input Filter

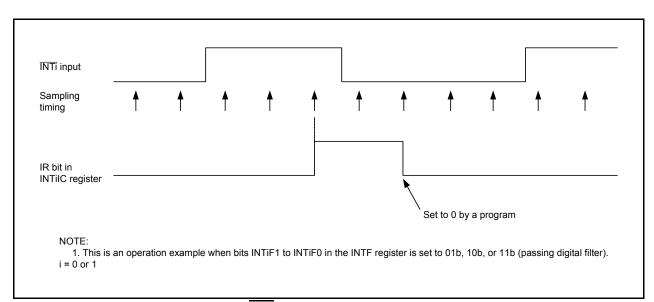



Figure 13.14 Operating Example of INTi Input Filter

### 13.3 Key Input Interrupt

A key input interrupt request is generated by one of the input edges of the  $\overline{K10}$  to  $\overline{K13}$  pins. Table 13.7 lists the Pin Configuration of Key Input Interrupt. The key input interrupt can be used as a key-on wake-up function to exit wait or stop mode.

The KIiEN (i = 0 to 3) bit in the KIEN register can select whether the pins are used as  $\overline{\text{KIi}}$  input. The KIiPL bit in the KIEN register can select the input polarity.

When inputting "L" to the  $\overline{\text{KIi}}$  pin which sets the KIiPL bit to 0 (falling edge), the input of the other pins  $\overline{\text{K10}}$  to  $\overline{\text{K13}}$  is not detected as interrupts. Also, when inputting "H" to the  $\overline{\text{KIi}}$  pin, which sets the KIiPL bit to 1 (rising edge), the input of the other pins  $\overline{\text{K10}}$  to  $\overline{\text{K13}}$  is not detected as interrupts.

Figure 13.15 shows a Block Diagram of Key Input Interrupt. Figure 13.16 shows the KIEN Register.

| Pin name   | Input/Output | Function  |
|------------|--------------|-----------|
| KI0 (P1_0) | Input        | KI0 input |
| KI1 (P1_1) | Input        | KI1 input |
| KI2 (P1_2) | Input        | KI2 input |
| KI3 (P1_3) | Input        | KI3 input |

 Table 13.7
 Pin Configuration of Key Input Interrupt

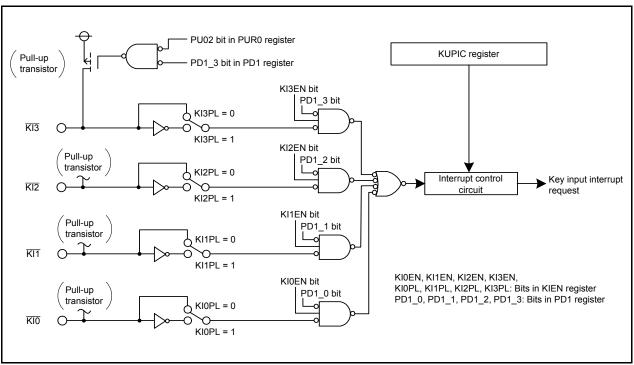



Figure 13.15 Block Diagram of Key Input Interrupt

| b7 b6 k | b5 b4 b3 b2 b1 | 50<br>Symbol<br>KIEN | Address<br>00FBh              | After Reset<br>00h                  |    |
|---------|----------------|----------------------|-------------------------------|-------------------------------------|----|
|         |                | Bit Symbol           | Bit Name                      | Function                            | RW |
|         |                | KIOEN                | Kl0 input enable bit          | 0 : Disable<br>1 : Enable           | RW |
|         |                | KIOPL                | KI0 input polarity select bit | 0 : Falling edge<br>1 : Rising edge | RW |
|         |                | KI1EN                | Kl1 input enable bit          | 0 : Disable<br>1 : Enable           | RW |
|         |                | KI1PL                | Kl1 input polarity select bit | 0 : Falling edge<br>1 : Rising edge | RW |
|         |                | KI2EN                | Kl2 input enable bit          | 0 : Disable<br>1 : Enable           | RW |
|         |                | KI2PL                | Kl2 input polarity select bit | 0 : Falling edge<br>1 : Rising edge | RW |
|         |                | KI3EN                | Kl3 input enable bit          | 0 : Disable<br>1 : Enable           | RW |
|         |                | KI3PL                | Kl3 input polarity select bit | 0 : Falling edge<br>1 : Rising edge | RW |

Figure 13.16 KIEN Register

#### 13.4 Address Match Interrupt

An address match interrupt request is generated immediately before execution of the instruction at the address indicated by the RMADi register (i = 0 or 1). This interrupt is used as a break function by the debugger. When using the on-chip debugger, do not set an address match interrupt (registers of AIER, RMAD0, and RMAD1 and fixed vector tables) in a user system.

Set the starting address of any instruction in the RMADi register. Bits AIER0 and AIER1 in the AIER0 register can be used to select enable or disable of the interrupt. The I flag and IPL do not affect the address match interrupt. The value of the PC (refer to **13.1.6.7 Saving a Register** for the value of the PC) which is saved to the stack when an address match interrupt is acknowledged varies depending on the instruction at the address indicated by the RMADi register. (The appropriate return address is not saved on the stack.) When returning from the address match interrupt, return by one of the following means:

- Change the content of the stack and use the REIT instruction.
- Use an instruction such as POP to restore the stack as it was before the interrupt request was acknowledged. Then use a jump instruction.

Table 13.8 lists the Values of PC Saved to Stack when Address Match Interrupt is Acknowledged. Table 13.9 lists the Correspondence Between Address Match Interrupt Sources and Associated Registers. Figure 13.17 shows Registers AIER and RMAD0 to RMAD1.

| Table 13.8 | Values of PC Saved to Stack when Address Match Interrupt is Acknowledged |
|------------|--------------------------------------------------------------------------|
|------------|--------------------------------------------------------------------------|

| Address Indicated by RMADi Register (i = 0 or 1) |                |              |                    |         |                      | PC Value Saved <sup>(1)</sup> |
|--------------------------------------------------|----------------|--------------|--------------------|---------|----------------------|-------------------------------|
| <ul> <li>Instruction</li> </ul>                  | with 2-byte op | peration coo | e <sup>(2)</sup>   |         |                      | Address indicated by          |
| <ul> <li>Instruction</li> </ul>                  | with 1-byte op | peration coo | de <sup>(2)</sup>  |         |                      | RMADi register + 2            |
| ADD.B:S                                          | #IMM8,dest     | SUB.B:S      | #IMM8,dest         | AND.B:S | #IMM8,dest           |                               |
| OR.B:S                                           | #IMM8,dest     | MOV.B:S      | #IMM8,dest         | STZ     | #IMM8,dest           |                               |
| STNZ                                             | #IMM8,dest     | STZX         | #IMM81,#IMM82,dest |         |                      |                               |
| CMP.B:S                                          | #IMM8,dest     | PUSHM        | src                | POPM    | dest                 |                               |
| JMPS                                             | #IMM8          | JSRS         | #IMM8              |         |                      |                               |
| MOV.B:S #IMM,dest (however, dest = A0 or A1)     |                |              |                    |         |                      |                               |
| Instructions other than the above                |                |              |                    |         | Address indicated by |                               |
|                                                  |                |              |                    |         | RMADi register + 1   |                               |

#### NOTES:

- 1. Refer to the **13.1.6.7 Saving a Register** for the PC value saved.
- 2. Operation code: Refer to the R8C/Tiny Series Software Manual (REJ09B0001).

**Chapter 4. Instruction Code/Number of Cycles** contains diagrams showing operation code below each syntax. Operation code is shown in the bold frame in the diagrams.

| Address Match Interrupt Source | Address Match Interrupt Enable Bit | Address Match Interrupt Register |
|--------------------------------|------------------------------------|----------------------------------|
| Address match interrupt 0      | AIER0                              | RMAD0                            |
| Address match interrupt 1      | AIER1                              | RMAD1                            |

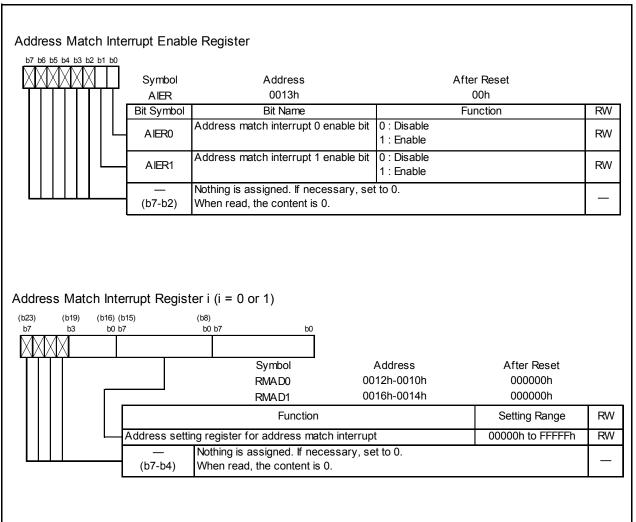



Figure 13.17 Registers AIER and RMAD0 to RMAD1

### 13.5 Notes on Interrupts

#### 13.5.1 Reading Address 00000h

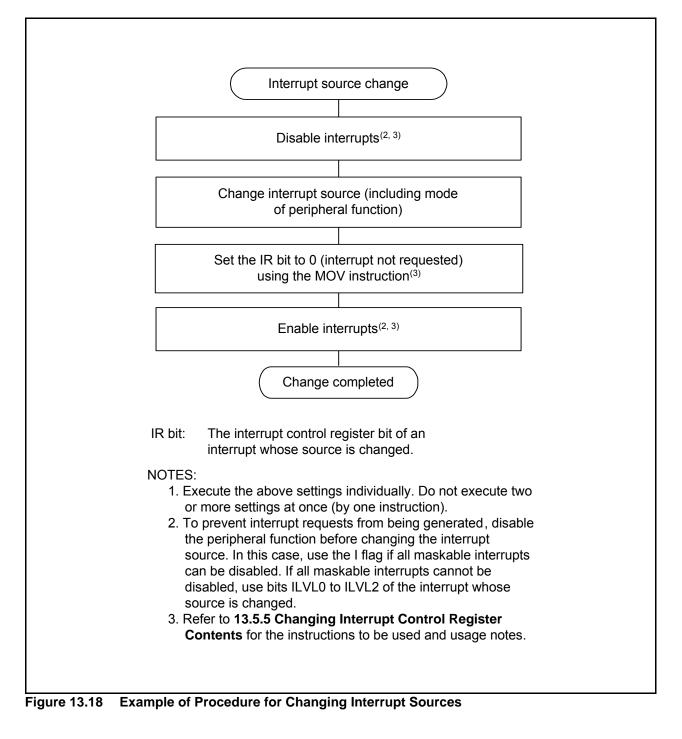
Do not read address 00000h by a program. When a maskable interrupt request is acknowledged, the CPU reads interrupt information (interrupt number and interrupt request level) from 00000h in the interrupt sequence. At this time, the acknowledged interrupt IR bit is set to 0.

If address 00000h is read by a program, the IR bit for the interrupt which has the highest priority among the enabled interrupts is set to 0. This may cause the interrupt to be canceled, or an unexpected interrupt to be generated.

## 13.5.2 SP Setting

Set any value in the SP before an interrupt is acknowledged. The SP is set to 0000h after reset. Therefore, if an interrupt is acknowledged before setting a value in the SP, the program may run out of control.

### 13.5.3 External Interrupt and Key Input Interrupt


Either "L" level or an "H" level of width shown in the Electrical Characteristics is necessary for the signal input to pins  $\overline{\text{INT0}}$ ,  $\overline{\text{INT1}}$  and pins  $\overline{\text{KI0}}$  to  $\overline{\text{KI3}}$ , regardless of the CPU clock.

For details, refer to Table 22.17 (VCC = 5V), Table 22.23 (VCC = 3V), Table 22.29 (VCC = 2.2V), Table 22.45 (VCC = 5V), Table 22.50 (VCC = 3V), and Table 22.55 (VCC = 2.2V) External Interrupt INTi (i = 0 or 1) Input.

#### 13.5.4 Changing Interrupt Sources

The IR bit in the interrupt control register may be set to 1 (interrupt requested) when the interrupt source changes. When using an interrupt, set the IR bit to 0 (no interrupt requested) after changing the interrupt source. In addition, changes of interrupt sources include all factors that change the interrupt sources assigned to individual software interrupt numbers, polarities, and timing. Therefore, if a mode change of a peripheral function involves interrupt sources, edge polarities, and timing, set the IR bit to 0 (no interrupt requested) after the change. Refer to the individual peripheral function for its related interrupts.

Figure 13.18 shows an Example of Procedure for Changing Interrupt Sources.



#### 13.5.5 Changing Interrupt Control Register Contents

- (a) The contents of an interrupt control register can only be changed while no interrupt requests corresponding to that register are generated. If interrupt requests may be generated, disable interrupts before changing the interrupt control register contents.
- (b) When changing the contents of an interrupt control register after disabling interrupts, be careful to choose appropriate instructions.

#### Changing any bit other than IR bit

If an interrupt request corresponding to a register is generated while executing the instruction, the IR bit may not be set to 1 (interrupt requested), and the interrupt request may be ignored. If this causes a problem, use the following instructions to change the register: AND, OR, BCLR, BSET **Changing IR bit** 

If the IR bit is set to 0 (interrupt not requested), it may not be set to 0 depending on the instruction used. Therefore, use the MOV instruction to set the IR bit to 0.

(c) When disabling interrupts using the I flag, set the I flag as shown in the sample programs below. Refer to (b) regarding changing the contents of interrupt control registers by the sample programs.

Sample programs 1 to 3 are for preventing the I flag from being set to 1 (interrupts enabled) before the interrupt control register is changed for reasons of the internal bus or the instruction queue buffer.

# Example 1: Use NOP instructions to prevent I flag from being set to 1 before interrupt control register is changed

| INT_SWITC | CH1:       |                             |
|-----------|------------|-----------------------------|
| FCLR      | Ι          | ; Disable interrupts        |
| AND.B     | #00H,0056H | ; Set TRAIC register to 00h |
| NOP       |            | •                           |
| NOP       |            |                             |
| FSET      | Ι          | ; Enable interrupts         |
|           |            |                             |

#### Example 2: Use dummy read to delay FSET instruction

INT\_SWITCH2:

| FCLR  | Ι          | ; Disable interrupts        |
|-------|------------|-----------------------------|
| AND.B | #00H,0056H | ; Set TRAIC register to 00h |
| MOV.W | MEM,R0     | ; <u>Dummy read</u>         |
| FSET  | Ι          | ; Enable interrupts         |

#### Example 3: Use POPC instruction to change I flag

| INT_SWITC | H3:        |                             |
|-----------|------------|-----------------------------|
| PUSHC     | FLG        |                             |
| FCLR      | Ι          | ; Disable interrupts        |
| AND.B     | #00H,0056H | ; Set TRAIC register to 00h |
| POPC      | FLG        | ; Enable interrupts         |
|           |            |                             |

# 14. ID Code Areas

#### 14.1 Overview

The ID code areas are used to implement a function that prevents the flash memory from being rewritten in standard serial I/O mode. This function prevents the flash memory from read, rewritten, or erased. The ID code areas are assigned to 0FFDFh, 0FFE3h, 0FFEBh, 0FFEFh, 0FFF3h, 0FFF7h, and 0FFFBh of the respective vector highest-order addresses of the fixed vector table. Figure 14.1 shows the ID Code Areas.

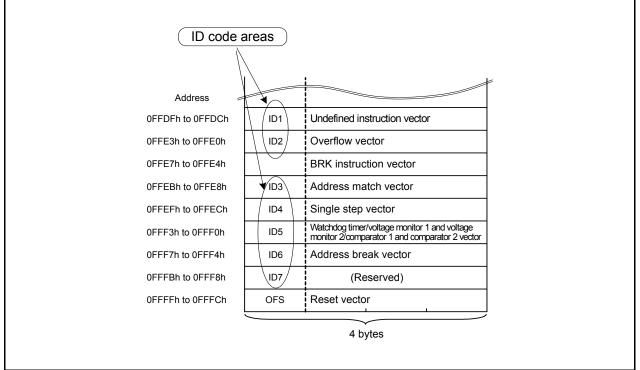



Figure 14.1 ID Code Areas

#### 14.2 Functions

The ID code areas are used in standard serial I/O mode. Unless 3 bytes (addresses from 0FFFCh to 0FFFEh) of the reset vector are set to FFFFFFh, the ID codes stored in the ID code areas and the ID codes sent from the serial programmer or the on-chip debugging emulator are checked to see if they match. If the ID codes match, the commands sent from the serial programmer or the on-chip debugging emulator are acknowledged. If the ID codes do not match, the commands are not acknowledged. To use the serial programmer or the on-chip debugging simulator, first write predetermined ID codes to the ID code areas.

As the ID code areas are allocated in the flash memory (not in the SFRs), they cannot be rewritten by executing an instruction. Write appropriate values when creating a program.

#### 14.3 Notes on ID Code Areas

#### 14.3.1 Setting Example of ID Code Areas

As the ID code areas are allocated in the flash memory (not in the SFRs), they cannot be rewritten by executing an instruction. Write appropriate values when creating a program. The following shows a setting example.

• To set 55h in all of the ID code areas

```
.org 00FFDCH
```

| 6                         |                   |
|---------------------------|-------------------|
| .lword dummy   (5500000h) | ; UND             |
| .lword dummy   (5500000h) | ; INTO            |
| .lword dummy ; BREAK      |                   |
| .lword dummy   (5500000h) | ; ADDRESS MATCH   |
| .lword dummy   (5500000h) | ; SET SINGLE STEP |
| .lword dummy   (5500000h) | ; WDT             |
| .lword dummy   (5500000h) | ; ADDRESS BREAK   |
| .lword dummy   (5500000h) | ; RESERVE         |
|                           |                   |

(Programming formats vary depending on the compiler. Check the compiler manual.)

# **15. Option Function Select Area**

#### 15.1 Overview

The option function select area is used to select the MCU state after reset or the function to prevent rewriting in parallel I/O mode. The reset vector highest-order-address, 0FFFFh, is assigned as the option function select area. Figure 15.1 shows the Option Function Select Area.

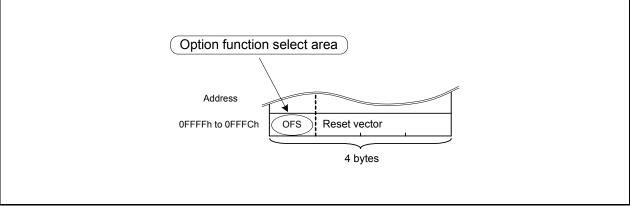



Figure 15.1 Option Function Select Area

#### 15.2 OFS Register

The OFS register is used to select the MCU state after reset or the function to prevent rewriting in parallel I/O mode. Figure 15.2 shows the OFS Register.

|  | Function Se | loot i togiot |                                                         |                                                                                                                                                   |    |
|--|-------------|---------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----|
|  |             | Symbol<br>OFS | Address<br>0FFFFh                                       | When Shipping<br>FFh <sup>(3)</sup>                                                                                                               |    |
|  |             | Bit Symbol    | Bit Name                                                | Function                                                                                                                                          | RW |
|  |             | WDTON         | Watchdog timer start<br>select bit                      | 0 : Starts w atchdog timer automatically after reset<br>1 : Watchdog timer is inactive after reset                                                | RW |
|  |             | (b1)          | Reserved bit                                            | Set to 1.                                                                                                                                         | RW |
|  |             | ROMCR         | ROM code protect<br>disabled bit                        | 0 : ROM code protect disabled<br>1 : ROMCP1 enabled                                                                                               | RW |
|  |             | ROMCP1        | ROM code protect bit                                    | 0 : ROM code protect enabled<br>1 : ROM code protect disabled                                                                                     | RW |
|  |             | (b4)          | Reserved bit                                            | Set to 1.                                                                                                                                         | RW |
|  |             | LVDOON        | Voltage detection 0<br>circuit start bit <sup>(2)</sup> | <ul> <li>0 : Voltage monitor 0 reset enabled after hardw are reset</li> <li>1 : Voltage monitor 0 reset disabled after hardw are reset</li> </ul> | RW |
|  |             | (b6)          | Reserved bit                                            | Set to 1.                                                                                                                                         | RW |
|  |             | CSPROINI      | Count source protect<br>mode after reset select<br>bit  | 0 : Count source protect mode enabled after reset<br>1 : Count source protect mode disabled after reset                                           | RW |

2. Setting the LVD0ON bit is only valid after a hardware reset. To use the power-on reset, set the LVD0ON bit to 0 (voltage monitor 0 reset enabled after hardware reset).

3. If the block including the OFS register is erased, FFh is set to the OFS register.

Figure 15.2 OFS Register

#### 15.3 Notes on Option Function Select Area

#### 15.3.1 Setting Example of Option Function Select Area

As the option function select area is allocated in the flash memory (not in the SFRs), they cannot be rewritten by executing an instruction. Write appropriate values when creating a program. The following shows a setting example.

• To set FFh in the OFS register .org 00FFFCH .lword reset | (0FF000000h) ; RESET (Programming formats vary depending on the compiler. Check the compiler manual.)

# 16. Watchdog Timer

The watchdog timer is a function that detects when a program is out of control. Use of the watchdog timer is recommended to improve the reliability of the system. The watchdog timer contains a 15-bit counter and allows selection of count source protection mode enable or disable.

Table 16.1 lists information on the Watchdog Timer Specifications for R8C/2H Group and Table 16.2 lists information on the Watchdog Timer Specifications for R8C/2J Group.

Refer to **5.6 Watchdog Timer Reset** for details on the watchdog timer.

Figure 16.1 shows the Block Diagram of Watchdog Timer for R8C/2H Group and Figure 16.2 shows the Block Diagram of Watchdog Timer for R8C/2J Group. Figure 16.3 shows the Registers WDTR, and WDTS. Figure 16.4 shows the WDC Register. Figure 16.5 shows the CSPR Register. Figure 16.6 shows the OFS Register.

| Item                                 | Count Source Protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | Count Source Protection      |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------|
| nem                                  | Mode Disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | Mode Enabled                 |
| Count source                         | CPU clock XCIN clock divided by 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | Low-speed on-chip oscillator |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (fC32)         | clock                        |
| Count operation                      | Decrement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                              |
| Count start condition                | Either of the following ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | an be selected |                              |
|                                      | <ul> <li>After reset, count starts</li> <li>Count starts by writing</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2              |                              |
| Count stop condition                 | Stop mode, wait mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stop mode      | None                         |
| Reset condition of<br>watchdog timer | Reset     Write 00h to the WDTR register before writing FFh     Underflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                              |
| Operation at the time of underflow   | Watchdog timer interrupt or watchdog timer reset Watchdog timer reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                              |
| Select functions                     | <ul> <li>Division ratio of prescaler (when select the CPU clock as the count source)<br/>Selected by the WDC7 bit in the WDC register</li> <li>The default value of the watchdog timer (when select fC32 as the count source)<br/>Selected by bits CVS0 to CVS1 in the CSPR register</li> <li>Count source protection mode</li> <li>Whether count source protection mode is enabled or disabled after a reset can<br/>be selected by the CSPROINI bit in the OFS register (flash memory). If count<br/>source protection mode is disabled after a reset, it can be enabled or disabled by<br/>the CSPRO bit in the CSPR register (program).</li> <li>Starts or stops of the watchdog timer after a reset<br/>Selected by the WDTON bit in the OFS register (flash memory).</li> </ul> |                |                              |

 Table 16.1
 Watchdog Timer Specifications for R8C/2H Group



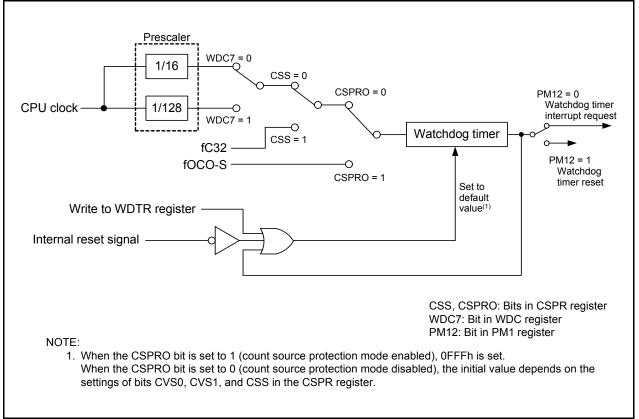
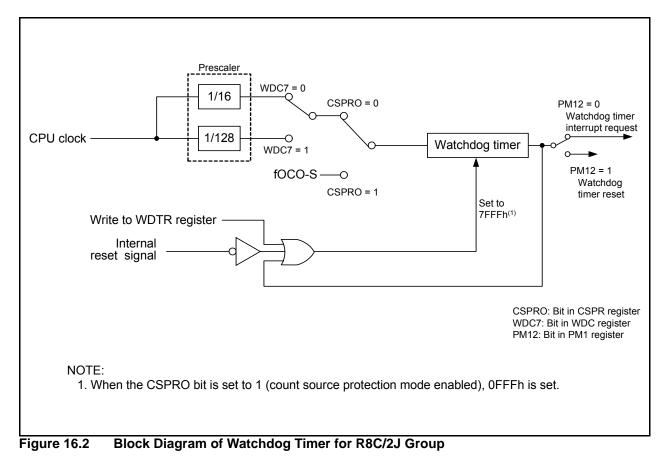
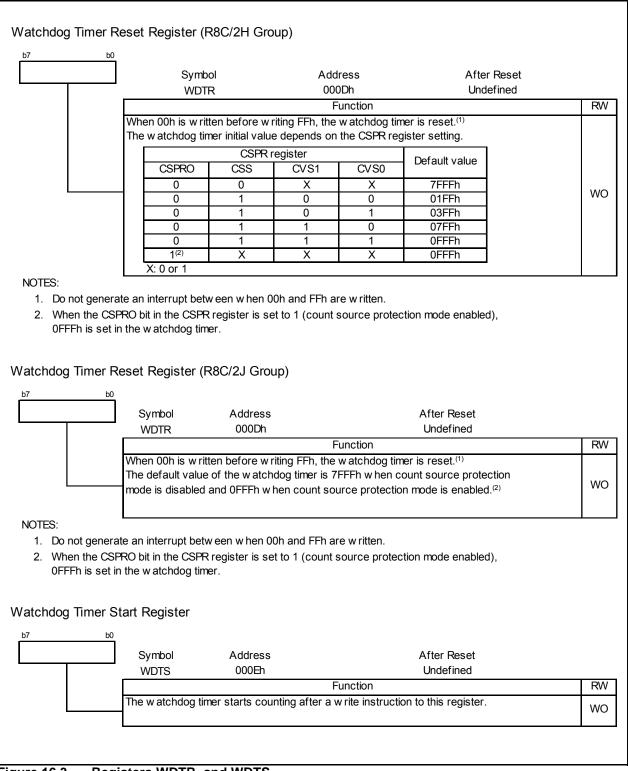
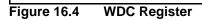





Figure 16.1 Block Diagram of Watchdog Timer for R8C/2H Group


| Item                               | Count Source Protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Count Source Protection      |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|
|                                    | Mode Disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mode Enabled                 |  |
| Count source                       | CPU clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Low-speed on-chip oscillator |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | clock                        |  |
| Count operation                    | Decrement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |  |
| Count start condition              | Either of the following can be selec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cted                         |  |
|                                    | <ul> <li>After reset, count starts automatically</li> <li>Count starts by writing to WDTS register</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |  |
| Count stop condition               | Stop mode, wait mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | None                         |  |
| Reset condition of watchdog timer  | Reset     Write 00h to the WDTR register before writing FFh     Underflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |  |
| Operation at the time of underflow | Watchdog timer interrupt or<br>watchdog timer reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Watchdog timer reset         |  |
| Select functions                   | <ul> <li>Division ratio of prescaler (when select the CPU clock as the count source)</li> <li>Selected by the WDC7 bit in the WDC register</li> <li>Count source protection mode</li> <li>Whether count source protection mode is enabled or disabled after a reset can be selected by the CSPROINI bit in the OFS register (flash memory). If count source protection mode is disabled after a reset, it can be enabled or disabled by the CSPRO bit in the CSPR register (program).</li> <li>Starts or stops of the watchdog timer after a reset Selected by the WDTON bit in the OFS register (flash memory).</li> </ul> |                              |  |







| b7 b6 b | 5 b4 b3 b2 b1 b0 | -          |                                    |                                                |    |
|---------|------------------|------------|------------------------------------|------------------------------------------------|----|
| 0       | 0                | Symbol     | Address                            | After Reset                                    |    |
| TT      |                  | WDC        | 000Fh                              | 00X11111b                                      |    |
|         |                  | Bit Symbol | Bit Name                           | Function                                       | RW |
|         |                  |            | High-order bits of w atchdog timer |                                                | RO |
|         |                  | (b5)       | Reserved bit                       | Set to 0. When read, the content is undefined. | RW |
|         |                  | (b6)       | Reserved bit                       | Set to 0.                                      | RW |
|         |                  | WDC7       | Prescaler select bit               | 0 : Divide-by-16<br>1 : Divide-by-128          | RW |



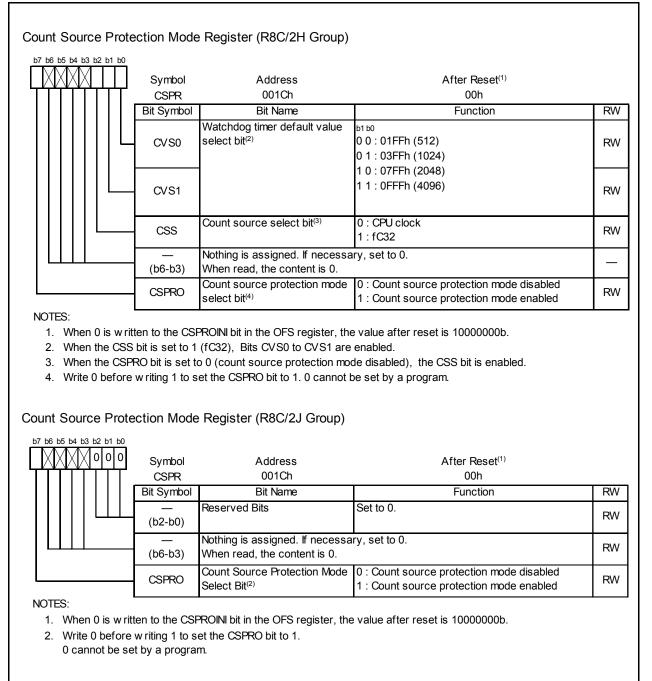
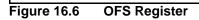




Figure 16.5 CSPR Register

| TT | 5 b4 b3 b2 b1 b0 |            |                                                         |                                                                                                                                                   |    |
|----|------------------|------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1  | 1 1              | Symbol     | Address                                                 | When Shipping                                                                                                                                     |    |
|    |                  | OFS        | 0FFFFh                                                  | FFh <sup>(3)</sup>                                                                                                                                |    |
|    |                  | Bit Symbol | Bit Name                                                | Function                                                                                                                                          | RV |
|    |                  | WDTON      | Watchdog timer start<br>select bit                      | 0 : Starts w atchdog timer automatically after reset<br>1 : Watchdog timer is inactive after reset                                                | RV |
|    |                  | —<br>(b1)  | Reserved bit                                            | Set to 1.                                                                                                                                         | RV |
|    |                  | ROMCR      | ROM code protect<br>disabled bit                        | 0 : ROM code protect disabled<br>1 : ROMCP1 enabled                                                                                               | RV |
|    |                  | ROMCP1     | ROM code protect bit                                    | 0 : ROM code protect enabled<br>1 : ROM code protect disabled                                                                                     | RV |
|    |                  | (b4)       | Reserved bit                                            | Set to 1.                                                                                                                                         | RV |
|    |                  | LVDOON     | Voltage detection 0<br>circuit start bit <sup>(2)</sup> | <ul> <li>0 : Voltage monitor 0 reset enabled after hardw are reset</li> <li>1 : Voltage monitor 0 reset disabled after hardw are reset</li> </ul> | RV |
|    |                  | (b6)       | Reserved bit                                            | Set to 1.                                                                                                                                         | RV |
|    |                  | CSPROINI   | Count source protect<br>mode after reset select<br>bit  | <ul><li>0 : Count source protect mode enabled after reset</li><li>1 : Count source protect mode disabled after reset</li></ul>                    | RV |

2. Setting the LVD0ON bit is only valid after a hardware reset. To use the power-on reset, set the LVD0ON bit to 0 (voltage monitor 0 reset enabled after hardware reset).

3. If the block including the OFS register is erased, FFh is set to the OFS register.



#### 16.1 Count Source Protection Mode Disabled (R8C/2H Group)

The count source of the watchdog timer is either the CPU clock or the XCIN clock divided by 32 (fC32) can be selected when count source protection mode for the R8C/2H Group is disabled. fC32 does not stop in wait mode, the watchdog timer to count continues.

Table 16.3 lists the Watchdog Timer Specifications (with Count Source Protection Mode Disabled) for R8C/2H Group.

#### Table 16.3 Watchdog Timer Specifications (with Count Source Protection Mode Disabled) for R8C/2H Group

| Item                                    | Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                  |  |  |  |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Count source                            | CPU clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | XCIN clock divided by 32 (fC32)                                                                                                                                                                  |  |  |  |
| Count operation                         | Decrement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                  |  |  |  |
| Period                                  | $\frac{\text{Division ratio of prescaler (n)}}{\text{CPU clock}} \times \frac{\text{count value of watchdog}}{\text{timer (32768)}^{(1, 2)}}$                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{32}{\text{XCIN clock}}$ × count value of watchdog timer (m) <sup>(</sup>                                                                                                                  |  |  |  |
|                                         | n: 16 or 128 (selected by WDC7 bit in WDC<br>register)<br>Example: When the CPU clock frequency is 8 MHz<br>and prescaler divided by 16, the period is<br>approximately 65.5 ms                                                                                                                                                                                                                                                                                                                                                      | m: 512, 1024, 2048 or 4096 (selected by bits<br>CVS0 to CVS1 in the CSPR register)<br>Example: When the XCIN clock frequency is<br>32.768 kHz and the count value by<br>512, the period is 0.5 s |  |  |  |
| Reset condition<br>of watchdog<br>timer | <ul> <li>Reset</li> <li>Write 00h to the WDTR register before writing FFh</li> <li>Underflow</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                  |  |  |  |
| Count start<br>condition                | <ul> <li>The WDTON bit<sup>(3)</sup> in the OFS register (0FFFFh) selects the operation of the watchdog timer after a reset</li> <li>When the WDTON bit is set to 1 (watchdog timer is in stop state after reset)</li> <li>The watchdog timer and prescaler stop after a reset and the count starts when the WDTS register is written to</li> <li>When the WDTON bit is set to 0 (watchdog timer starts automatically after exiting)</li> <li>The watchdog timer and prescaler start counting automatically after a reset</li> </ul> |                                                                                                                                                                                                  |  |  |  |
| Count stop condition                    | Stop and wait modes (inherit the count from the held value after exiting modes)                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stop mode (inherit the count from the held value after exiting modes)                                                                                                                            |  |  |  |
| Operation at<br>time of<br>underflow    | <ul> <li>When the PM12 bit in the PM1 register is set to 0<br/>Watchdog timer interrupt</li> <li>When the PM12 bit in the PM1 register is set to 1<br/>Watchdog timer reset (refer to 5.6 Watchdog Timer)</li> </ul>                                                                                                                                                                                                                                                                                                                 | ner Reset)                                                                                                                                                                                       |  |  |  |

NOTES:

1. The watchdog timer is reset when 00h is written to the WDTR register before FFh.

2. The prescaler is reset after the MCU is reset. Some errors in the period of the watchdog timer may be caused by the prescaler.

3. The WDTON bit cannot be changed by a program. To set the WDTON bit, write 0 to bit 0 of address 0FFFFh with a flash programmer.

#### 16.2 Count Source Protection Mode Disabled (R8C/2J Group)

The count source of the watchdog timer is the CPU clock when count source protection mode for the R8C/2J Group is disabled.

Table 16.4 lists the Watchdog Timer Specifications (with Count Source Protection Mode Disabled) for R8C/2J Group.

# Table 16.4Watchdog Timer Specifications (with Count Source Protection Mode Disabled) for<br/>R8C/2J Group

| Item                           | Specification                                                                                                 |  |  |
|--------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|
| Count source                   | CPU clock                                                                                                     |  |  |
| Count operation                | Decrement                                                                                                     |  |  |
| Period                         | Division ratio of prescaler (n) × count value of watchdog timer (32768) <sup>(1)</sup>                        |  |  |
|                                | CPU clock                                                                                                     |  |  |
|                                | n: 16 or 128 (selected by WDC7 bit in WDC register)                                                           |  |  |
|                                | Example: When the CPU clock frequency is 8 MHz and prescaler                                                  |  |  |
|                                | divides by 16, the period is approximately 65.5 ms                                                            |  |  |
| Reset condition of watchdog    | • Reset                                                                                                       |  |  |
| timer                          | Write 00h to the WDTR register before writing FFh                                                             |  |  |
|                                | • Underflow                                                                                                   |  |  |
| Count start condition          | The WDTON bit <sup>(2)</sup> in the OFS register (0FFFFh) selects the operation                               |  |  |
|                                | of the watchdog timer after a reset                                                                           |  |  |
|                                | • When the WDTON bit is set to 1 (watchdog timer is in stop state after reset)                                |  |  |
|                                | The watchdog timer and prescaler stop after a reset and the count starts when the WDTS register is written to |  |  |
|                                | • When the WDTON bit is set to 0 (watchdog timer starts automatically after exiting)                          |  |  |
|                                | The watchdog timer and prescaler start counting automatically after a reset                                   |  |  |
| Count stop condition           | Stop and wait modes (inherit the count from the held value after exiting modes)                               |  |  |
| Operation at time of underflow | When the PM12 bit in the PM1 register is set to 0                                                             |  |  |
|                                | Watchdog timer interrupt                                                                                      |  |  |
|                                | <ul> <li>When the PM12 bit in the PM1 register is set to 1</li> </ul>                                         |  |  |
|                                | Watchdog timer reset (refer to 5.6 Watchdog Timer Reset)                                                      |  |  |

NOTES:

- 1. The watchdog timer is reset when 00h is written to the WDTR register before FFh. The prescaler is reset after the MCU is reset. Some errors in the period of the watchdog timer may be caused by the prescaler.
- 2. The WDTON bit cannot be changed by a program. To set the WDTON bit, write 0 to bit 0 of address 0FFFFh with a flash programmer.

### 16.3 Count Source Protection Mode Enabled

The count source of the watchdog timer is the low-speed on-chip oscillator clock when count source protection mode is enabled. If the CPU clock stops when a program is out of control, the clock can still be supplied to the watchdog timer.

Table 16.5 lists the Watchdog Timer Specifications (with Count Source Protection Mode Enabled).

| Item                           | Specification                                                                                        |  |  |
|--------------------------------|------------------------------------------------------------------------------------------------------|--|--|
| Count source                   | Low-speed on-chip oscillator clock                                                                   |  |  |
| Count operation                | Decrement                                                                                            |  |  |
| Period                         | Count value of watchdog timer (4096)                                                                 |  |  |
|                                | Low-speed on-chip oscillator clock                                                                   |  |  |
|                                | Example: Period is approximately 32.8 ms when the low-speed on-                                      |  |  |
|                                | chip oscillator clock frequency is 125 kHz                                                           |  |  |
| Reset condition of watchdog    | • Reset                                                                                              |  |  |
| timer                          | <ul> <li>Write 00h to the WDTR register before writing FFh</li> </ul>                                |  |  |
|                                | Underflow                                                                                            |  |  |
| Count start condition          | The WDTON bit <sup>(1)</sup> in the OFS register (0FFFFh) selects the operation                      |  |  |
|                                | of the watchdog timer after a reset.                                                                 |  |  |
|                                | <ul> <li>When the WDTON bit is set to 1 (watchdog timer is in stop state<br/>after reset)</li> </ul> |  |  |
|                                | The watchdog timer and prescaler stop after a reset and the count                                    |  |  |
|                                | starts when the WDTS register is written to                                                          |  |  |
|                                | <ul> <li>When the WDTON bit is set to 0 (watchdog timer starts</li> </ul>                            |  |  |
|                                | automatically after reset)                                                                           |  |  |
|                                | The watchdog timer and prescaler start counting automatically after a reset                          |  |  |
| Count stop condition           | None (The count does not stop in wait mode after the count starts.                                   |  |  |
|                                | The MCU does not enter stop mode.)                                                                   |  |  |
| Operation at time of underflow | Watchdog timer reset (refer to 5.6 Watchdog Timer Reset)                                             |  |  |
| Registers, bits                | • When setting the CSPPRO bit in the CSPR register to 1 (count                                       |  |  |
|                                | source protection mode is enabled) <sup>(2)</sup> , the following are set                            |  |  |
|                                | automatically                                                                                        |  |  |
|                                | - Set 0FFFh to the watchdog timer                                                                    |  |  |
|                                | <ul> <li>Set the CM14 bit in the CM1 register to 0 (low-speed on-chip oscillator on)</li> </ul>      |  |  |
|                                | - Set the PM12 bit in the PM1 register to 1 (The watchdog timer is                                   |  |  |
|                                | reset when watchdog timer underflows)                                                                |  |  |
|                                | • The following conditions apply in count source protection mode                                     |  |  |
|                                | - Writing to the CM10 bit in the CM1 register is disabled (It remains                                |  |  |
|                                | unchanged even if it is set to 1. The MCU does not enter stop                                        |  |  |
|                                | mode.)                                                                                               |  |  |
|                                | - Writing to the CM14 bit in the CM1 register is disabled (It remains                                |  |  |
|                                | unchanged even if it is set to 1. The low-speed on-chip oscillator                                   |  |  |
|                                | does not stop.)                                                                                      |  |  |

 Table 16.5
 Watchdog Timer Specifications (with Count Source Protection Mode Enabled)

NOTES:

- 1. The WDTON bit cannot be changed by a program. To set the WDTON bit, write 0 to bit 0 of address 0FFFFh with a flash programmer.
- Even if 0 is written to the CSPROINI bit in the OFS register, the CSPRO bit is set to 1. The CSPROINI bit cannot be changed by a program. To set the CSPROINI bit, write 0 to bit 7 of address 0FFFFh with a flash programmer.

The MCU has two 8-bit timers with 8-bit prescalers and one 16-bit timer. Additionally, a timer with a 4-bit counter and an 8-bit counter are implemented in the R8C/2H Group. The two 8-bit timers with 8-bit prescalers are timer RA and timer RB. These timers contain a reload register to store the default value of the counter. The one 16-bit timer is timer RF and have input capture and output compare functions. The 4-bit and 8-bit counters in the R8C/2H Group compose timer RE, which has an output compare function. All the timers operate independently. Table 17.1 lists Functional Comparison of Timers.

| Item              |                                                   | Timer RA                                                                | Timer RB                                                                                       | Timer RE <sup>(2)</sup>            | Timer RF                                                                                 |
|-------------------|---------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------|
| Configuration     |                                                   | 8-bit timer with 8-bit<br>prescaler (with reload<br>register)           | 8-bit timer with 8-bit<br>prescaler (with reload<br>register)                                  | 4-bit counter<br>8-bit counter     | 16-bit timer (with<br>input capture and<br>output compare)                               |
| Count             |                                                   | Decrement                                                               | Decrement                                                                                      | Increment                          | Increment                                                                                |
| Count sources     |                                                   | • f1<br>• f2<br>• f8<br>• fOCO<br>• fC32 <sup>(3)</sup>                 | • f1<br>• f2<br>• f8<br>• Timer RA underflow                                                   | • f4<br>• f8<br>• f32<br>• fC4     | • f1<br>• f8<br>• f32                                                                    |
| Function          | Count of the internal count source                | Timer mode                                                              | Timer mode                                                                                     | —                                  | Output compare mode                                                                      |
|                   | Count of the external count source                | Event counter mode                                                      | _                                                                                              | —                                  | —                                                                                        |
|                   | External<br>pulse width/<br>period<br>measurement | Pulse width<br>measurement mode,<br>pulse period<br>measurement mode    | —                                                                                              | —                                  | Input capture mode                                                                       |
|                   | PWM output                                        | Pulse output mode <sup>(1)</sup> ,<br>Event counter mode <sup>(1)</sup> | Programmable<br>waveform generation<br>mode                                                    | Output compare mode <sup>(1)</sup> | Output compare mode                                                                      |
|                   | One-shot<br>waveform<br>output                    |                                                                         | Programmable one-<br>shot generation mode,<br>Programmable wait<br>one-shot generation<br>mode | —                                  | _                                                                                        |
|                   | Timer                                             | Timer mode (only fC32 count)                                            | —                                                                                              | Real-time clock mode               | —                                                                                        |
| Input pin         |                                                   | TRAIO                                                                   | INTO                                                                                           | _                                  | TRFI                                                                                     |
| Output pin        |                                                   | TRAO<br>TRAIO                                                           | TRBO                                                                                           | -                                  | TRFO00 to TRFO02,<br>TRFO10 to TRFO11                                                    |
| Related interrupt |                                                   | Timer RA interrupt,<br>INT1 interrupt                                   | Timer RB interrupt,<br>INT0 interrupt                                                          | Timer RE interrupt                 | Timer RF interrupt,<br>Compare 0 interrupt,<br>Compare 1 interrupt,<br>Capture interrupt |
| Timer stop        |                                                   | Provided                                                                | Provided                                                                                       | Provided                           | Provided                                                                                 |

 Table 17.1
 Functional Comparison of Timers

NOTES:

1. Rectangular waves are output in these modes. Since the waves are inverted at each overflow, the "H" and "L" level widths of the pulses are the same.

2. Implemented in the R8C/2H Group only.

3. Available in the R8C/2H Group only.

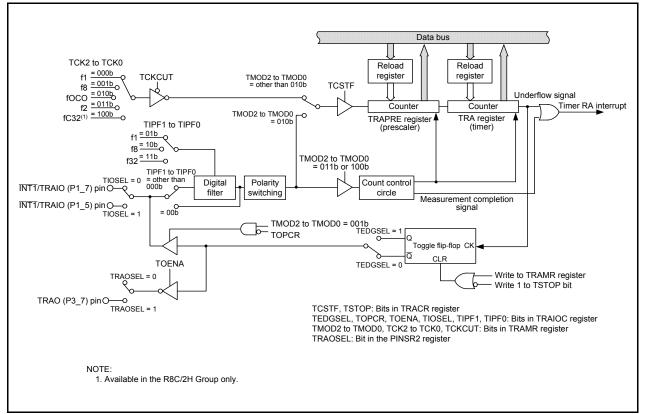
#### 17.1 Timer RA

Timer RA is an 8-bit timer with an 8-bit prescaler.

The prescaler and timer each consist of a reload register and counter. The reload register and counter are allocated at the same address, and can be accessed when accessing registers TRAPRE and TRA (refer to **Tables 17.2 to 17.6 the Specifications of Each Mode**).

The count source for timer RA is the operating clock that regulates the timing of timer operations such as counting and reloading.

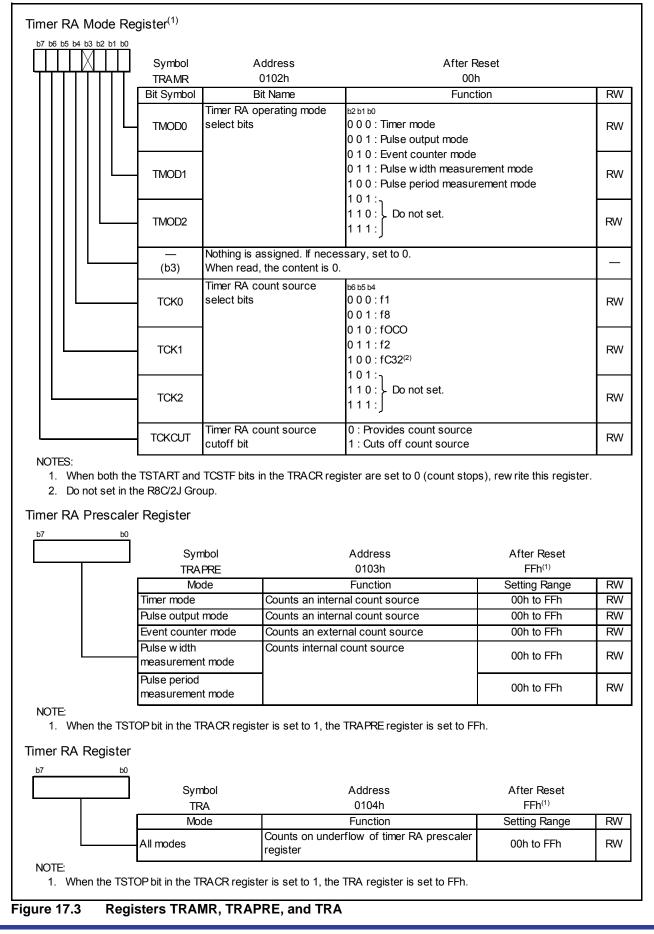
Figure 17.1 shows a Block Diagram of Timer RA. Figures 17.2 and 17.3 show the registers associated with timer RA.


Timer RA has the following five operating modes:

• Timer mode:

• Pulse output mode:

- The timer counts the internal count source.
- The timer counts the internal count source and outputs pulses of which polarity inverted by underflow of the timer.
- Event counter mode:
- The timer counts external pulses.
- Pulse width measurement mode:Pulse period measurement mode:


The timer measures the pulse width of an external pulse. The timer measures the pulse period of an external pulse.





|                                                  |                                                                                         |                                                                               | Symbol                                                                                                                                                                                              | Address                                                                                                                                                                                                                                                                                                                           | After Reset                                                                                                                                                                                                                                                             |                  |
|--------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                                                  |                                                                                         |                                                                               | TRACR                                                                                                                                                                                               | 0100h                                                                                                                                                                                                                                                                                                                             | 00h                                                                                                                                                                                                                                                                     |                  |
|                                                  |                                                                                         |                                                                               | Bit Symbol                                                                                                                                                                                          | Bit Name                                                                                                                                                                                                                                                                                                                          | Function                                                                                                                                                                                                                                                                | R\               |
|                                                  |                                                                                         |                                                                               | TSTART                                                                                                                                                                                              | Timer RA count start bit <sup>(1)</sup>                                                                                                                                                                                                                                                                                           | 0 : Count stops<br>1 : Count starts                                                                                                                                                                                                                                     | R\               |
|                                                  |                                                                                         |                                                                               | TCSTF                                                                                                                                                                                               | Timer RA count status flag <sup>(1)</sup>                                                                                                                                                                                                                                                                                         | 0 : Count stops<br>1 : During count                                                                                                                                                                                                                                     | R                |
|                                                  |                                                                                         |                                                                               | TSTOP                                                                                                                                                                                               | Timer RA count forcible stop bit <sup>(2)</sup>                                                                                                                                                                                                                                                                                   | When this bit is set to 1, the count is forcibly stopped. When read, its content is 0.                                                                                                                                                                                  | RV               |
|                                                  |                                                                                         |                                                                               | (b3)                                                                                                                                                                                                | Nothing is assigned. If necess When read, the content is 0.                                                                                                                                                                                                                                                                       | sary, set to 0.                                                                                                                                                                                                                                                         | -                |
|                                                  |                                                                                         |                                                                               | TEDGF                                                                                                                                                                                               | Active edge judgment<br>flag <sup>(3, 5)</sup>                                                                                                                                                                                                                                                                                    | 0 : Active edge not received<br>1 : Active edge received<br>(end of measurement period)                                                                                                                                                                                 | R\               |
| L                                                |                                                                                         |                                                                               | TUNDF                                                                                                                                                                                               | Timer RA underflow flag <sup>(3, 5)</sup>                                                                                                                                                                                                                                                                                         | 0 : No underflow<br>1 : Underflow                                                                                                                                                                                                                                       | R\               |
|                                                  |                                                                                         |                                                                               | <br>(b7-b6)                                                                                                                                                                                         | Nothing is assigned. If necess<br>When read, the content is 0.                                                                                                                                                                                                                                                                    | sary, set to 0.                                                                                                                                                                                                                                                         | -                |
| 2. V<br>r<br>3. E<br>u<br>4. Ir                  | Refer to<br>When th<br>reset.<br>Bits TEL<br>unchan<br>n pulse<br>register              | he TST<br>DGF an<br>iged wh<br>width<br>r. If it is                           | d TUNDF can<br>nen 1 is w ritte<br>measurement<br>necessary to                                                                                                                                      | <ul> <li>b 1, bits TSTART and TCSTF and</li> <li>be set to 0 by writing 0 to thesen.</li> <li>mode and pulse period measu</li> </ul>                                                                                                                                                                                              | nd registers TRAPRE and TRA are set to the value<br>e bits by a program. How ever, their value remains<br>prement mode, use the MOV instruction to set the <sup>-</sup><br>bits TEDGF and TUNDF, w rite 1 to them.<br>er mode.                                          | 6                |
| 1. F<br>2. V<br>7.<br>3. E<br>0<br>4. Ir<br>5. S | Refer to<br>When th<br>reset.<br>Bits TEL<br>unchan<br>n pulse<br>register<br>Set to 0  | he TST<br>DGF an<br>ged w l<br>w idth<br>r. If it is<br>) in time             | OP bit is set to<br>d TUNDF can<br>nen 1 is w ritte<br>measurement<br>necessary to                                                                                                                  | <ul> <li>b 1, bits TSTART and TCSTF and be set to 0 by writing 0 to thesen.</li> <li>c mode and pulse period measure avoid changing the values of be</li> </ul>                                                                                                                                                                   | e bits by a program. How ever, their value remains<br>rement mode, use the MOV instruction to set the <sup>–</sup><br>bits TEDGF and TUNDF, w rite 1 to them.                                                                                                           | 6                |
| 1. F<br>2. V<br>7.<br>3. E<br>0<br>4. Ir<br>5. S | Refer to<br>When the<br>reset.<br>Bits TEL<br>unchan<br>n pulse<br>register<br>Set to 0 | he TST<br>DGF an<br>iged w l<br>e w idth<br>r. If it is<br>) in time<br>Contr | OP bit is set to<br>d TUNDF can<br>men 1 is w ritte<br>measurement<br>necessary to<br>r mode, pulse<br>ol Register                                                                                  | o 1, bits TSTART and TCSTF an<br>be set to 0 by w riting 0 to thes<br>en.<br>mode and pulse period measu<br>avoid changing the values of t<br>output mode, and event counte                                                                                                                                                       | e bits by a program. How ever, their value remains<br>rement mode, use the MOV instruction to set the <sup>-</sup><br>bits TEDGF and TUNDF, w rite 1 to them.<br>er mode.                                                                                               | 6                |
| 1. F<br>2. V<br>7<br>3. E<br>0<br>4. Ir<br>5. S  | Refer to<br>When the<br>reset.<br>Bits TEL<br>unchan<br>n pulse<br>register<br>Set to 0 | he TST<br>DGF an<br>iged w l<br>e w idth<br>r. If it is<br>) in time<br>Contr | OP bit is set to<br>d TUNDF can<br>neen 1 is w ritte<br>measurement<br>necessary to<br>r mode, pulse<br>ol Register<br>Symbol                                                                       | Address                                                                                                                                                                                                                                                                                                                           | e bits by a program. How ever, their value remains<br>rement mode, use the MOV instruction to set the <sup>-</sup><br>bits TEDGF and TUNDF, w rite 1 to them.<br>er mode.<br>After Reset                                                                                | 6                |
| 1. F<br>2. V<br>7<br>3. E<br>0<br>4. Ir<br>5. S  | Refer to<br>When the<br>reset.<br>Bits TEL<br>unchan<br>n pulse<br>register<br>Set to 0 | he TST<br>DGF an<br>iged w l<br>e w idth<br>r. If it is<br>) in time<br>Contr | DP bit is set to<br>d TUNDF can<br>neen 1 is w ritte<br>measurement<br>necessary to<br>r mode, pulse<br>ol Register<br>Symbol<br>TRAIOC                                                             | Address<br>01, bits TSTART and TCSTF and<br>be set to 0 by writing 0 to thesen.<br>The output mode and pulse period measu<br>avoid changing the values of the<br>output mode, and event counter                                                                                                                                   | e bits by a program. How ever, their value remains<br>rement mode, use the MOV instruction to set the <sup>-</sup><br>bits TEDGF and TUNDF, w rite 1 to them.<br>er mode.<br>After Reset<br>00h                                                                         | S<br>TRACF       |
| 1. F<br>2. V<br>7<br>3. E<br>0<br>4. Ir<br>5. S  | Refer to<br>When the<br>reset.<br>Bits TEL<br>unchan<br>n pulse<br>register<br>Set to 0 | he TST<br>DGF an<br>iged w l<br>e w idth<br>r. If it is<br>) in time<br>Contr | OP bit is set to<br>d TUNDF can<br>neen 1 is w ritte<br>measurement<br>necessary to<br>r mode, pulse<br>ol Register<br>Symbol                                                                       | Address<br>01, bits TSTART and TCSTF and<br>be set to 0 by writing 0 to thes<br>on.<br>node and pulse period measu<br>avoid changing the values of t<br>output mode, and event count<br>Address<br>0101h<br>Bit Name                                                                                                              | e bits by a program. How ever, their value remains<br>rement mode, use the MOV instruction to set the <sup>-</sup><br>bits TEDGF and TUNDF, w rite 1 to them.<br>er mode.<br>After Reset                                                                                | S<br>IRACF       |
| 1. F<br>2. V<br>7<br>3. E<br>0<br>4. Ir<br>5. S  | Refer to<br>When the<br>reset.<br>Bits TEL<br>unchan<br>n pulse<br>register<br>Set to 0 | he TST<br>DGF an<br>iged w l<br>e w idth<br>r. If it is<br>) in time<br>Contr | DP bit is set to<br>d TUNDF can<br>nen 1 is writte<br>measurement<br>necessary to<br>r mode, pulse<br>ol Register<br>Symbol<br>TRAIOC<br>Bit Symbol                                                 | Address<br>010, bits TSTART and TCSTF and<br>be set to 0 by writing 0 to thes<br>on.<br>The output mode, and event counter<br>Address<br>0101h<br>Bit Name                                                                                                                                                                        | e bits by a program. How ever, their value remains<br>rement mode, use the MOV instruction to set the <sup>-</sup><br>bits TEDGF and TUNDF, w rite 1 to them.<br>er mode.<br>After Reset<br>00h<br>Function                                                             | S<br>IRACF       |
| 1. F<br>2. V<br>7<br>3. E<br>0<br>4. Ir<br>5. S  | Refer to<br>When the<br>reset.<br>Bits TEL<br>unchan<br>n pulse<br>register<br>Set to 0 | he TST<br>DGF an<br>iged w l<br>e w idth<br>r. If it is<br>) in time<br>Contr | DP bit is set to<br>d TUNDF can<br>nen 1 is writte<br>measurement<br>necessary to<br>r mode, pulse<br>ol Register<br>Symbol<br>TRAIOC<br>Bit Symbol<br>TEDGSEL                                      | Address<br>01, bits TSTART and TCSTF and<br>be set to 0 by writing 0 to thesen.<br>mode and pulse period measu<br>avoid changing the values of the<br>output mode, and event counter<br>Address<br>0101h<br>Bit Name<br>TRAIO polarity switch bit                                                                                 | e bits by a program. How ever, their value remains<br>rement mode, use the MOV instruction to set the <sup>-</sup><br>bits TEDGF and TUNDF, w rite 1 to them.<br>er mode.<br>After Reset<br>00h<br>Function                                                             | s<br>IRACF       |
| 1. F<br>2. V<br>3. E<br>U<br>4. Ir<br>5. S       | Refer to<br>When the<br>reset.<br>Bits TEL<br>unchan<br>n pulse<br>register<br>Set to 0 | he TST<br>DGF an<br>iged w l<br>e w idth<br>r. If it is<br>) in time<br>Contr | DP bit is set to<br>d TUNDF can<br>nen 1 is writte<br>measurement<br>necessary to<br>r mode, pulse<br>ol Register<br>Symbol<br>TRAIOC<br>Bit Symbol<br>TEDGSEL<br>TOPCR                             | Address<br>01, bits TSTART and TCSTF and<br>be set to 0 by writing 0 to thesen.<br>mode and pulse period measu<br>avoid changing the values of the<br>output mode, and event counter<br>Address<br>0101h<br>Bit Name<br>TRAIO polarity switch bit<br>TRAIO output control bit                                                     | e bits by a program. How ever, their value remains<br>rement mode, use the MOV instruction to set the <sup>-</sup><br>bits TEDGF and TUNDF, w rite 1 to them.<br>er mode.<br>After Reset<br>00h<br>Function                                                             | S<br>IRACF       |
| 1. F<br>2. V<br>7<br>3. E<br>0<br>4. Ir<br>5. S  | Refer to<br>When the<br>reset.<br>Bits TEL<br>unchan<br>n pulse<br>register<br>Set to 0 | he TST<br>DGF an<br>iged w l<br>e w idth<br>r. If it is<br>) in time<br>Contr | DP bit is set to<br>d TUNDF can<br>nen 1 is writte<br>measurement<br>necessary to<br>r mode, pulse<br>ol Register<br>Symbol<br>TRAIOC<br>Bit Symbol<br>TEDGSEL<br>TOPCR<br>TOENA                    | Address<br>010, bits TSTART and TCSTF and<br>be set to 0 by writing 0 to thesen.<br>The mode and pulse period measures<br>avoid changing the values of the<br>output mode, and event counter<br>Address<br>0101h<br>Bit Name<br>TRAIO polarity switch bit<br>TRAIO output control bit<br>TRAIO output enable bit                  | e bits by a program. How ever, their value remains<br>rement mode, use the MOV instruction to set the <sup>-</sup><br>bits TEDGF and TUNDF, w rite 1 to them.<br>er mode.<br>After Reset<br>00h<br>Function                                                             | 6                |
| 1. F<br>2. V<br>7<br>3. E<br>0<br>4. Ir<br>5. S  | Refer to<br>When the<br>reset.<br>Bits TEL<br>unchan<br>n pulse<br>register<br>Set to 0 | he TST<br>DGF an<br>iged w l<br>e w idth<br>r. If it is<br>) in time<br>Contr | DP bit is set to<br>d TUNDF can<br>nen 1 is writte<br>measurement<br>necessary to<br>r mode, pulse<br>ol Register<br>Symbol<br>TRAIOC<br>Bit Symbol<br>TEDGSEL<br>TOPCR<br>TOENA<br>TIOSEL<br>TIPF0 | Address<br>01, bits TSTART and TCSTF and<br>be set to 0 by writing 0 to thesen.<br>mode and pulse period measu<br>avoid changing the values of the<br>output mode, and event counter<br>Address<br>0101h<br>Bit Name<br>TRAIO polarity switch bit<br>TRAIO output control bit<br>TRAIO output enable bit<br>INT1/TRAIO select bit | e bits by a program. How ever, their value remains<br>rement mode, use the MOV instruction to set the <sup>-</sup><br>bits TEDGF and TUNDF, w rite 1 to them.<br>er mode.<br>After Reset<br>00h<br>Function<br>Function<br>Function varies depending on operating mode. | R<br>R<br>R<br>R |

٦



## 17.1.1 Timer Mode

In this mode, the timer counts an internally generated count source (refer to **Table 17.2 Timer Mode Specifications**).

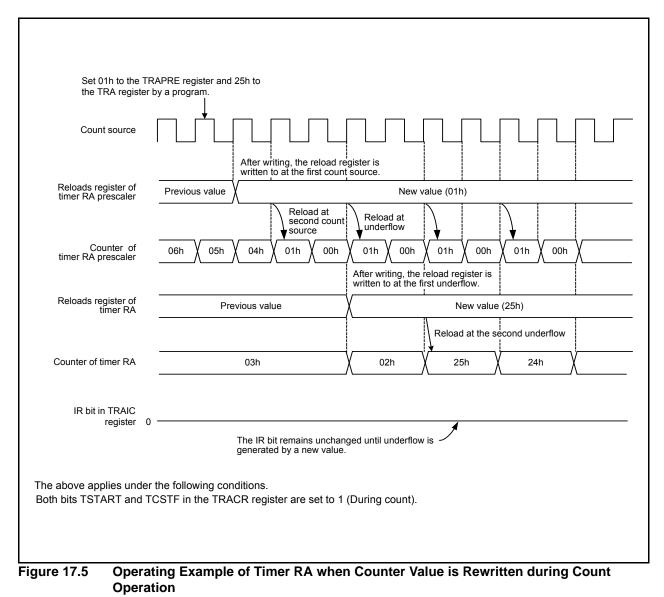
Figure 17.4 shows TRAIOC Register in Timer Mode.

|  | Table 17.2 | Timer | Mode | <b>Specifications</b> |
|--|------------|-------|------|-----------------------|
|--|------------|-------|------|-----------------------|

| Item                                | Specification                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Count sources                       | f1, f2, f8, fOCO, fC32 <sup>(1)</sup>                                                                                                                                                                                                                                                                                                            |
| Count operations                    | <ul> <li>Decrement</li> <li>When the timer underflows, the contents of the reload register are reloaded<br/>and the count is continued.</li> </ul>                                                                                                                                                                                               |
| Divide ratio                        | 1/(n+1)(m+1)<br>n: Value set in TRAPRE register, m: Value set in TRA register                                                                                                                                                                                                                                                                    |
| Count start condition               | 1 (count starts) is written to the TSTART bit in the TRACR register.                                                                                                                                                                                                                                                                             |
| Count stop conditions               | <ul> <li>0 (count stops) is written to the TSTART bit in the TRACR register.</li> <li>1 (count forcibly stops) is written to the TSTOP bit in the TRACR register.</li> </ul>                                                                                                                                                                     |
| Interrupt request generation timing | When timer RA underflows [timer RA interrupt].                                                                                                                                                                                                                                                                                                   |
| INT1/TRAIO pin<br>function          | Programmable I/O port, or INT1 interrupt input                                                                                                                                                                                                                                                                                                   |
| TRAO pin function                   | Programmable I/O port                                                                                                                                                                                                                                                                                                                            |
| Read from timer                     | The count value can be read by reading registers TRA and TRAPRE.                                                                                                                                                                                                                                                                                 |
| Write to timer                      | <ul> <li>When registers TRAPRE and TRA are written while the count is stopped, values are written to both the reload register and counter.</li> <li>When registers TRAPRE and TRA are written during the count, values are written to the reload register and counter (refer to 17.1.1.1 Timer Write Control during Count Operation).</li> </ul> |

NOTE:

1. Available in the R8C/2H Group only.


| b3 b2 b1 b0 | Symbol      | Address                                                                                                                                                            | After Reset                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | TRAIOC      | 0101h                                                                                                                                                              | 00h                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             | Bit Symbol  | Bit Name                                                                                                                                                           | Function                                                                                                                                                                                                                                                                                                                                                              | RW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | TEDGSEL     | TRAIO polarity switch bit                                                                                                                                          | Set to 0 in timer mode.                                                                                                                                                                                                                                                                                                                                               | RW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | TOPCR       | TRAIO output control bit                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                       | RW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | TOENA       | TRAO output enable bit                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       | RW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | TIOSEL      | INT1/TRAIO select bit                                                                                                                                              | 0 : INT1/TRAIO pin (P1_7)<br>1 : INT1/TRAIO pin (P1_5)                                                                                                                                                                                                                                                                                                                | RW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | TIPF0       | TRAIO input filter select bits                                                                                                                                     | Set to 0 in timer mode.                                                                                                                                                                                                                                                                                                                                               | DW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | TIPF1       | 1                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                       | RW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | <br>(b7-b6) | Nothing is assigned. If neces When read, the content is 0.                                                                                                         | sary, set to 0.                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             |             | 0       0       0       Symbol         TRAIOC       Bit Symbol         Bit Symbol       TEDGSEL         TOPCR       TOENA         TIOSEL       TIPF0         TIPF1 | 0       0       0       Symbol       Address         TRAIOC       0101h         Bit Symbol       Bit Name         TEDGSEL       TRAIO polarity switch bit         TOPCR       TRAIO output control bit         TOENA       TRAO output enable bit         TIOSEL       INT1/TRAIO select bit         TIPF0       TRAIO input filter select bits         TIPF1       — | 0       0       0       0       Symbol       Address       After Reset         TRAIOC       0101h       00h         Bit Symbol       Bit Name       Function         TEDGSEL       TRAIO polarity switch bit       Set to 0 in timer mode.         TOPCR       TRAIO output control bit       TOENA         TOENA       TRAO output enable bit       0 : INT1/TRAIO pin (P1_7)         TIOSEL       TIPF0       TRAIO input filter select bits       0 : INT1/TRAIO pin (P1_5)         TIPF1       —       Nothing is assigned. If necessary, set to 0. |

| Figure 17.4 | TRAIOC Register in Timer Mode |
|-------------|-------------------------------|
|             |                               |

# 17.1.1.1 Timer Write Control during Count Operation

Timer RA has a prescaler and a timer (which counts the prescaler underflows). The prescaler and timer each consist of a reload register and a counter. When writing to the prescaler or timer, values are written to both the reload register and counter.

However, values are transferred from the reload register to the counter of the prescaler in synchronization with the count source. In addition, values are transferred from the reload register to the counter of the timer in synchronization with prescaler underflows. Therefore, if the prescaler or timer is written to when count operation is in progress, the counter value is not updated immediately after the WRITE instruction is executed. Figure 17.5 shows an Operating Example of Timer RA when Counter Value is Rewritten during Count Operation.



# 17.1.2 Pulse Output Mode

In pulse output mode, the internally generated count source is counted, and a pulse with inverted polarity is output from the TRAIO pin each time the timer underflows (refer to **Table 17.3 Pulse Output Mode Specifications**).

Figure 17.6 shows TRAIOC Register in Pulse Output Mode.

| Item                                | Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Count sources                       | f1, f2, f8, fOCO, fC32 <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Count operations                    | <ul> <li>Decrement</li> <li>When the timer underflows, the contents in the reload register is reloaded and<br/>the count is continued.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Divide ratio                        | 1/(n+1)(m+1)<br>n: Value set in TRAPRE register, m: Value set in TRA register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Count start condition               | 1 (count starts) is written to the TSTART bit in the TRACR register.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Count stop conditions               | <ul> <li>0 (count stops) is written to the TSTART bit in the TRACR register.</li> <li>1 (count forcibly stops) is written to the TSTOP bit in the TRACR register.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Interrupt request generation timing | When timer RA underflows [timer RA interrupt].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| INT1/TRAIO pin<br>function          | Pulse output, programmable output port, or INT1 interrupt <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TRAO pin function                   | Programmable I/O port or inverted output of TRAIO <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Read from timer                     | The count value can be read by reading registers TRA and TRAPRE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Write to timer                      | <ul> <li>When registers TRAPRE and TRA are written while the count is stopped, values are written to both the reload register and counter.</li> <li>When registers TRAPRE and TRA are written during the count, values are written to the reload register and counter (refer to 17.1.1.1 Timer Write Control during Count Operation).</li> </ul>                                                                                                                                                                                                                                                                                                                                                |
| Select functions                    | <ul> <li>TRAIO output polarity switch function<br/>The TEDGSEL bit in the TRAIOC register selects the level at the start of pulse<br/>output.<sup>(1)</sup></li> <li>TRAO output function<br/>Pulses inverted from the TRAIO output polarity can be output from the TRAO pin<br/>(selectable by the TOENA bit in the TRAIOC register).</li> <li>TRAO pin select function<br/>P3_7 is selected by the TRAOSEL bit in the PINSR2 register.</li> <li>Pulse output stop function<br/><u>Outp</u>ut from the TRAIO pin is stopped by the TOPCR bit in the TRAIOC register.</li> <li>INT1/TRAIO pin select function<br/>P1_7 or P1_5 is selected by the TIOSEL bit in the TRAIOC register.</li> </ul> |

NOTES:

- 1. The level of the output pulse becomes the level when the pulse output starts when the TRAMR register is written to.
- 2. Available in the R8C/2H Group only.

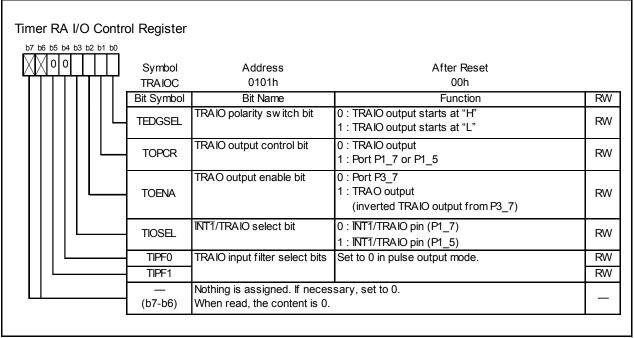



Figure 17.6 TRAIOC Register in Pulse Output Mode

## 17.1.3 Event Counter Mode

In event counter mode, external signal inputs to the  $\overline{INT1}/TRAIO$  pin are counted (refer to **Table 17.4 Event Counter Mode Specifications**).

Figure 17.7 shows TRAIOC Register in Event Counter Mode.

| Table 17.4 Event Counter Mode Specifications | Table 17.4 | <b>Event Counter Mode Specifications</b> |
|----------------------------------------------|------------|------------------------------------------|
|----------------------------------------------|------------|------------------------------------------|

| Item                                | Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Count source                        | External signal which is input to TRAIO pin (active edge selectable by a program)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Count operations                    | <ul> <li>Decrement</li> <li>When the timer underflows, the contents of the reload register are reloaded and<br/>the count is continued.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Divide ratio                        | 1/(n+1)(m+1)<br>n: setting value of TRAPRE register, m: setting value of TRA register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Count start condition               | 1 (count starts) is written to the TSTART bit in the TRACR register.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Count stop conditions               | <ul> <li>0 (count stops) is written to the TSTART bit in the TRACR register.</li> <li>1 (count forcibly stops) is written to the TSTOP bit in the TRACR register.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Interrupt request generation timing | When timer RA underflows [timer RA interrupt].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| INT1/TRAIO pin<br>function          | Count source input (INT1 interrupt input)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TRAO pin function                   | Programmable I/O port or pulse output <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Read from timer                     | The count value can be read by reading registers TRA and TRAPRE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Write to timer                      | <ul> <li>When registers TRAPRE and TRA are written while the count is stopped, values are written to both the reload register and counter.</li> <li>When registers TRAPRE and TRA are written during the count, values are written to the reload register and counter (refer to 17.1.1.1 Timer Write Control during Count Operation).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                               |
| Select functions                    | <ul> <li>NT1 input polarity switch function<br/>The TEDGSEL bit in the TRAIOC register selects the active edge of the count<br/>source.</li> <li>Count source input pin select function<br/>P1_7 or P1_5 is selected by the TIOSEL bit in the TRAIOC register.</li> <li>Pulse output function<br/>Pulses of inverted polarity can be output from the TRAO pin each time the timer<br/>underflows (selectable by the TOENA bit in the TRAIOC register).<sup>(1)</sup></li> <li>TRAO pin select function<br/>P3_7 is selected by the TRAOSEL bit in the PINSR2 register.</li> <li>Digital filter function<br/>Bits TIPF0 and TIPF1 in the TRAIOC register enable or disable the digital filter<br/>and select the sampling frequency.</li> </ul> |

NOTE:

1. The level of the output pulse becomes the level when the pulse output starts when the TRAMR register is written to.

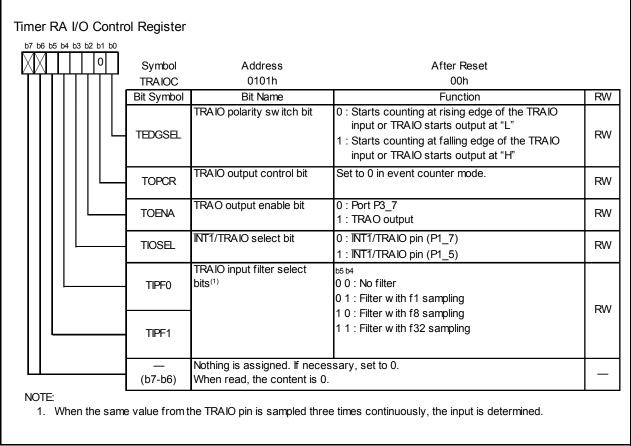



Figure 17.7 TRAIOC Register in Event Counter Mode

## 17.1.4 Pulse Width Measurement Mode

In pulse width measurement mode, the pulse width of an external signal input to the INT1/TRAIO pin is measured (refer to **Table 17.5 Pulse Width Measurement Mode Specifications**).

Figure 17.8 shows TRAIOC Register in Pulse Width Measurement Mode and Figure 17.9 shows an Operating Example of Pulse Width Measurement Mode.

| Table 17.5 | Pulse Width Measurement Mode Specifications |
|------------|---------------------------------------------|
|------------|---------------------------------------------|

| Item                    | Specification                                                                           |
|-------------------------|-----------------------------------------------------------------------------------------|
| Count sources           | f1, f2, f8, fOCO, fC32 <sup>(1)</sup>                                                   |
| Count operations        | Decrement                                                                               |
|                         | • Continuously counts the selected signal only when measurement pulse is "H"            |
|                         | level, or conversely only "L" level.                                                    |
|                         | • When the timer underflows, the contents of the reload register are reloaded           |
|                         | and the count is continued.                                                             |
| Count start condition   | 1 (count starts) is written to the TSTART bit in the TRACR register.                    |
| Count stop conditions   | <ul> <li>0 (count stops) is written to the TSTART bit in the TRACR register.</li> </ul> |
|                         | • 1 (count forcibly stops) is written to the TSTOP bit in the TRACR register.           |
| Interrupt request       | When timer RA underflows [timer RA interrupt].                                          |
| generation timing       | • Rising or falling of the TRAIO input (end of measurement period) [timer RA            |
|                         | interrupt]                                                                              |
| INT1/TRAIO pin function | Measured pulse input (INT1 interrupt input)                                             |
| TRAO pin function       | Programmable I/O port                                                                   |
| Read from timer         | The count value can be read by reading registers TRA and TRAPRE.                        |
| Write to timer          | When registers TRAPRE and TRA are written while the count is stopped,                   |
|                         | values are written to both the reload register and counter.                             |
|                         | • When registers TRAPRE and TRA are written during the count, values are                |
|                         | written to the reload register and counter (refer to 17.1.1.1 Timer Write               |
|                         | Control during Count Operation).                                                        |
| Select functions        | Measurement level select                                                                |
|                         | • The TEDGSEL bit in the TRAIOC register selects the "H" or "L" level period.           |
|                         | Measured pulse input pin select function                                                |
|                         | P1_7 or P1_5 is selected by the TIOSEL bit in the TRAIOC register.                      |
|                         | Digital filter function                                                                 |
|                         | Bits TIPF0 and TIPF1 in the TRAIOC register enable or disable the digital               |
|                         | filter and select the sampling frequency.                                               |

NOTE:

1. Available in the R8C/2H Group only.

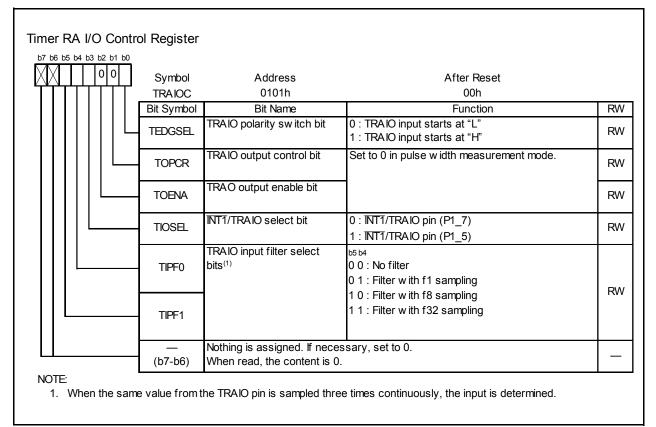
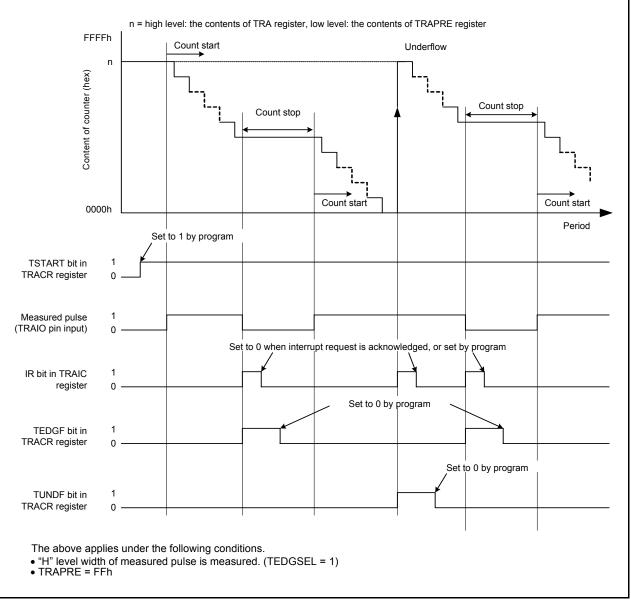
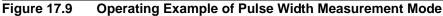





Figure 17.8 TRAIOC Register in Pulse Width Measurement Mode





## 17.1.5 Pulse Period Measurement Mode

In pulse period measurement mode, the pulse period of an external signal input to the INT1/TRAIO pin is measured (refer to **Table 17.6 Pulse Period Measurement Mode Specifications**).

Figure 17.10 shows TRAIOC Register in Pulse Period Measurement Mode and Figure 17.11 shows an Operating Example of Pulse Period Measurement Mode.

| Item                                | Specification                                                                                                                                                                                              |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Count sources                       | f1, f2, f8, fOCO, fC32 <sup>(2)</sup>                                                                                                                                                                      |
| Count operations                    | <ul> <li>Decrement</li> <li>After the active edge of the measured pulse is input, the contents of the read-</li> </ul>                                                                                     |
|                                     | out buffer are retained at the first underflow of timer RA prescaler. Then timer RA reloads the contents in the reload register at the second underflow of                                                 |
|                                     | timer RA prescaler and continues counting.                                                                                                                                                                 |
| Count start condition               | 1 (count starts) is written to the TSTART bit in the TRACR register.                                                                                                                                       |
| Count stop conditions               | <ul> <li>0 (count stops) is written to TSTART bit in the TRACR register.</li> <li>1 (count forcibly stops) is written to the TSTOP bit in the TRACR register.</li> </ul>                                   |
| Interrupt request generation timing | <ul> <li>When timer RA underflows or reloads [timer RA interrupt].</li> <li>Rising or falling of the TRAIO input (end of measurement period) [timer RA interrupt]</li> </ul>                               |
| INT1/TRAIO pin function             | Measured pulse input <sup>(1)</sup> (INT1 interrupt input)                                                                                                                                                 |
| TRAO pin function                   | Programmable I/O port                                                                                                                                                                                      |
| Read from timer                     | The count value can be read by reading registers TRA and TRAPRE.                                                                                                                                           |
| Write to timer                      | <ul> <li>When registers TRAPRE and TRA are written while the count is stopped,<br/>values are written to both the reload register and counter.</li> </ul>                                                  |
|                                     | • When registers TRAPRE and TRA are written during the count, values are written to the reload register and counter (refer to <b>17.1.1.1 Timer Write Control during Count Operation</b> ).                |
| Select functions                    | <ul> <li>Measurement period select<br/>The TEDGSEL bit in the TRAIOC register selects the measurement period of<br/>the input pulse.</li> <li>Measured pulse input pin select function</li> </ul>          |
|                                     | <ul> <li>P1_7 or P1_5 is selected by the TIOSEL bit in the TRAIOC register.</li> <li>Digital filter function</li> <li>Bits TIPF0 and TIPF1 in the TRAIOC register enable or disable the digital</li> </ul> |
|                                     | filter and select the sampling frequency.                                                                                                                                                                  |

NOTES:

- 1. Input a pulse with a period longer than twice the timer RA prescaler period. Input a pulse with a longer "H" and "L" width than the timer RA prescaler period. If a pulse with a shorter period is input to the TRAIO pin, the input may be ignored.
- 2. Available in the R8C/2H Group only.

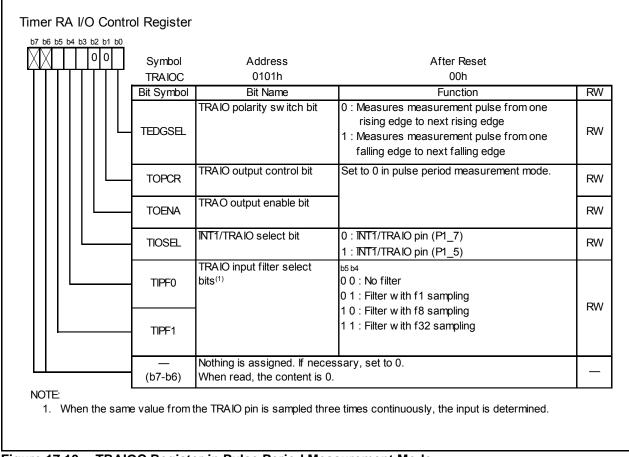
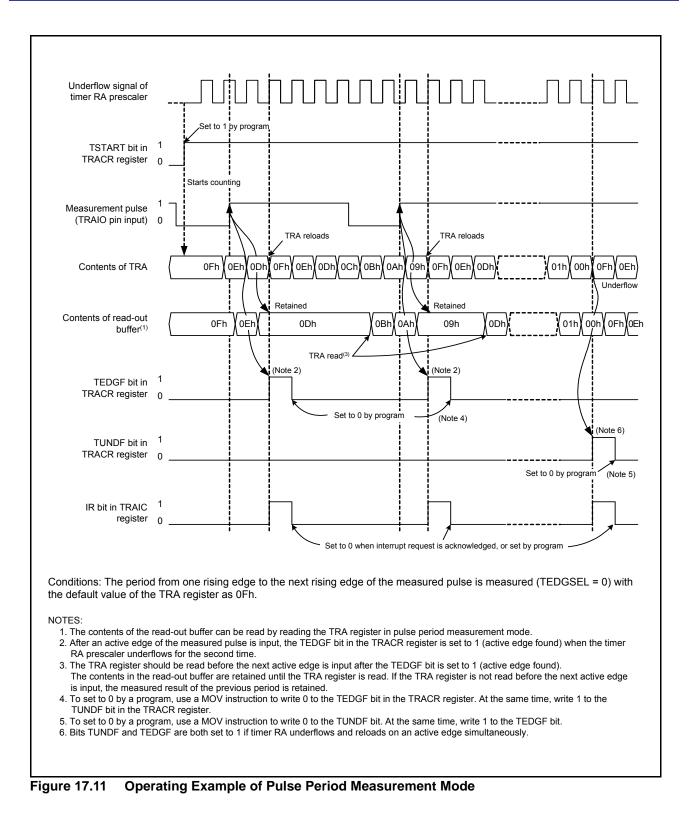




Figure 17.10 TRAIOC Register in Pulse Period Measurement Mode



#### 17.1.6 Notes on Timer RA

- Timer RA stops counting after a reset. Set the values in the timer RA and timer RA prescalers before the count starts.
- Even if the prescaler and timer RA are read out in 16-bit units, these registers are read 1 byte at a time by the MCU. Consequently, the timer value may be updated during the period when these two registers are being read.
- In pulse period measurement mode, bits TEDGF and TUNDF in the TRACR register can be set to 0 by writing 0 to these bits by a program. However, these bits remain unchanged if 1 is written. When using the READ-MODIFY-WRITE instruction for the TRACR register, the TEDGF or TUNDF bit may be set to 0 although these bits are set to 1 while the instruction is being executed. In this case, write 1 to the TEDGF or TUNDF bit which is not supposed to be set to 0 with the MOV instruction.
- When changing to pulse period measurement mode from another mode, the contents of bits TEDGF and TUNDF are undefined. Write 0 to bits TEDGF and TUNDF before the count starts.
- The TEDGF bit may be set to 1 by the first timer RA prescaler underflow generated after the count starts.
- When using the pulse period measurement mode, leave two or more periods of the timer RA prescaler immediately after the count starts, then set the TEDGF bit to 0.
- The TCSTF bit retains 0 (count stops) for 0 to 1 cycle of the count source after setting the TSTART bit to 1 (count starts) while the count is stopped.

During this time, do not access registers associated with timer  $RA^{(1)}$  other than the TCSTF bit. Timer RA starts counting at the first valid edge of the count source after The TCSTF bit is set to 1 (during count). The TCSTF bit remains 1 for 0 to 1 cycle of the count source after setting the TSTART bit to 0 (count stops) while the count is in progress. Timer RA counting is stopped when the TCSTF bit is set to 0. During this time, do not access registers associated with timer  $RA^{(1)}$  other than the TCSTF bit.

NOTE:

1. Registers associated with timer RA: TRACR, TRAIOC, TRAMR, TRAPRE, and TRA.

- When the TRAPRE register is continuously written during count operation (TCSTF bit is set to 1), allow three or more cycles of the count source clock for each write interval.
- When the TRA register is continuously written during count operation (TCSTF bit is set to 1), allow three or more cycles of the prescaler underflow for each write interval.

#### 17.2 Timer RB

Timer RB is an 8-bit timer with an 8-bit prescaler.

The prescaler and timer each consist of a reload register and counter (refer to **Tables 17.7 to 17.10 the Specifications of Each Mode**). Timer RB has timer RB primary and timer RB secondary as reload registers.

The count source for timer RB is the operating clock that regulates the timing of timer operations such as counting and reloading.

Figure 17.12 shows a Block Diagram of Timer RB. Figures 17.13 to 17.15 show the registers associated with timer RB.

Timer RB has four operation modes listed as follows:

• Timer mode:

Programmable waveform generation mode: Programmable one-shot generation mode:

The timer counts an internal count source (peripheral function clock or timer RA underflows).

- The timer outputs pulses of a given width successively. The timer outputs a one-shot pulse.
- Programmable wait one-shot generation mode:

The timer outputs a delayed one-shot pulse.

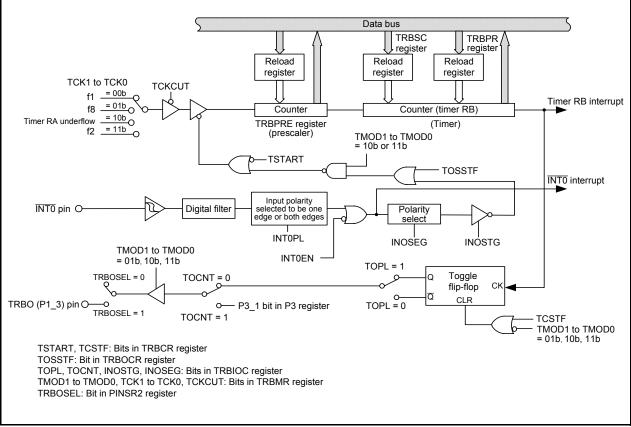



Figure 17.12 Block Diagram of Timer RB

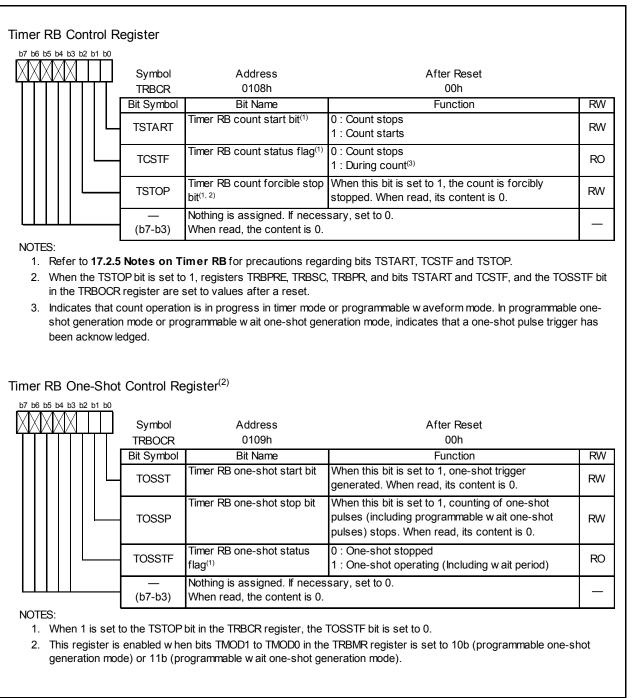




Figure 17.13 Registers TRBCR and TRBOCR

|    |               | Symbol                       | Address                                                       | After Reset                                                                                              |       |
|----|---------------|------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------|
|    |               | TRBIOC                       | 010Ah                                                         | 00h                                                                                                      |       |
|    |               | Bit Symbol                   | Bit Name                                                      | Function                                                                                                 | RW    |
|    |               | TOPL                         | Timer RB output level select bit                              | Function varies depending on operating mode.                                                             | RW    |
|    |               | TOCNT                        | Timer RB output switch bit                                    |                                                                                                          | RW    |
|    |               | INOSTG                       | One-shot trigger control bit                                  |                                                                                                          | RW    |
|    |               | INOSEG                       | One-shot trigger polarity<br>select bit                       |                                                                                                          | RW    |
|    |               | <br>(b7-b4)                  | Nothing is assigned. If neces<br>When read, the content is 0. | sary, set to 0.                                                                                          | _     |
|    | B Mode Re     | Symbol<br>TRBMR              | Address<br>010Bh                                              | After Reset<br>00h                                                                                       |       |
|    |               | Bit Symbol                   | Bit Name                                                      | Function                                                                                                 | RW    |
|    |               | - TMOD0                      | Timer RB operating mode select bits <sup>(1)</sup>            | b1 b0<br>0 0 : Timer mode<br>0 1 : Programmable w aveform generation mode                                | RW    |
|    |               | - TMOD1                      |                                                               | 1 0 : Programmable one-shot generation mode<br>1 1 : Programmable w ait one-shot generation mode         | RW    |
|    |               | (b2)                         | Nothing is assigned. If neces<br>When read, the content is 0. |                                                                                                          | —     |
|    |               | TWRC                         | Timer RB w rite control bit <sup>(2)</sup>                    | 0 : Write to reload register and counter<br>1 : Write to reload register only                            | RW    |
|    |               | TCK0                         | Timer RB count source<br>select bits <sup>(1)</sup>           | <sup>b5 b4</sup><br>0 0 : f1<br>0 1 : f8<br>1 0 : Timer RA underflow                                     | RW    |
|    |               | TCK1                         |                                                               | 1 1 : f2                                                                                                 | RW    |
| ΙL |               | (b6)                         | Nothing is assigned. If neces<br>When read, the content is 0. |                                                                                                          | _     |
|    |               | TCKCUT                       | Timer RB count source<br>cutoff bit <sup>(1)</sup>            | 0 : Provides count source<br>1 : Cuts off count source                                                   | RW    |
|    | Change bits T | MOD1 and TM<br>0 (count stop |                                                               | L<br>KCUT w hen both the TSTART and TCSTF bits in the T                                                  | IRBCR |
|    |               |                              |                                                               | programmable w aveform generation mode, programm<br>ot generation mode, the TWRC bit must be set to 1 (w |       |



|                                                                                                                                                                               | Symbol                                                                                                                                                                                                                                                                                                                                                                                                     | Address                                                                                                                                                                                                                                                                                                                                                                                                         | After Reset                                                                                                                      |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------|
|                                                                                                                                                                               | TRBPRE                                                                                                                                                                                                                                                                                                                                                                                                     | 010Ch                                                                                                                                                                                                                                                                                                                                                                                                           | FFh                                                                                                                              |      |
|                                                                                                                                                                               | Mode                                                                                                                                                                                                                                                                                                                                                                                                       | Function                                                                                                                                                                                                                                                                                                                                                                                                        | Setting Range                                                                                                                    | R    |
|                                                                                                                                                                               | Timer mode                                                                                                                                                                                                                                                                                                                                                                                                 | Counts an internal count source or timer RA<br>underflow s                                                                                                                                                                                                                                                                                                                                                      | 00h to FFh                                                                                                                       | R    |
|                                                                                                                                                                               | Programmable w aveform generation mode                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                 | 00h to FFh                                                                                                                       | R    |
|                                                                                                                                                                               | Programmable one-shot generation mode                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                 | 00h to FFh                                                                                                                       | R    |
|                                                                                                                                                                               | Programmable w ait one-sho<br>generation mode                                                                                                                                                                                                                                                                                                                                                              | t                                                                                                                                                                                                                                                                                                                                                                                                               | 00h to FFh                                                                                                                       | R    |
| OTE:<br>1. When the                                                                                                                                                           | TSTOP bit in the TRBCR register i                                                                                                                                                                                                                                                                                                                                                                          | s set to 1, the TRBPRE register is set to FFh.                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |      |
|                                                                                                                                                                               | ndary Register <sup>(3, 4)</sup>                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                  |      |
|                                                                                                                                                                               | b0                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                  |      |
| I                                                                                                                                                                             | Symbol<br>TRBSC                                                                                                                                                                                                                                                                                                                                                                                            | Address<br>010Dh                                                                                                                                                                                                                                                                                                                                                                                                | After Reset<br>FFh                                                                                                               |      |
|                                                                                                                                                                               | Mode                                                                                                                                                                                                                                                                                                                                                                                                       | Function                                                                                                                                                                                                                                                                                                                                                                                                        | Setting Range                                                                                                                    | R    |
|                                                                                                                                                                               | Timer mode                                                                                                                                                                                                                                                                                                                                                                                                 | Disabled                                                                                                                                                                                                                                                                                                                                                                                                        | 00h to FFh                                                                                                                       |      |
|                                                                                                                                                                               | Programmable w aveform                                                                                                                                                                                                                                                                                                                                                                                     | Counts timer RB prescaler underflow s <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                            | 00h to FFh                                                                                                                       |      |
|                                                                                                                                                                               | generation mode                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                  | W    |
|                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                  |      |
|                                                                                                                                                                               | Programmable one-shot generation mode                                                                                                                                                                                                                                                                                                                                                                      | Disabled                                                                                                                                                                                                                                                                                                                                                                                                        | 00h to FFh                                                                                                                       | -    |
| OTES:                                                                                                                                                                         | generation mode<br>Programmable w ait one-sho<br>generation mode                                                                                                                                                                                                                                                                                                                                           | t Counts timer RB prescaler underflow s<br>(one-shot width is counted)                                                                                                                                                                                                                                                                                                                                          | 00h to FFh                                                                                                                       | wo   |
| <ol> <li>The value</li> <li>The coun</li> <li>When the</li> <li>To write t         <ol> <li>Write</li> <li>Write</li> </ol> </li> </ol>                                       | generation mode<br>Programmable w ait one-sho<br>generation mode<br>es of registers TRBPR and TRBSC<br>t value can be read out by reading<br>TSTOP bit in the TRBCR register is<br>to the TRBSC register, perform the<br>the value to the TRBSC register. (If<br>the value to the TRBPR register. (If                                                                                                      | t<br>Counts timer RB prescaler underflow s<br>(one-shot w idth is counted)<br>are reloaded to the counter alternately and coun<br>the TRBPR register even w hen the secondary p<br>s set to 1, the TRBSC register is set to FFh.                                                                                                                                                                                | 00h to FFh<br>ted.<br>beriod is being cou                                                                                        |      |
| <ol> <li>The value</li> <li>The coun</li> <li>When the</li> <li>To write t         <ol> <li>Write</li> <li>Write</li> <li>Write</li> </ol> </li> <li>Write</li> </ol>         | generation mode<br>Programmable w ait one-sho<br>generation mode<br>es of registers TRBPR and TRBSC<br>t value can be read out by reading<br>TSTOP bit in the TRBCR register is<br>to the TRBSC register, perform the<br>the value to the TRBSC register.                                                                                                                                                  | t<br>Counts timer RB prescaler underflow s<br>(one-shot width is counted)<br>are reloaded to the counter alternately and count<br>the TRBPR register even when the secondary p<br>s set to 1, the TRBSC register is set to FFh.<br>follow ing steps.                                                                                                                                                            | 00h to FFh<br>ted.<br>beriod is being cou                                                                                        |      |
| <ol> <li>The value</li> <li>The coun</li> <li>When the</li> <li>To write t         <ol> <li>Write</li> <li>Write</li> <li>Write</li> </ol> </li> <li>Write</li> </ol>         | generation mode<br>Programmable w ait one-sho<br>generation mode<br>es of registers TRBPR and TRBSC<br>t value can be read out by reading<br>TSTOP bit in the TRBCR register is<br>to the TRBSC register, perform the<br>the value to the TRBSC register. (If<br>ary Register <sup>(2)</sup><br>b0<br>Symbol                                                                                               | t<br>Counts timer RB prescaler underflow s<br>(one-shot width is counted)<br>are reloaded to the counter alternately and count<br>the TRBPR register even when the secondary p<br>s set to 1, the TRBSC register is set to FFh.<br>follow ing steps.                                                                                                                                                            | 00h to FFh<br>ted.<br>beriod is being cou                                                                                        |      |
| <ol> <li>The value</li> <li>The coun</li> <li>When the</li> <li>To w rite t         <ol> <li>Write</li> <li>Write</li> <li>Write</li> </ol> </li> </ol>                       | generation mode<br>Programmable w ait one-sho<br>generation mode<br>es of registers TRBPR and TRBSC<br>t value can be read out by reading<br>TSTOP bit in the TRBCR register is<br>to the TRBSC register, perform the<br>the value to the TRBSC register. (If<br>any Register <sup>(2)</sup>                                                                                                               | t Counts timer RB prescaler underflow s<br>(one-shot width is counted)<br>are reloaded to the counter alternately and count<br>the TRBPR register even when the secondary p<br>s set to 1, the TRBSC register is set to FFh.<br>follow ing steps.<br>f the value does not change, write the same value<br>Address                                                                                               | 00h to FFh<br>ted.<br>beriod is being cou<br>ue second time.)<br>After Reset<br>FFh                                              | nted |
| <ol> <li>The value</li> <li>The coun</li> <li>When the</li> <li>To write t         <ol> <li>Write</li> <li>Write</li> <li>Write</li> </ol> </li> <li>FRB Primation</li> </ol> | generation mode<br>Programmable w ait one-sho<br>generation mode<br>es of registers TRBPR and TRBSC<br>t value can be read out by reading<br>TSTOP bit in the TRBCR register is<br>to the TRBSC register, perform the<br>the value to the TRBSC register. (If<br>ary Register <sup>(2)</sup><br>Symbol<br>TRBPR                                                                                            | t Counts timer RB prescaler underflow s<br>(one-shot width is counted)<br>are reloaded to the counter alternately and count<br>the TRBPR register even when the secondary p<br>s set to 1, the TRBSC register is set to FFh.<br>follow ing steps.<br>f the value does not change, w rite the same value<br>Address<br>010Eh                                                                                     | 00h to FFh<br>ted.<br>period is being cou<br>ue second time.)                                                                    | nted |
| <ol> <li>The value</li> <li>The coun</li> <li>When the</li> <li>To write t         <ol> <li>Write</li> <li>Write</li> <li>Write</li> </ol> </li> <li>FRB Primation</li> </ol> | generation mode<br>Programmable w ait one-sho<br>generation mode<br>es of registers TRBPR and TRBSC<br>t value can be read out by reading<br>TSTOP bit in the TRBCR register is<br>to the TRBSC register, perform the<br>the value to the TRBSC register. (If<br>any Register <sup>(2)</sup><br>Symbol<br>TRBPR<br>Mode                                                                                    | t Counts timer RB prescaler underflow s<br>(one-shot width is counted)<br>are reloaded to the counter alternately and count<br>the TRBPR register even when the secondary p<br>s set to 1, the TRBSC register is set to FFh.<br>follow ing steps.<br>f the value does not change, w rite the same value<br>Address<br>010Eh<br>Function                                                                         | 00h to FFh<br>ted.<br>beriod is being cou<br>ue second time.)<br>After Reset<br>FFh<br>Setting Range                             | nted |
| <ol> <li>The value</li> <li>The coun</li> <li>When the</li> <li>To w rite t         <ol> <li>Write</li> <li>Write</li> <li>Write</li> </ol> </li> </ol>                       | generation mode<br>Programmable w ait one-sho<br>generation mode<br>es of registers TRBPR and TRBSC<br>t value can be read out by reading<br>TSTOP bit in the TRBCR register is<br>to the TRBSC register, perform the<br>the value to the TRBSC register. (If<br>ary Register <sup>(2)</sup><br>Symbol<br>TRBPR<br>Mode<br>Timer mode<br>Programmable w aveform                                            | t Counts timer RB prescaler underflow s<br>(one-shot width is counted)<br>are reloaded to the counter alternately and count<br>the TRBPR register even when the secondary p<br>s set to 1, the TRBSC register is set to FFh.<br>follow ing steps.<br>f the value does not change, write the same value<br>Address<br>010Eh<br>Function<br>Counts timer RB prescaler underflow s                                 | 00h to FFh<br>ted.<br>beriod is being cou<br>ue second time.)<br>After Reset<br>FFh<br>Setting Range<br>00h to FFh               | nted |
| <ol> <li>The value</li> <li>The coun</li> <li>When the</li> <li>To write t         <ol> <li>Write</li> <li>Write</li> </ol> </li> </ol>                                       | generation mode<br>Programmable w ait one-sho<br>generation mode<br>es of registers TRBPR and TRBSC<br>t value can be read out by reading<br>TSTOP bit in the TRBCR register is<br>to the TRBSC register, perform the<br>the value to the TRBSC register. (#<br>ary Register <sup>(2)</sup><br>Symbol<br>TRBPR<br>Mode<br>Timer mode<br>Programmable w aveform<br>generation mode<br>Programmable one-shot | t Counts timer RB prescaler underflow s<br>(one-shot width is counted)<br>are reloaded to the counter alternately and count<br>the TRBPR register even when the secondary p<br>s set to 1, the TRBSC register is set to FFh.<br>follow ing steps.<br>f the value does not change, w rite the same value<br>Address<br>010Eh<br>Function<br>Counts timer RB prescaler underflow s<br>(one-shot width is counted) | 00h to FFh<br>ted.<br>beriod is being cou<br>ue second time.)<br>After Reset<br>FFh<br>Setting Range<br>00h to FFh<br>00h to FFh |      |

## 17.2.1 Timer Mode

In timer mode, a count source which is internally generated or timer RA underflows are counted (refer to **Table 17.7 Timer Mode Specifications**). Registers TRBOCR and TRBSC are not used in timer mode. Figure 17.16 shows TRBIOC Register in Timer Mode.

| Table 17.7Timer Mo |                                |               |
|--------------------|--------------------------------|---------------|
| Item               |                                | Specification |
| Count sources      | f1, f2, f8, timer RA underflow |               |

| Count sources         | f1, f2, f8, timer RA underflow                                                                                                                                                                                                                                                                                                 |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Count operations      | <ul> <li>Decrement</li> <li>When the timer underflows, it reloads the reload register contents before the count continues (when timer RB underflows, the contents of timer RB primary reload register is reloaded).</li> </ul>                                                                                                 |
| Divide ratio          | 1/(n+1)(m+1)                                                                                                                                                                                                                                                                                                                   |
|                       | n: setting value in TRBPRE register, m: setting value in TRBPR register                                                                                                                                                                                                                                                        |
| Count start condition | 1 (count starts) is written to the TSTART bit in the TRBCR register.                                                                                                                                                                                                                                                           |
| Count stop conditions | <ul> <li>0 (count stops) is written to the TSTART bit in the TRBCR register.</li> <li>1 (count forcibly stop) is written to the TSTOP bit in the TRBCR register.</li> </ul>                                                                                                                                                    |
| Interrupt request     | When timer RB underflows [timer RB interrupt].                                                                                                                                                                                                                                                                                 |
| generation timing     |                                                                                                                                                                                                                                                                                                                                |
| TRBO pin function     | Programmable I/O port                                                                                                                                                                                                                                                                                                          |
| INT0 pin function     | Programmable I/O port or INT0 interrupt input                                                                                                                                                                                                                                                                                  |
| Read from timer       | The count value can be read out by reading registers TRBPR and TRBPRE.                                                                                                                                                                                                                                                         |
| Write to timer        | • When registers TRBPRE and TRBPR are written while the count is stopped, values are written to both the reload register and counter.                                                                                                                                                                                          |
|                       | <ul> <li>When registers TRBPRE and TRBPR are written to while count operation is in progress:</li> <li>If the TWRC bit in the TRBMR register is set to 0, the value is written to both the reload register and the counter.</li> <li>If the TWRC bit is set to 1, the value is written to the reload register only.</li> </ul> |
|                       | (Refer to 17.2.1.1 Timer Write Control during Count Operation.)                                                                                                                                                                                                                                                                |

| b7 b6 b5 b4 b3 b2 | Control Register |                                                            |                         |    |
|-------------------|------------------|------------------------------------------------------------|-------------------------|----|
|                   | 0 0 Symbol       | Address<br>010Ah                                           | After Reset<br>00h      |    |
|                   | Bit Symbol       | Bit Name                                                   | Function                | RW |
|                   | TOPL             | Timer RB output level select bit                           | Set to 0 in timer mode. | RW |
|                   | TOCNT            | Timer RB output switch bit                                 |                         | RW |
| L                 | INOSTG           | One-shot trigger control bit                               |                         | RW |
|                   | INOSEG           | One-shot trigger polarity<br>select bit                    |                         | RW |
|                   | (b7-b4)          | Nothing is assigned. If neces When read, the content is 0. | sary, set to 0.         | _  |

Figure 17.16 TRBIOC Register in Timer Mode

# 17.2.1.1 Timer Write Control during Count Operation

Timer RB has a prescaler and a timer (which counts the prescaler underflows). The prescaler and timer each consist of a reload register and a counter. In timer mode, the TWRC bit in the TRBMR register can be used to select whether writing to the prescaler or timer during count operation is performed to both the reload register and counter or only to the reload register.

However, values are transferred from the reload register to the counter of the prescaler in synchronization with the count source. In addition, values are transferred from the reload register to the counter of the timer in synchronization with prescaler underflows. Therefore, even if the TWRC bit is set for writing to both the reload register and counter, the counter value is not updated immediately after the WRITE instruction is executed. In addition, if the TWRC bit is set for writing to the reload register only, the synchronization of the writing will be shifted if the prescaler value changes. Figure 17.17 shows an Operating Example of Timer RB when Counter Value is Rewritten during Count Operation.

| When the TWPC hit is s                    | et to 0 (write to reload register and c                                                      | ounter)                                                               |                                                 |                      |
|-------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------|----------------------|
| Set 01h to the TRBPRE register and 25h to |                                                                                              |                                                                       |                                                 |                      |
| the TRBPR rec                             | gister by a program.                                                                         |                                                                       |                                                 |                      |
| Count source                              |                                                                                              |                                                                       |                                                 |                      |
|                                           | After writing, the reload r<br>written with the first cour                                   | egister is<br>it source.                                              |                                                 |                      |
| Reloads register of<br>timer RB prescaler | Previous value                                                                               | New value (                                                           | 01h)                                            |                      |
|                                           | Reload with<br>the second<br>count source                                                    | Reload on<br>underflow                                                |                                                 |                      |
| Counter of<br>timer RB prescaler          | 06h 🛛 05h 🖉 04h 🗶 01h 🗶 00h                                                                  | 01h 00h 01h 00h                                                       | <u>X 01h X 00h X</u>                            |                      |
|                                           |                                                                                              | After writing, the reload register is written on the first underflow. |                                                 |                      |
| Reloads register of<br>timer RB           | Previous value                                                                               | New value                                                             | e (25h)                                         |                      |
|                                           |                                                                                              | Reload on the underflow                                               | second                                          |                      |
| Counter of timer RB                       | 03h                                                                                          | 02h 25h                                                               | 24h                                             |                      |
| IR bit in TRBIC<br>register (             | The IR bit re                                                                                | mains unchanged until underflow ~                                     | 1                                               |                      |
| Set 01h to the 1                          | et to 1 (write to reload register only)<br>IRBPRE register and 25h to<br>ister by a program. |                                                                       |                                                 |                      |
| Count source                              | After writing, the reload re                                                                 |                                                                       |                                                 |                      |
| Reloads register of                       | written with the first count                                                                 | source.                                                               |                                                 |                      |
| timer RB prescaler                        | Previous value                                                                               | New value (01h)                                                       |                                                 |                      |
|                                           |                                                                                              |                                                                       |                                                 | <u> </u>             |
| Counter of<br>timer RB prescaler          | 06h X 05h X 04h X 03h X 02h                                                                  | 01h 00h 01h 00h                                                       | 01h 00h                                         | 01h X 00h X 01h X    |
| Reloads register of                       |                                                                                              |                                                                       | ten on the first under                          | flow.                |
| timer RB                                  | Previous value                                                                               | X                                                                     | New value                                       | e (25h)<br>Reload on |
|                                           |                                                                                              |                                                                       |                                                 | underflow            |
| Counter of timer RB                       | 03h                                                                                          | 02h                                                                   | 01h                                             | 00h 25h              |
| IR bit in TRBIC<br>register (             | )                                                                                            |                                                                       |                                                 |                      |
|                                           |                                                                                              |                                                                       | caler values are upda<br>duration until timer R |                      |
|                                           | r the following conditions.<br>TCSTF in the TRBCR register are se                            | et to 1 (During count).                                               |                                                 |                      |

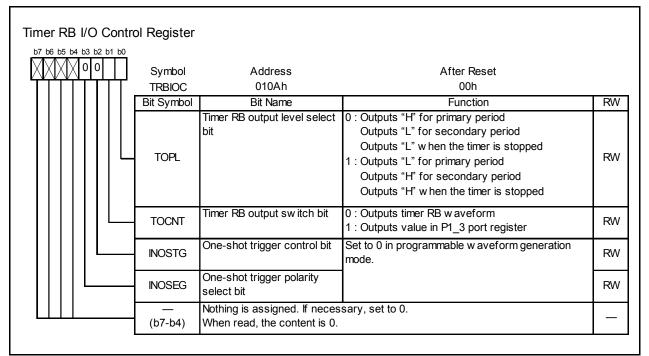
Figure 17.17 Operating Example of Timer RB when Counter Value is Rewritten during Count Operation

## 17.2.2 Programmable Waveform Generation Mode

In programmable waveform generation mode, the signal output from the TRBO pin is inverted each time the counter underflows, while the values in registers TRBPR and TRBSC are counted alternately (refer to **Table 17.8 Programmable Waveform Generation Mode Specifications**). Counting starts by counting the setting value in the TRBPR register. The TRBOCR register is unused in this mode.

Figure 17.18 shows TRBIOC Register in Programmable Waveform Generation Mode. Figure 17.19 shows an Operating Example of Timer RB in Programmable Waveform Generation Mode.

 Table 17.8
 Programmable Waveform Generation Mode Specifications


| Item                                                        | Specification                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Count sources                                               | f1, f2, f8, timer RA underflow                                                                                                                                                                                                                                                                                                                                                                                               |
| Count operations                                            | <ul> <li>Decrement</li> <li>When the timer underflows, it reloads the contents of the primary reload and secondary reload registers alternately before the count continues.</li> </ul>                                                                                                                                                                                                                                       |
| Width and period of<br>output waveform                      | Primary period: (n+1)(m+1)/fi<br>Secondary period: (n+1)(p+1)/fi<br>Period: (n+1){(m+1)+(p+1)}/fi<br>fi: Count source frequency<br>n: Value set in TRBPRE register<br>m: Value set in TRBPR register<br>p: Value set in TRBSC register                                                                                                                                                                                       |
| Count start condition                                       | 1 (count start) is written to the TSTART bit in the TRBCR register.                                                                                                                                                                                                                                                                                                                                                          |
| Count stop conditions                                       | <ul> <li>0 (count stop) is written to the TSTART bit in the TRBCR register.</li> <li>1 (count forcibly stop) is written to the TSTOP bit in the TRBCR register.</li> </ul>                                                                                                                                                                                                                                                   |
| Interrupt request<br>generation timing<br>TRBO pin function | In half a cycle of the count source, after timer RB underflows during the secondary period (at the same time as the TRBO output change) [timer RB interrupt]<br>Programmable output port or pulse output                                                                                                                                                                                                                     |
| INTO pin function                                           | Programmable I/O port or INTO interrupt input                                                                                                                                                                                                                                                                                                                                                                                |
| Read from timer                                             | The count value can be read out by reading registers TRBPR and TRBPRE. <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                        |
| Write to timer                                              | <ul> <li>When registers TRBPRE, TRBSC, and TRBPR are written while the count is stopped, values are written to both the reload register and counter.</li> <li>When registers TRBPRE, TRBSC, and TRBPR are written to during count operation, values are written to the reload registers only.<sup>(2)</sup></li> </ul>                                                                                                       |
| Select functions                                            | <ul> <li>Output level select function<br/>The TOPL bit in the TRBIOC register selects the output level during primary and<br/>secondary periods.</li> <li>TRBO pin output switch function<br/>Timer RB pulse output or P1_3 latch output is selected by the TOCNT bit in the TRBIOC<br/>register.<sup>(3)</sup></li> <li>TRBO pin select function<br/>P1_3 is selected by the TRBOSEL bit in the PINSR2 register.</li> </ul> |


NOTES:

1. Even when counting the secondary period, the TRBPR register may be read.

2. The set values are reflected in the waveform output beginning with the following primary period after writing to the TRBPR register.

- 3. The value written to the TOCNT bit is enabled by the following.
  - When counting starts.
  - When a timer RB interrupt request is generated. The contents after the TOCNT bit is changed are reflected from the output of the following primary period.





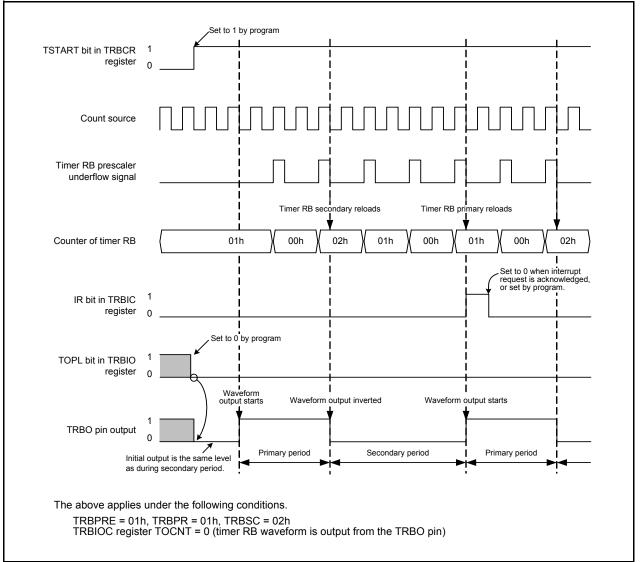
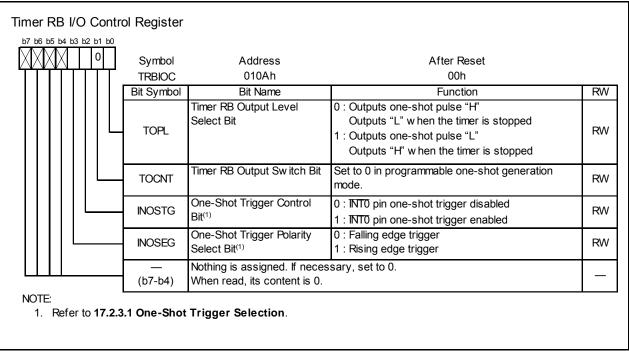



Figure 17.19 Operating Example of Timer RB in Programmable Waveform Generation Mode

## 17.2.3 Programmable One-shot Generation Mode

In programmable one-shot generation mode, a one-shot pulse is output from the TRBO pin by a program or an external trigger input (input to the INTO pin) (refer to **Table 17.9 Programmable One-Shot Generation Mode Specifications**). When a trigger is generated, the timer starts operating from the point only once for a given period equal to the set value in the TRBPR register. The TRBSC register is not used in this mode. Figure 17.20 shows TRBIOC Register in Programmable One-Shot Generation Mode. Figure 17.21 shows an Operating Example of Programmable One-Shot Generation Mode.


| Table 17.9 Programmable One-Shot Generation Mode Specification |
|----------------------------------------------------------------|
|----------------------------------------------------------------|

| Item                                | Specification                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Count sources                       | f1, f2, f8, timer RA underflow                                                                                                                                                                                                                                                                                                                                |
| Count operations                    | <ul> <li>Decrement the setting value in the TRBPR register</li> <li>When the timer underflows, it reloads the contents of the reload register before the count completes and the TOSSTF bit is set to 0 (one-shot stops).</li> <li>When the count stops, the timer reloads the contents of the reload register before it stops.</li> </ul>                    |
| One-shot pulse                      | (n+1)(m+1)/fi                                                                                                                                                                                                                                                                                                                                                 |
| output time                         | fi: Count source frequency,<br>n: Setting value in TRBPRE register, m: Setting value in TRBPR register <sup>(2)</sup>                                                                                                                                                                                                                                         |
| Count start conditions              | <ul> <li>The TSTART bit in the TRBCR register is set to 1 (count starts) and the next trigger is generated</li> <li>Set the TOSST bit in the TRBOCR register to 1 (one-shot starts)</li> <li>Input trigger to the INTO pin</li> </ul>                                                                                                                         |
| Count stop conditions               | <ul> <li>When reloading completes after timer RB underflows during primary period</li> <li>When the TOSSP bit in the TRBOCR register is set to 1 (one-shot stops)</li> <li>When the TSTART bit in the TRBCR register is set to 0 (stops counting)</li> <li>When the TSTOP bit in the TRBCR register is set to 1 (forcibly stops counting)</li> </ul>          |
| Interrupt request generation timing | In half a cycle of the count source, after the timer underflows (at the same time as the TRBO output ends) [timer RB interrupt]                                                                                                                                                                                                                               |
| TRBO pin function                   | Pulse output                                                                                                                                                                                                                                                                                                                                                  |
| INTO pin functions                  | <ul> <li>When the INOSTG bit in the TRBIOC register is set to 0 (INT0 one-shot trigger disabled): programmable I/O port or INT0 interrupt input</li> <li>When the INOSTG bit in the TRBIOC register is set to 1 (INT0 one-shot trigger enabled): external trigger (INT0 interrupt input)</li> </ul>                                                           |
| Read from timer                     | The count value can be read out by reading registers TRBPR and TRBPRE.                                                                                                                                                                                                                                                                                        |
| Write to timer                      | <ul> <li>When registers TRBPRE and TRBPR are written while the count is stopped, values are written to both the reload register and counter.</li> <li>When registers TRBPRE and TRBPR are written during the count, values are written to the reload register only (the data is transferred to the counter at the following reload).<sup>(1)</sup></li> </ul> |
| Select functions                    | <ul> <li>Output level select function<br/>The TOPL bit in the TRBIOC register selects the output level of the one-shot<br/>pulse waveform.</li> <li>One-shot trigger select function<br/>Refer to 17.2.3.1 One-Shot Trigger Selection.</li> <li>TRBO pin select function<br/>P1_3 is selected by the TRBOSEL bit in the PINSR2 register.</li> </ul>           |

NOTES:

1. The set value is reflected at the following one-shot pulse after writing to the TRBPR register.

2. Do not set both the TRBPRE and TRBPR registers to 00h.





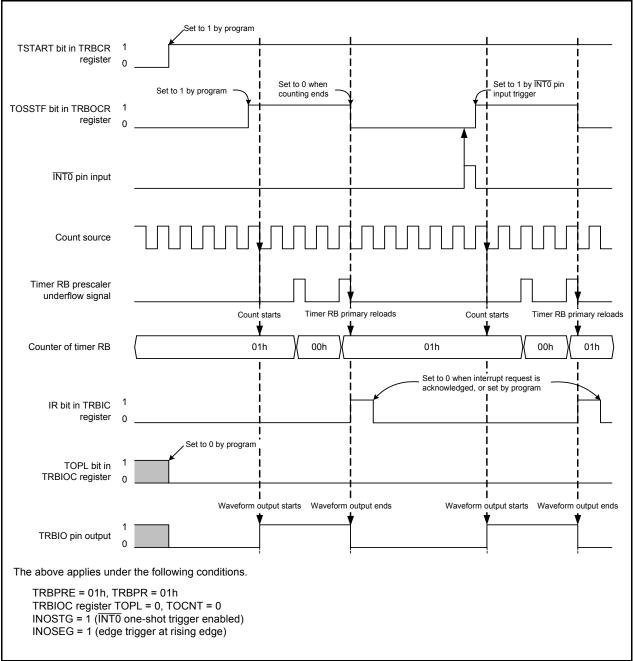



Figure 17.21 Operating Example of Programmable One-Shot Generation Mode

# 17.2.3.1 One-Shot Trigger Selection

In programmable one-shot generation mode and programmable wait one-shot generation mode, operation starts when a one-shot trigger is generated while the TCSTF bit in the TRBCR register is set to 1 (count starts). A one-shot trigger can be generated by either of the following causes:

- 1 is written to the TOSST bit in the TRBOCR register by a program.
- Trigger input from the  $\overline{INT0}$  pin.

When a one-shot trigger occurs, the TOSSTF bit in the TRBOCR register is set to 1 (one-shot operation in progress) after one or two cycles of the count source have elapsed. Then, in programmable one-shot generation mode, count operation begins and one-shot waveform output starts. (In programmable wait one-shot generation mode, count operation starts for the wait period.) If a one-shot trigger occurs while the TOSSTF bit is set to 1, no retriggering occurs.

To use trigger input from the  $\overline{INT0}$  pin, input the trigger after making the following settings:

- Set the PD4\_5 bit in the PD4 register to 0 (input port).
- Select the INTO digital filter with bits INTOF1 and INTOF0 in the INTF register.
- Select both edges or one edge with the INTOPL bit in INTEN register. If one edge is selected, further select falling or rising edge with the INOSEG bit in TRBIOC register.
- Set the INTOEN bit in the INTEN register to 0 (enabled).
- After completing the above, set the INOSTG bit in the TRBIOC register to 1 (INT pin one-shot trigger enabled).

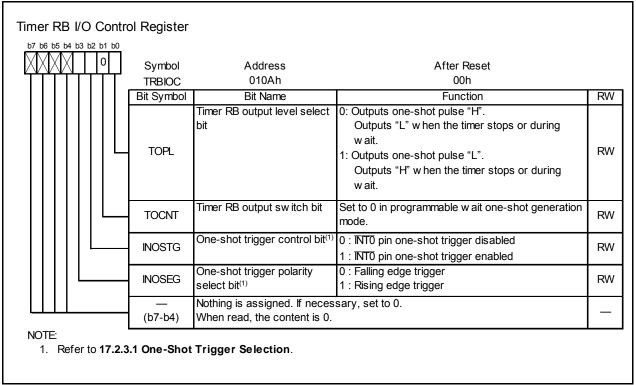
Note the following points with regard to generating interrupt requests by trigger input from the INTO pin.

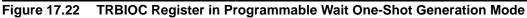
- Processing to handle the interrupts is required. Refer to 13. Interrupts, for details.
- If one edge is selected, use the POL bit in the INTOIC register to select falling or rising edge. (The INOSEG bit in the TRBIOC register does not affect INTO interrupts).
- If a one-shot trigger occurs while the TOSSTF bit is set to 1, timer RB operation is not affected, but the value of the IR bit in the INTOIC register changes.

# 17.2.4 Programmable Wait One-Shot Generation Mode

In programmable wait one-shot generation mode, a one-shot pulse is output from the TRBO pin by a program or an external trigger input (input to the  $\overline{INT0}$  pin) (refer to **Table 17.10 Programmable Wait One-Shot Generation Mode Specifications**). When a trigger is generated from that point, the timer outputs a pulse only once for a given length of time equal to the setting value in the TRBSC register after waiting for a given length of time equal to the SPR register.

Figure 17.22 shows TRBIOC Register in Programmable Wait One-Shot Generation Mode. Figure 17.23 shows an Operating Example of Programmable Wait One-Shot Generation Mode.


| Item                                | Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Count sources                       | f1, f2, f8, timer RA underflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Count operations                    | <ul> <li>Decrement the timer RB primary setting value.</li> <li>When a count of the timer RB primary underflows, the timer reloads the contents of timer RB secondary before the count continues.</li> <li>When a count of the timer RB secondary underflows, the timer reloads the contents of timer RB primary before the count completes and the TOSSTF bit is set to 0 (one-shot stops).</li> <li>When the count stops, the timer reloads the contents of the reload register before it stops.</li> </ul> |
| Wait time                           | (n+1)(m+1)/fi<br>fi: Count source frequency<br>n: Value set in the TRBPRE register, m Value set in the TRBPR register <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                                                                          |
| One-shot pulse output time          | (n+1)(p+1)/fi<br>fi: Count source frequency<br>n: Value set in the TRBPRE register, p: Value set in the TRBSC register                                                                                                                                                                                                                                                                                                                                                                                        |
| Count start conditions              | <ul> <li>The TSTART bit in the TRBCR register is set to 1 (count starts) and the next trigger is generated.</li> <li>Set the TOSST bit in the TRBOCR register to 1 (one-shot starts).</li> <li>Input trigger to the INT0 pin</li> </ul>                                                                                                                                                                                                                                                                       |
| Count stop conditions               | <ul> <li>When reloading completes after timer RB underflows during secondary period.</li> <li>When the TOSSP bit in the TRBOCR register is set to 1 (one-shot stops).</li> <li>When the TSTART bit in the TRBCR register is set to 0 (starts counting).</li> <li>When the TSTOP bit in the TRBCR register is set to 1 (forcibly stops counting).</li> </ul>                                                                                                                                                   |
| Interrupt request generation timing | In half a cycle of the count source after timer RB underflows during secondary period (complete at the same time as waveform output from the TRBO pin) [timer RB interrupt].                                                                                                                                                                                                                                                                                                                                  |
| TRBO pin function                   | Pulse output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| INT0 pin functions                  | <ul> <li>When the INOSTG bit in the TRBIOC register is set to 0 (INT0 one-shot trigger disabled): programmable I/O port or INT0 interrupt input</li> <li>When the INOSTG bit in the TRBIOC register is set to 1 (INT0 one-shot trigger enabled): external trigger (INT0 interrupt input)</li> </ul>                                                                                                                                                                                                           |
| Read from timer                     | The count value can be read out by reading registers TRBPR and TRBPRE.                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Write to timer                      | <ul> <li>When registers TRBPRE, TRBSC, and TRBPR are written while the count stops, values are written to both the reload register and counter.</li> <li>When registers TRBPRE, TRBSC, and TRBPR are written to during count operation, values are written to the reload registers only.<sup>(1)</sup></li> </ul>                                                                                                                                                                                             |
| Select functions                    | <ul> <li>Output level select function<br/>The TOPL bit in the TRBIOC register selects the output level of the one-shot pulse<br/>waveform.</li> <li>One-shot trigger select function<br/>Refer to 17.2.3.1 One-Shot Trigger Selection.</li> <li>TRBO pin select function<br/>P1_3 is selected by the TRBOSEL bit in the PINSR2 register.</li> </ul>                                                                                                                                                           |


Table 17.10 Programmable Wait One-Shot Generation Mode Specifications

NOTES:

1. The set value is reflected at the following one-shot pulse after writing to registers TRBSC and TRBPR.

2. Do not set both the TRBPRE and TRBPR registers to 00h.





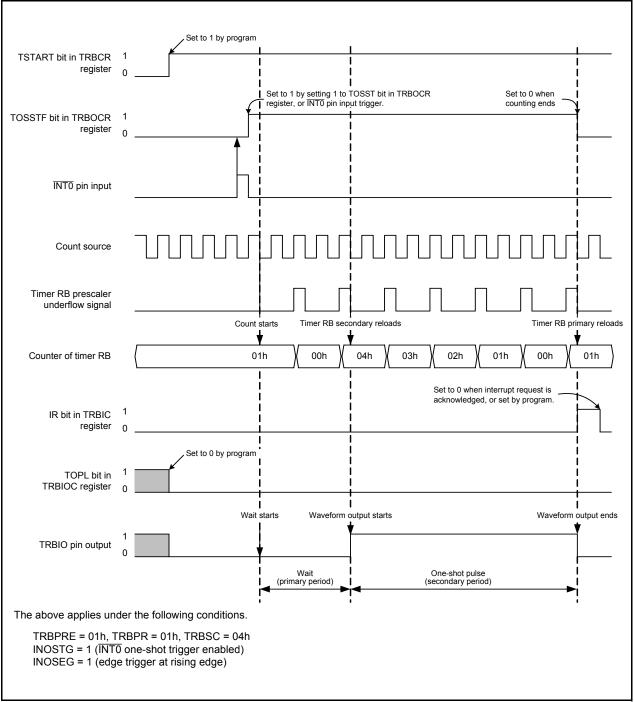



Figure 17.23 Operating Example of Programmable Wait One-Shot Generation Mode

#### 17.2.5 Notes on Timer RB

- Timer RB stops counting after a reset. Set the values in the timer RB and timer RB prescalers before the count starts.
- Even if the prescaler and timer RB is read out in 16-bit units, these registers are read 1 byte at a time by the MCU. Consequently, the timer value may be updated during the period when these two registers are being read.
- In programmable one-shot generation mode and programmable wait one-shot generation mode, when setting the TSTART bit in the TRBCR register to 0, 0 (stops counting) or setting the TOSSP bit in the TRBOCR register to 1 (stops one-shot), the timer reloads the value of reload register and stops. Therefore, in programmable one-shot generation mode and programmable wait one-shot generation mode, read the timer count value before the timer stops.
- The TCSTF bit remains 0 (count stops) for 1 to 2 cycles of the count source after setting the TSTART bit to 1 (count starts) while the count is stopped.

During this time, do not access registers associated with timer  $RB^{(1)}$  other than the TCSTF bit. Timer RB starts counting at the first valid edge of the count source after the TCSTF bit is set to 1 (during count). The TCSTF bit remains 1 for 1 to 2 cycles of the count source after setting the TSTART bit to 0 (count stops) while the count is in progress. Timer RB counting is stopped when the TCSTF bit is set to 0. During this time, do not access registers associated with timer  $RB^{(1)}$  other than the TCSTF bit.

NOTE:

- 1. Registers associated with timer RB: TRBCR, TRBOCR, TRBIOC, TRBMR, TRBPRE, TRBSC, and TRBPR.
- If the TSTOP bit in the TRBCR register is set to 1 during timer operation, timer RB stops immediately.
- If 1 is written to the TOSST or TOSSP bit in the TRBOCR register, the value of the TOSSTF bit changes after one or two cycles of the count source have elapsed. If the TOSSP bit is written to 1 during the period between when the TOSST bit is written to 1 and when the TOSSTF bit is set to 1, the TOSSTF bit may be set to either 0 or 1 depending on the content state. Likewise, if the TOSSTF bit is written to 1 during the period between when the TOSSP bit is written to 1 and when the TOSSTF bit is set to 0, the TOSSTF bit may be set to either 0 or 1.

## 17.2.5.1 Timer mode

The following workaround should be performed in timer mode.

To write to registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), note the following points:

- When the TRBPRE register is written continuously, allow three or more cycles of the count source for each write interval.
- When the TRBPR register is written continuously, allow three or more cycles of the prescaler underflow for each write interval.

#### 17.2.5.2 **Programmable waveform generation mode**

The following three workarounds should be performed in programmable waveform generation mode.

- (1) To write to registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), note the following points:
- When the TRBPRE register is written continuously, allow three or more cycles of the count source for each write interval.
- When the TRBPR register is written continuously, allow three or more cycles of the prescaler underflow for each write interval.
- (2) To change registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), synchronize the TRBO output cycle using a timer RB interrupt, etc. This operation should be preformed only once in the same output cycle. Also, make sure that writing to the TRBPR register does not occur during period A shown in Figures 17.24 and 17.25.

The following shows the detailed workaround examples.

• Workaround example (a):

As shown in Figure 17.24, write to registers TRBSC and TRBPR in the timer RB interrupt routine. These write operations must be completed by the beginning of period A.

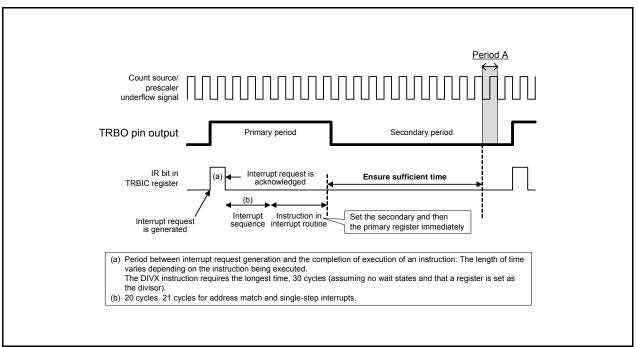



Figure 17.24 Workaround Example (a) When Timer RB interrupt is Used

• Workaround example (b):

As shown in Figure 17.25 detect the start of the primary period by the TRBO pin output level and write to registers TRBSC and TRBPR. These write operations must be completed by the beginning of period A. If the port register's bit value is read after the port direction register's bit corresponding to the TRBO pin is set to 0 (input mode), the read value indicates the TRBO pin output value.

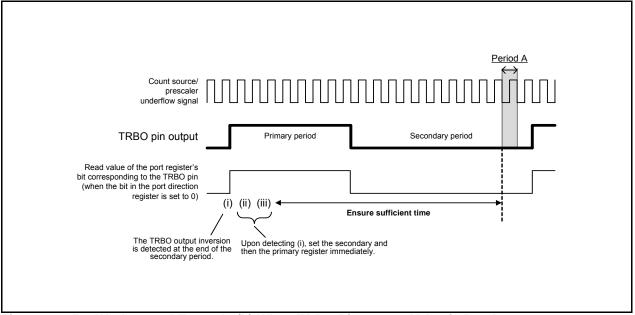



Figure 17.25 Workaround Example (b) When TRBO Pin Output Value is Read

(3) To stop the timer counting in the primary period, use the TSTOP bit in the TRBCR register. In this case, registers TRBPRE and TRBPR are initialized and their values are set to the values after reset.

## 17.2.5.3 Programmable one-shot generation mode

The following two workarounds should be performed in programmable one-shot generation mode.

- (1) To write to registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), note the following points:
- When the TRBPRE register is written continuously during count operation (TCSTF bit is set to 1), allow three or more cycles of the count source for each write interval.
- When the TRBPR register is written continuously during count operation (TCSTF bit is set to 1), allow three or more cycles of the prescaler underflow for each write interval.
- (2) Do not set both the TRBPRE and TRBPR registers to 00h.

#### 17.2.5.4 Programmable wait one-shot generation mode

The following three workarounds should be performed in programmable wait one-shot generation mode.

- (1) To write to registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), note the following points:
- When the TRBPRE register is written continuously, allow three or more cycles of the count source for each write interval.
- When the TRBPR register is written continuously, allow three or more cycles of the prescaler underflow for each write interval.
- (2) Do not set both the TRBPRE and TRBPR registers to 00h.
- (3) Set registers TRBSC and TRBPR using the following procedure.
  - (a) To use "INTO pin one-shot trigger enabled" as the count start condition Set the TRBSC register and then the TRBPR register. At this time, after writing to the TRBPR register, allow an interval of 0.5 or more cycles of the count source before trigger input from the INTO pin.
  - (b) To use "writing 1 to TOSST bit" as the start condition
    - Set the TRBSC register, the TRBPR register, and then TOSST bit. At this time, after writing to the TRBPR register, allow an interval of 0.5 or more cycles of the count source before writing to the TOSST bit.

#### 17.3 Timer RE (for R8C/2H Group only)

Timer RE has the 4-bit counter and 8-bit counter. Timer RE has the following 2 modes:

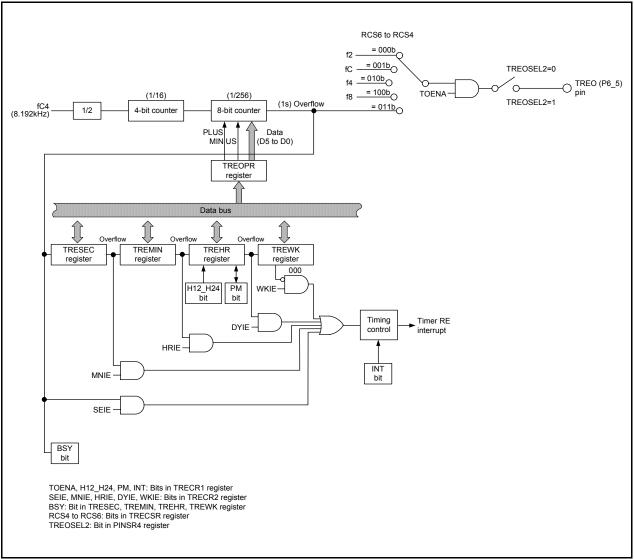
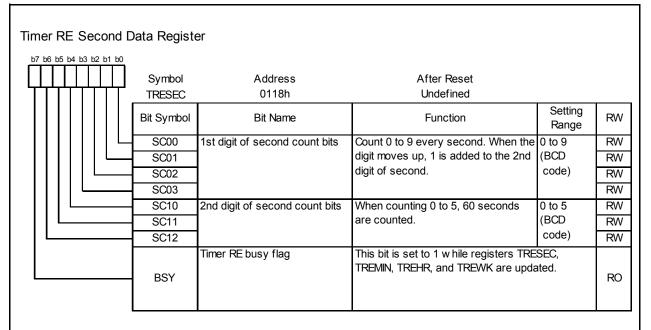
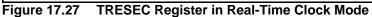
- Real-time clock mode Generate 1-second signal from fC4 and count seconds, minutes, hours, and days of the week.
- Output compare mode Count a count source and detect compare matches.

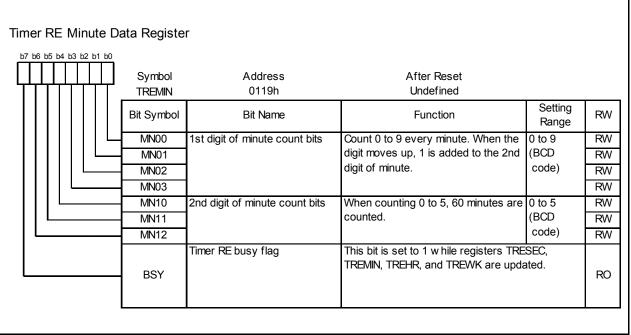
The count source for timer RE is the operating clock that regulates the timing of timer operations.

Timer RE is not implemented in the R8C/2J Group.

#### 17.3.1 Real-Time Clock Mode

In real-time clock mode, a 1-second signal is generated from fC4 using a divide-by-2 frequency divider, 4-bit counter, and 8-bit counter and used to count seconds, minutes, hours, and days of the week. Figure 17.26 shows a Block Diagram of Real-Time Clock Mode and Table 17.11 lists the Real-Time Clock Mode Specifications. Figures 17.27 to 17.31 and 17.33 to 17.35 show the Registers Associated with Real-Time Clock Mode. Table 17.12 lists the Interrupt Sources, Figure 17.32 shows the Definition of Time Representation and Figure 17.36 shows the Operating Example in Real-Time Clock Mode.



Figure 17.26 Block Diagram of Real-Time Clock Mode

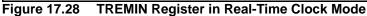

| Item                         | Specification                                                         |
|------------------------------|-----------------------------------------------------------------------|
| Count source                 | fC4                                                                   |
| Count operation              | Increment                                                             |
| Count start condition        | 1 (count starts) is written to TSTART bit in TRECR1 register          |
| Count stop condition         | 0 (count stops) is written to TSTART bit in TRECR1 register           |
| Interrupt request generation | Select any one of the following:                                      |
| timing                       | Update second data                                                    |
|                              | Update minute data                                                    |
|                              | Update hour data                                                      |
|                              | Update day of week data                                               |
|                              | <ul> <li>When day of week data is set to 000b (Sunday)</li> </ul>     |
| TREO pin function            | Programmable I/O ports or output of f2, fC, f4, f8 or, 1Hz            |
| Read from timer              | When reading TRESEC, TREMIN, TREHR, or TREWK register, the count      |
|                              | value can be read. The values read from registers TRESEC, TREMIN,     |
|                              | and TREHR are represented by the BCD code.                            |
| Write to timer               | When bits TSTART and TCSTF in the TRECR1 register are set to 0 (timer |
|                              | stops), the value can be written to registers TRESEC, TREMIN, TREHR,  |
|                              | and TREWK. The values written to registers TRESEC, TREMIN, and        |
|                              | TREHR are represented by the BCD codes.                               |
| Select function              | 12-hour mode/24-hour mode switch function                             |
|                              | <ul> <li>Counter precision adjustment function</li> </ul>             |

Table 17.11 Real-Time Clock Mode Specifications









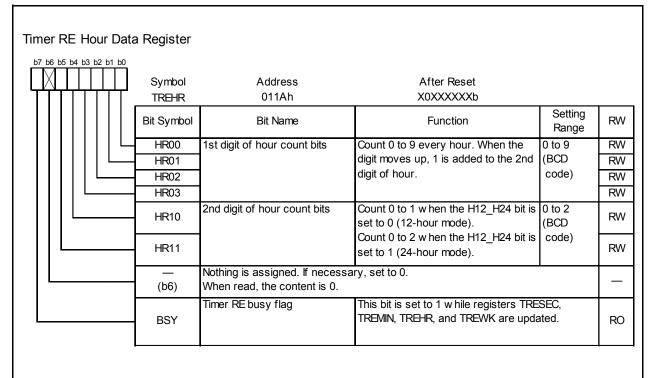



Figure 17.29 TREHR Register in Real-Time Clock Mode

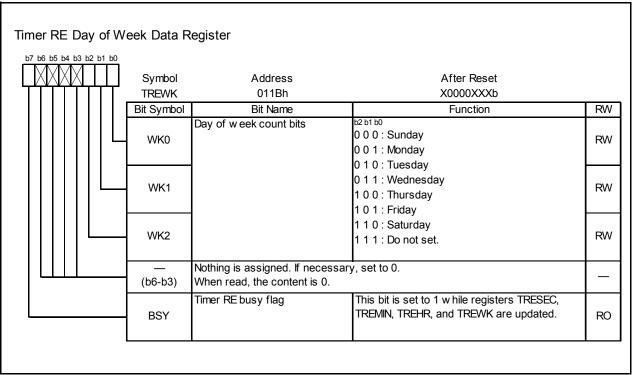
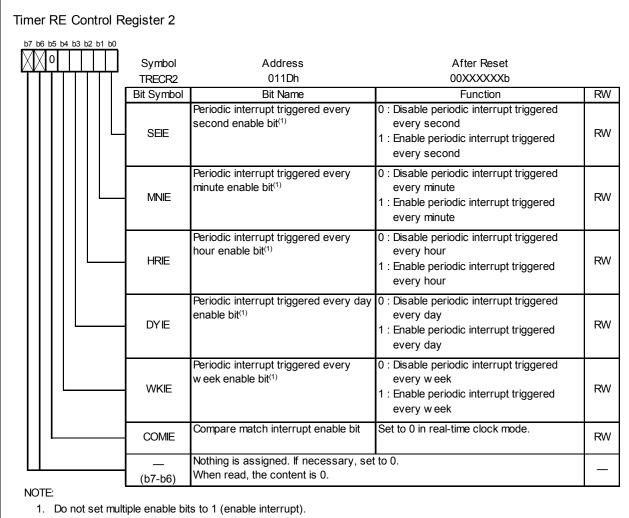




Figure 17.30 TREWK Register in Real-Time Clock Mode

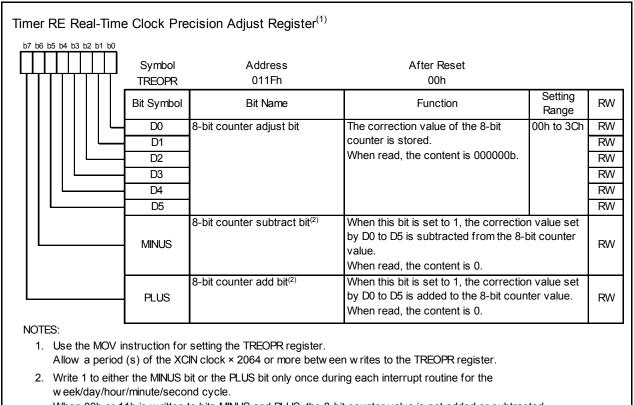
| b7 b6 b | o5 b4 b3 b2 b1 b0 |            |                                                               |                                                                                                                                                                                                                                                                                                                                                    |    |
|---------|-------------------|------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|         |                   | Symbol     | Address                                                       | After Reset                                                                                                                                                                                                                                                                                                                                        |    |
|         |                   | TRECR1     | 011Ch                                                         | XXX0X0X0b                                                                                                                                                                                                                                                                                                                                          |    |
|         |                   | Bit Symbol | Bit Name                                                      | Function                                                                                                                                                                                                                                                                                                                                           | RW |
|         |                   | (b0)       | Nothing is assigned. If neces<br>When read, the content is 0. | sary, set to 0.                                                                                                                                                                                                                                                                                                                                    | _  |
|         |                   | TCSTF      | Timer RE count status flag                                    | 0 : Count stopped<br>1 : Counting                                                                                                                                                                                                                                                                                                                  | RO |
|         |                   | TOENA      | TREO pin output enable bit                                    | 0 : Disable clock output<br>1 : Enable clock output                                                                                                                                                                                                                                                                                                | RW |
|         |                   | INT        | Interrupt request timing bit                                  | Set to 1 in real-time clock mode.                                                                                                                                                                                                                                                                                                                  | RW |
|         |                   | TRERST     | Timer RE reset bit                                            | <ul> <li>When setting this bit to 0, after setting it to 1, the follow ings will occur.</li> <li>Registers TRESEC, TREMIN, TREHR, TREWK, and TRECR2 are set to 00h.</li> <li>Bits TCSTF, INT, PM, H12_H24, and TSTART in the TRECR1 register are set to 0.</li> <li>The 8-bit counter is set to 00h and the 4-bit counter is set to 0h.</li> </ul> | RW |
|         |                   | PM         | A.m./p.m. bit                                                 | When the H12_H24 bit is set to 0<br>(12-hour mode)(1)<br>0 : a.m.<br>1 : p.m.<br>When the H12_H24 bit is set to 1 (24-hour<br>mode), its value is undefined.                                                                                                                                                                                       | RW |
|         |                   | H12_H24    | Operating mode select bit                                     | 0 : 12-hour mode<br>1 : 24-hour mode                                                                                                                                                                                                                                                                                                               | RW |
|         |                   | TSTART     | Timer RE count start bit                                      | 0 : Count stops<br>1 : Count starts                                                                                                                                                                                                                                                                                                                | RW |

Figure 17.31 TRECR1 Register in Real-Time Clock Mode

| Contents of TREHR Register H12_H24 bit = 1 (24-hour mode)<br>TREHR negister H12_H24 bit = 0 (12-hour mode) | 0                                                   | 1       | 2       | 3       | 4       | 5  | 6           | 7         | 8                    | 9     | 10   | 11 | 12 | 13 | 14 | 15   | 16   | 17 |   |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------|---------|---------|---------|----|-------------|-----------|----------------------|-------|------|----|----|----|----|------|------|----|---|
|                                                                                                            |                                                     | 0       | 1       | 2       | 3       | 4  | 5           | 6         | 7                    | 8     | 9    | 10 | 11 | 0  | 1  | 2    | 3    | 4  | 5 |
| Contents of PM                                                                                             | V bit                                               |         |         |         |         |    | 0 (a        | .m.)      |                      |       |      |    |    |    |    | 1 (p | .m.) |    |   |
| Contents in TRE                                                                                            | EWK register                                        |         |         |         |         |    |             |           | 00                   | 00 (S | unda | y) |    |    |    |      |      |    |   |
|                                                                                                            |                                                     |         |         |         |         | D  | ate c       | hang      | es                   |       |      |    |    |    |    |      |      |    |   |
|                                                                                                            |                                                     |         |         |         |         | D  | ate c       | hang<br>L | es                   |       |      |    |    |    |    |      |      |    |   |
| Contents of                                                                                                | H12_H24 bit = 1<br>(24-hour mode)                   | 18      | 19      | 20      | 21      | 22 | ate c<br>23 | hang<br>0 | es<br>1              | 2     | 3    |    |    |    |    |      |      |    |   |
| Contents of<br>TREHR Register                                                                              | (24-hour mode)<br>H12_H24 bit = 0                   | 18<br>6 | 19<br>7 | 20<br>8 | 21<br>9 |    | 1           | 1         | es<br>1<br>1         | 2     | 3    |    |    |    |    |      |      |    |   |
|                                                                                                            | (24-hour mode)<br>H12_H24 bit = 0<br>(12-hour mode) | -       |         | 8       |         | 22 | 23          | 0         | es<br>1<br>1<br>0 (a | 2     | -    |    |    |    |    |      |      |    |   |






#### Table 17.12 Interrupt Sources

| Factor                 | Interrupt Source                                | Interrupt Enable Bit |
|------------------------|-------------------------------------------------|----------------------|
| Periodic interrupt     | Value in TREWK register is set to 000b (Sunday) | WKIE                 |
| triggered every week   | (1-week period)                                 |                      |
| Periodic interrupt     | TREWK register is updated (1-day period)        | DYIE                 |
| triggered every day    |                                                 |                      |
| Periodic interrupt     | TREHR register is updated (1-hour period)       | HRIE                 |
| triggered every hour   |                                                 |                      |
| Periodic interrupt     | TREMIN register is updated (1-minute period)    | MNIE                 |
| triggered every minute |                                                 |                      |
| Periodic interrupt     | TRESEC register is updated (1-second period)    | SEIE                 |
| triggered every second |                                                 |                      |

| b7 b6 b5 | b4 b3 b2 b1 b0 |            |                                                                    |                                                             |          |
|----------|----------------|------------|--------------------------------------------------------------------|-------------------------------------------------------------|----------|
| Х        | 1000           | Symbol     | Address                                                            | After Reset                                                 |          |
|          |                | TRECSR     | 011Eh                                                              | 00001000b                                                   |          |
|          |                | Bit Symbol | Bit Name                                                           | Function                                                    | RW       |
|          |                | RCS0       | Count source select bits                                           | Set to 00b in real-time clock mode.                         | RW       |
|          |                | RCS1       |                                                                    |                                                             | RW       |
|          |                | RCS2       | 4-bit counter select bit                                           | Set to 0 in real-time clock mode.                           | RW       |
|          |                | RCS3       | Real-time clock mode select bit                                    | Set to 1 in real-time clock mode.                           | RW       |
|          |                | RCS4       | Clock output select bits <sup>(1)</sup>                            | b6 b5 b4<br>0 0 0 : f2                                      | RW       |
| L        |                | RCS5       |                                                                    | 0 0 1 : fC<br>0 1 0 : f4                                    | RW       |
|          |                | RCS6       |                                                                    | 0 1 1 : 1Hz<br>1 0 0 : f8<br>Other than above : Do not set. | RW       |
|          |                | (b7)       | Nothing is assigned. If necessary,<br>When read, the content is 0. | set to 0.                                                   | <u> </u> |

1. Write to bits RCS4 to RCS6 when the TOENA bit in the TRECR1 register is set to 0 (disable clock output).





When 00b or 11b is written to bits MINUS and PLUS, the 8-bit counter value is not added or subtracted.

Figure 17.35 TREOPR Register in Real-Time Clock Mode

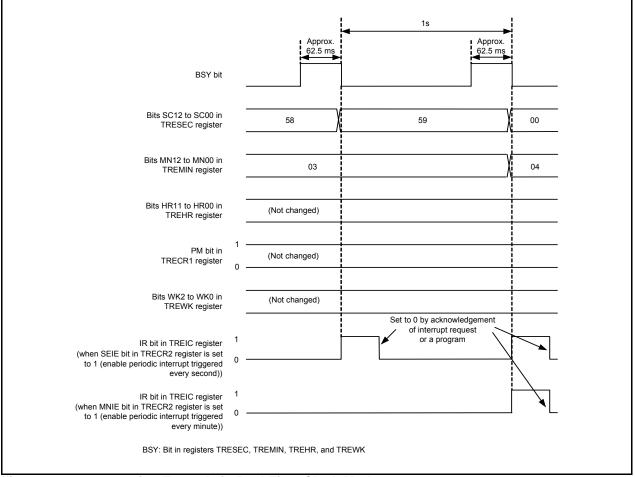



Figure 17.36 Operating Example in Real-Time Clock Mode

#### 17.3.2 Output Compare Mode

In output compare mode, the internal count source divided by 2 is counted using the 4-bit or 8-bit counter and compare value match is detected with the 8-bit counter. Figure 17.37 shows a Block Diagram of Output Compare Mode and Table 17.13 lists the Output Compare Mode Specifications. Figures 17.38 to 17.42 show the Registers Associated with Output Compare Mode, and Figure 17.43 shows the Operating Example in Output Compare Mode.

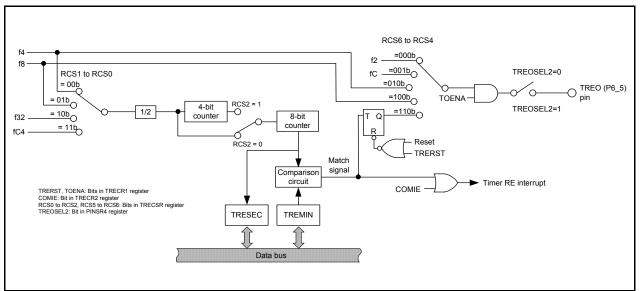



Figure 17.37 Block Diagram of Output Compare Mode

| Item                         | Specification                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Count sources                | f4, f8, f32, fC4                                                                                                                                                                                                                                                                                                                                                                                       |
| Count operations             | <ul> <li>Increment</li> <li>When the 8-bit counter content matches with the TREMIN register content, the value returns to 00h and count continues.<br/>The count value is held while count stops.</li> </ul>                                                                                                                                                                                           |
| Count period                 | <ul> <li>When RCS2 = 0 (4-bit counter is not used)<br/>1/fi x 2 x (n+1)</li> <li>When RCS2 = 1 (4-bit counter is used)<br/>1/fi x 32 x (n+1)</li> <li>fi: Frequency of count source<br/>n: Setting value of TREMIN register</li> </ul>                                                                                                                                                                 |
| Count start condition        | 1 (count starts) is written to the TSTART bit in the TRECR1 register                                                                                                                                                                                                                                                                                                                                   |
| Count stop condition         | 0 (count stops) is written to the TSTART bit in the TRECR1 register                                                                                                                                                                                                                                                                                                                                    |
| Interrupt request generation | When the 8-bit counter content matches with the TREMIN register content                                                                                                                                                                                                                                                                                                                                |
| timing                       |                                                                                                                                                                                                                                                                                                                                                                                                        |
| TREO pin function            | Select any one of the following:<br>• Programmable I/O ports<br>• Output f2, fC, f4, or f8<br>• Compare output                                                                                                                                                                                                                                                                                         |
| Read from timer              | When reading the TRESEC register, the 8-bit counter value can be read.<br>When reading the TREMIN register, the compare value can be read.                                                                                                                                                                                                                                                             |
| Write to timer               | Writing to the TRESEC register is disabled.<br>When bits TSTART and TCSTF in the TRECR1 register are set to 0 (timer stops), writing to the TREMIN register is enabled.                                                                                                                                                                                                                                |
| Selectable functions         | <ul> <li>Select use of 4-bit counter</li> <li>Compare output function<br/>Every time the 8-bit counter value matches the TREMIN register value,<br/>TREO output polarity is reversed. The TREO pin outputs "L" after reset<br/>is deasserted and the timer RE is reset by the TRERST bit in the<br/>TRECR1 register. Output level is held by setting the TSTART bit to 0<br/>(count stops).</li> </ul> |

Table 17.13 Output Compare Mode Specifications

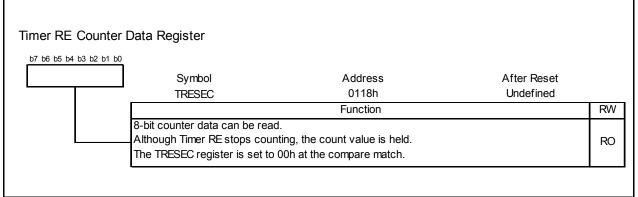
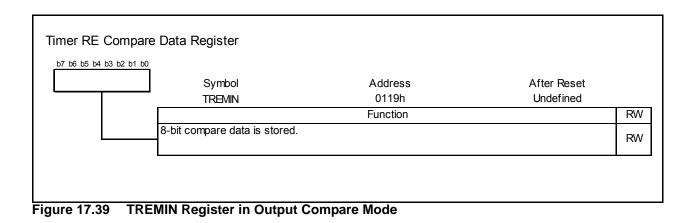




Figure 17.38 TRESEC Register in Output Compare Mode



| Timer RI | E Co    | ntrol R  | egister 1  |                                                                |                                                                                                                                                                                                                                                                                                                                                   |    |   |
|----------|---------|----------|------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|
| b7 b6 b5 | b4 b3 b | o2 b1 b0 |            |                                                                |                                                                                                                                                                                                                                                                                                                                                   |    |   |
| 0 0      | 0       | ĪŇ       | Symbol     | Address                                                        | After Reset                                                                                                                                                                                                                                                                                                                                       |    |   |
|          |         |          | TRECR1     | 011Ch                                                          | XXX0X0X0b                                                                                                                                                                                                                                                                                                                                         |    |   |
|          |         |          | Bit Symbol | Bit Name                                                       | Function                                                                                                                                                                                                                                                                                                                                          | RW | 1 |
|          |         |          | (b0)       | Nothing is assigned. If necess<br>When read, the content is 0. | sary, set to 0.                                                                                                                                                                                                                                                                                                                                   |    |   |
|          |         |          | TCSTF      | Timer RE count status flag                                     | 0 : Count stopped<br>1 : Counting                                                                                                                                                                                                                                                                                                                 | RO |   |
|          |         |          | TOENA      | TREO pin output enable bit                                     | 0 : Disable clock output<br>1 : Enable clock output                                                                                                                                                                                                                                                                                               | RW | - |
|          | L       |          | INT        | Interrupt request timing bit                                   | Set to 0 in output compare mode.                                                                                                                                                                                                                                                                                                                  | RW |   |
|          |         |          | TRERST     | Timer RE reset bit                                             | <ul> <li>When setting this bit to 0, after setting it to 1, the follow ing will occur.</li> <li>Registers TRESEC, TREMIN, TREHR, TREWK, and TRECR2 are set to 00h.</li> <li>Bits TCSTF, INT, PM, H12_H24, and TSTART in the TRECR1 register are set to 0.</li> <li>The 8-bit counter is set to 00h and the 4-bit counter is set to 0h.</li> </ul> | RW |   |

Set to 0 in output compare mode.

0 : Count stops

1 : Count starts

| Figure 17.40 | TRECR1 Register in Output Compare Mode |
|--------------|----------------------------------------|

A.m./p.m. bit

Operating mode select bit Timer RE count start bit

ΡM

H12\_H24

TSTART

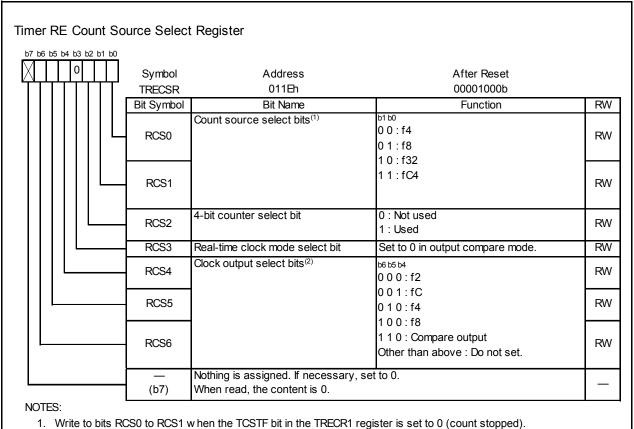

|                   |   | -                |                                                         |                                                                           |    |
|-------------------|---|------------------|---------------------------------------------------------|---------------------------------------------------------------------------|----|
| b7 b6 b5 b4 b3 b2 |   | Symbol<br>TRECR2 | Address<br>011Dh                                        | After Reset<br>00XXXXXb                                                   |    |
|                   |   | Bit Symbol       | Bit Name                                                | Function                                                                  | RW |
|                   | 4 | SEIE             | Periodic interrupt triggered every<br>second enable bit | Set to 0 in output compare mode.                                          | RW |
|                   | Ч | MNIE             | Periodic interrupt triggered every<br>minute enable bit |                                                                           | RW |
|                   |   | HRIE             | Periodic interrupt triggered every<br>hour enable bit   | -                                                                         | RW |
|                   |   | DYIE             | Periodic interrupt triggered every<br>day enable bit    |                                                                           | RW |
|                   |   | WKIE             | Periodic interrupt triggered every<br>w eek enable bit  |                                                                           | RW |
|                   |   | COMIE            | Compare match interrupt enable bit                      | 0 : Disable compare match interrupt<br>1 : Enable compare match interrupt | RW |
|                   |   | _                | Nothing is assigned. If necessary, se                   | et to 0.                                                                  |    |
|                   |   | (b7-b6)          | When read, the content is 0.                            |                                                                           | _  |

Figure 17.41 TRECR2 Register in Output Compare Mode

RW

RW

RW



2. Write to bits RCS4 to RCS6 when the TOENA bit in the TRECR1 register is set to 0 (disable clock output).



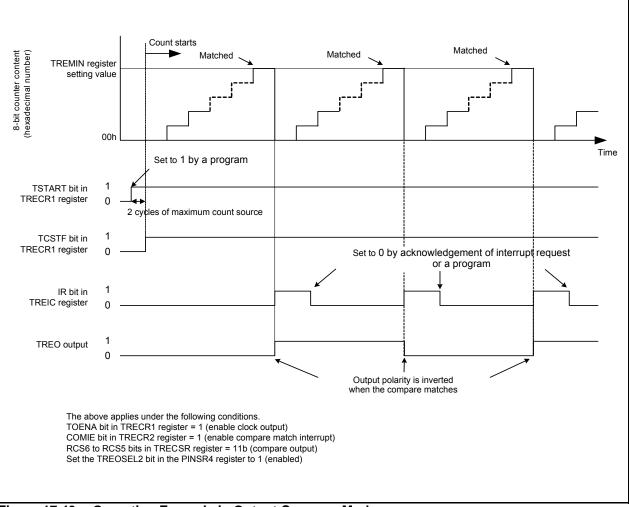



Figure 17.43 Operating Example in Output Compare Mode

## 17.3.3 Notes on Timer RE (for R8C/2H Group only)

## 17.3.3.1 Starting and Stopping Count

Timer RE has the TSTART bit for instructing the count to start or stop, and the TCSTF bit, which indicates count start or stop. Bits TSTART and TCSTF are in the TRECR1 register.

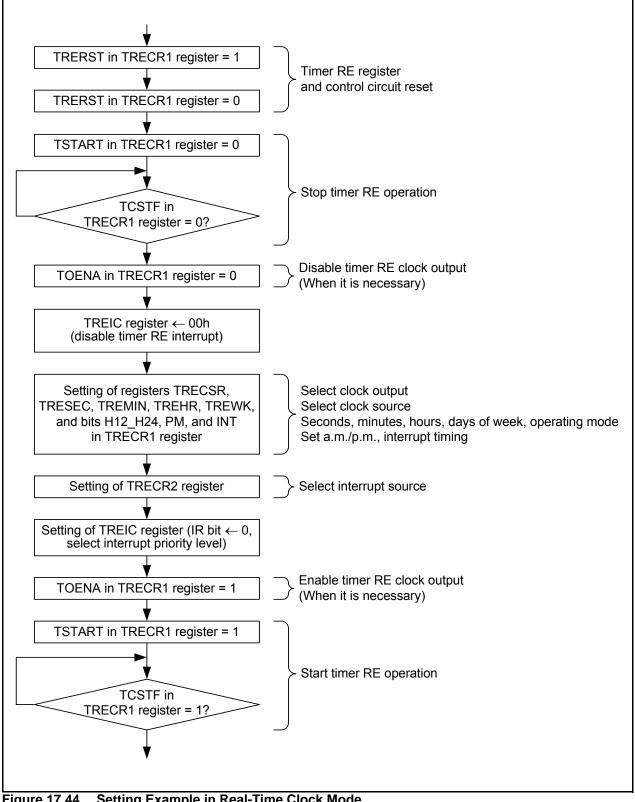
Timer RE starts counting and the TCSTF bit is set to 1 (count starts) when the TSTART bit is set to 1 (count starts). It takes up to 2 cycles of the count source until the TCSTF bit is set to 1 after setting the TSTART bit to 1. During this time, do not access registers associated with timer  $RE^{(1)}$  other than the TCSTF bit.

Also, timer RE stops counting when setting the TSTART bit to 0 (count stops) and the TCSTF bit is set to 0 (count stops). It takes the time for up to 2 cycles of the count source until the TCSTF bit is set to 0 after setting the TSTART bit to 0. During this time, do not access registers associated with timer RE other than the TCSTF bit.

NOTE:

1. Registers associated with timer RE: TRESEC, TREMIN, TREHR, TREWK, TRECR1, TRECR2, TRECSR, and TREOPR.

## 17.3.3.2 Register Setting


Write to the following registers or bits when timer RE is stopped.

- Registers TRESEC, TREMIN, TREHR, TREWK, and TRECR2
- Bits H12\_H24, PM, and INT in TRECR1 register
- Bits RCS0 to RCS3 in TRECSR register

Timer RE is stopped when bits TSTART and TCSTF in the TRECR1 register are set to 0 (timer RE stopped).

Also, set all above-mentioned registers and bits (immediately before timer RE count starts) before setting the TRECR2 register.

Figure 17.44 shows a Setting Example in Real-Time Clock Mode.



**Figure 17.44** Setting Example in Real-Time Clock Mode

#### 17.3.3.3 Time Reading Procedure of Real-Time Clock Mode

In real-time clock mode, read registers TRESEC, TREMIN, TREHR, and TREWK when time data is updated and read the PM bit in the TRECR1 register when the BSY bit is set to 0 (not while data is updated). Also, when reading several registers, an incorrect time will be read if data is updated before another register is read after reading any register.

In order to prevent this, use the reading procedure shown below.

• Using an interrupt

Read necessary contents of registers TRESEC, TREMIN, TREHR, and TREWK and the PM bit in the TRECR1 register in the timer RE interrupt routine.

• Monitoring with a program 1

Monitor the IR bit in the TREIC register with a program and read necessary contents of registers TRESEC, TREMIN, TREHR, and TREWK and the PM bit in the TRECR1 register after the IR bit in the TREIC register is set to 1 (timer RE interrupt request generated).

• Monitoring with a program 2

- (1) Monitor the BSY bit.
- (2) Monitor until the BSY bit is set to 0 after the BSY bit is set to 1 (approximately 62.5 ms while the BSY bit is set to 1).
- (3) Read necessary contents of registers TRESEC, TREMIN, TREHR, and TREWK and the PM bit in the TRECR1 register after the BSY bit is set to 0.

• Using read results if they are the same value twice

- (1) Read necessary contents of registers TRESEC, TREMIN, TREHR, and TREWK and the PM bit in the TRECR1 register.
- (2) Read the same register as (1) and compare the contents.
- (3) Recognize as the correct value if the contents match. If the contents do not match, repeat until the read contents match with the previous contents.

Also, when reading several registers, read them as continuously as possible.

### 17.4 Timer RF

Timer RF is a 16-bit timer. The count source for timer RF is the operating clock that regulates the timing of timer operations. Figure 17.45 shows a Block Diagram of Timer RF. Figure 17.46 shows a Block Diagram of CMP Waveform Output Unit. Figure 17.47 shows a Block Diagram of CMP Waveform Output Unit.

Timer RF has two modes: input capture mode and output compare mode. Figures 17.48 to 17.51 show the timer RF associated registers.

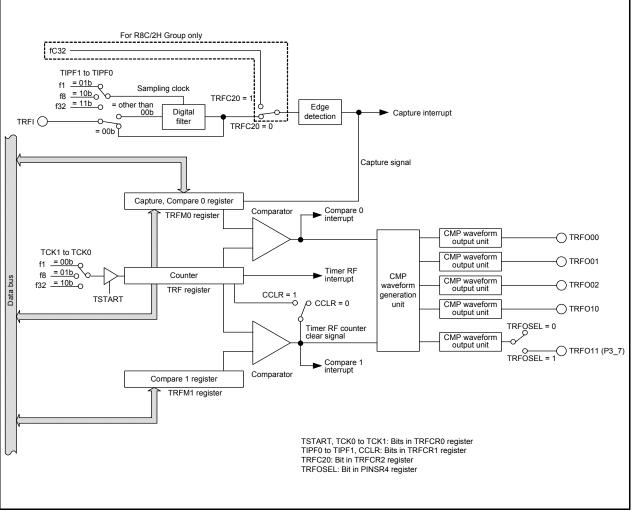



Figure 17.45 Block Diagram of Timer RF

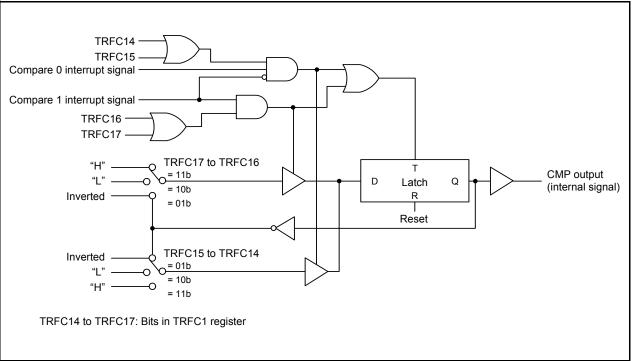



Figure 17.46 Block Diagram of CMP Waveform Generation Unit

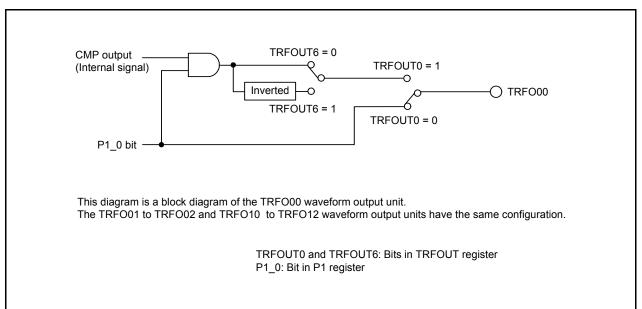



Figure 17.47 Block Diagram of CMP Waveform Output Unit

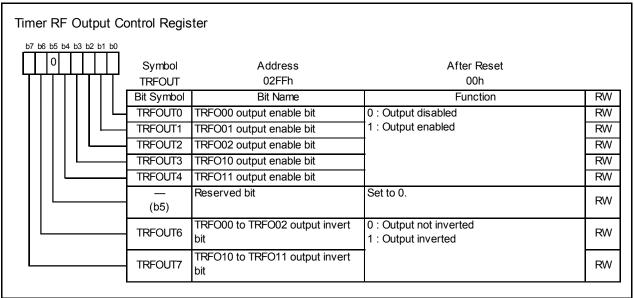
| Timer RF Register | .(1)                           |                  |                                             |                      |          |
|-------------------|--------------------------------|------------------|---------------------------------------------|----------------------|----------|
| (b15) (b8)        |                                |                  |                                             |                      |          |
| b7 b0             | b7 b0                          |                  |                                             |                      |          |
|                   |                                | Symbol           | Address                                     | After Reset          |          |
|                   |                                | TRF              | 0291h-0290h                                 | 0000h                |          |
|                   |                                |                  | Function                                    |                      | RW       |
|                   | Count source increm            | nent.            |                                             |                      |          |
|                   | 0000h can be read v            | when the TS      | TART bit is set to 0 (count stops).         |                      | RO       |
|                   | Count value can be             | read w hen tl    | ne TSTART bit is set to 1 (count starts).   |                      |          |
| NOTE:             |                                |                  |                                             |                      | <u> </u> |
| 1. Access the T   | RF register in 16-bit u        | nits.            |                                             |                      |          |
|                   |                                |                  |                                             |                      |          |
|                   |                                |                  |                                             |                      |          |
| Capture and Comp  | pare 0 Register <sup>(1)</sup> |                  |                                             |                      |          |
| (b15) (b8)        |                                |                  |                                             |                      |          |
| b7 b0             | b7 b0                          |                  |                                             |                      |          |
|                   |                                | Symbol           | Address                                     | After Reset          |          |
| L                 |                                | TRFM0            | 029Dh-029Ch                                 | 0000h <sup>(2)</sup> |          |
|                   | Mode                           |                  | Function                                    | Setting Range        | RW       |
|                   | Wood                           |                  | When the active edge of the measured        |                      | 1.00     |
|                   | Input capture mode             |                  | pulse is input, store the value in the TRF  | _                    | RO       |
|                   |                                |                  | register                                    |                      |          |
|                   | Output compare mod             | م <sup>(3)</sup> | Store the value compared with TRF           | 0000h to FFFFh       |          |
| L                 |                                |                  | register (counter)                          |                      | RW       |
| NOTES:            |                                |                  |                                             |                      |          |
|                   | RFM0 register in 16-bi         | t units          |                                             |                      |          |
|                   | -                              |                  | to 1, the value is set to FFFFh.            |                      |          |
|                   |                                | -                | the TMOD bit in the TRFCR1 register to 1 (c | utput compare mod    | ۵)       |
| -                 |                                | -                | de), no value can be w ritten.              |                      | c).      |
| When the Tik      |                                |                  |                                             |                      |          |
|                   |                                |                  |                                             |                      |          |
|                   |                                |                  |                                             |                      |          |
| Compare 1 Registe | er <sup>(1)</sup>              |                  |                                             |                      |          |
| (b15) (b8)        |                                |                  |                                             |                      |          |
| b7 b0             | b7 b0                          |                  |                                             |                      |          |
|                   |                                | Symbol           | Address                                     | After Reset          |          |
|                   |                                | TRFM1            | 029Fh-029Eh                                 | FFFFh                |          |
|                   | Mode                           |                  | Function                                    | Setting Range        | RW       |
|                   | Output compare mod             | e                | Store the value compared with TRF           | 0000h to FFFFh       | RW       |
| •                 |                                |                  | register (counter)                          |                      | I'' V    |
| NOTE:             |                                |                  |                                             |                      |          |
| 1. Access the T   | RFM1 register in 16-bi         | t units.         |                                             |                      |          |
|                   |                                |                  |                                             |                      |          |
|                   |                                |                  |                                             |                      |          |
|                   |                                |                  |                                             |                      |          |



| $\times 0.0 \times \times \times 10^{-1}$ | Symbol                           | Address                                                                                                                             | After Reset                                                                                                                                                                                                                                                                                                                                 |                      |
|-------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                                           | TRFCR2                           | 0299h                                                                                                                               | 00h                                                                                                                                                                                                                                                                                                                                         |                      |
|                                           | Bit Symbol                       | Bit Name                                                                                                                            | Function                                                                                                                                                                                                                                                                                                                                    | RW                   |
| L                                         | TRFC20                           | Timer RF capture input select bit                                                                                                   | 0 : TRFI pin input<br>1 : fC32                                                                                                                                                                                                                                                                                                              | RW                   |
|                                           | <br>(b4-b1)                      | Nothing is assigned. If necessary,<br>When read, the content is 0.                                                                  | set to 0.                                                                                                                                                                                                                                                                                                                                   | -                    |
|                                           | <br>(b6-b5)                      | Reserved bits                                                                                                                       | Set to 0.                                                                                                                                                                                                                                                                                                                                   | RW                   |
|                                           | (b7)                             | Nothing is assigned. If necessary,<br>When read, the content is 0.                                                                  | set to 0.                                                                                                                                                                                                                                                                                                                                   | -                    |
|                                           | Symbol<br>TRFCR0<br>Bit Symbol   | Address<br>029Ah<br>Bit Name                                                                                                        | After Reset<br>00h<br>Function                                                                                                                                                                                                                                                                                                              | RW                   |
| imer RF Control R                         | egister 0                        |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                      |
|                                           |                                  |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             | RW/                  |
|                                           |                                  |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                      |
|                                           | TSTART                           | Timer RF count start bit                                                                                                            | 0 : Count stops<br>1 : Count starts                                                                                                                                                                                                                                                                                                         | RW                   |
|                                           | TSTART                           | Timer RF count start bit<br>Timer RF count source select<br>bits <sup>(1)</sup>                                                     | 1 : Count starts<br><sup>b2 b1</sup><br>0 0 : f1                                                                                                                                                                                                                                                                                            | RW<br>RW             |
|                                           | -                                | Timer RF count source select                                                                                                        | 1 : Count starts<br>b2 b1                                                                                                                                                                                                                                                                                                                   | -                    |
|                                           | тско                             | Timer RF count source select                                                                                                        | 1 : Count starts<br><sup>b2 b1</sup><br>0 0 : f1<br>0 1 : f8<br>1 0 : f32<br>1 1 : Do not set.<br><sup>b4 b3</sup><br>0 0 : Rising edge                                                                                                                                                                                                     | RW                   |
|                                           | TCK0<br>TCK1                     | Timer RF count source select bits <sup>(1)</sup>                                                                                    | 1 : Count starts<br><sup>b2 b1</sup><br>0 0 : f1<br>0 1 : f8<br>1 0 : f32<br>1 1 : Do not set.<br><sup>b4 b3</sup>                                                                                                                                                                                                                          | RW                   |
|                                           | TCK0<br>TCK1<br>TRFC03           | Timer RF count source select bits <sup>(1)</sup>                                                                                    | 1 : Count starts<br><sup>b2 b1</sup><br>0 0 : f1<br>0 1 : f8<br>1 0 : f32<br>1 1 : Do not set.<br><sup>b4 b3</sup><br>0 0 : Rising edge<br>0 1 : Falling edge<br>1 0 : Both edges                                                                                                                                                           | RW                   |
|                                           | TCK0<br>TCK1<br>TRFC03<br>TRFC04 | Timer RF count source select<br>bits <sup>(1)</sup><br>Capture polarity select bits <sup>(1)</sup><br>CMP output select bit 0 w hen | <ul> <li>1 : Count starts</li> <li>b2 b1</li> <li>0 0 : f1</li> <li>0 1 : f8</li> <li>1 0 : f32</li> <li>1 1 : Do not set.</li> <li>b4 b3</li> <li>0 0 : Rising edge</li> <li>0 1 : Falling edge</li> <li>1 0 : Both edges</li> <li>1 1 : Do not set.</li> <li>0 : TRFC06 bit disabled<br/>Holds output level before count stops</li> </ul> | RW<br>RW<br>RW<br>RW |

Figure 17.49 Registers TRFCR2 (for R8C/2H Group only) and TRFCR0

| b7 b6 b5 b4 b3 b2 b1 b0 |            |                                                           |                                                                                                     |    |
|-------------------------|------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----|
|                         | Symbol     | Address                                                   | After Reset                                                                                         |    |
|                         | TRFCR1     | 029Bh                                                     | 00h                                                                                                 |    |
|                         | Bit Symbol | Bit Name                                                  | Function                                                                                            | RW |
|                         | TIPF0      | TRFI filter select bits <sup>(1)</sup>                    | b1 b0<br>0 0 : No filter                                                                            | RW |
|                         | TIPF1      |                                                           | 0 1 : Filter w ith f1 sampling<br>1 0 : Filter w ith f8 sampling<br>1 1 : Filter w ith f32 sampling | RW |
|                         | CCLR       | TRF register count operation select bit <sup>(2, 3)</sup> | 0 : Free-running operation<br>1 : Set TRF register to 0000h w hen compare<br>1 is matched.          | RW |
|                         | TMOD       | Timer RF operation mode select bit <sup>(3)</sup>         | 0 : Input capture mode <sup>(2, 4)</sup><br>1 : Output compare mode                                 | RW |
|                         | TRFC14     | Compare 0 output select<br>bits <sup>(2)</sup>            | b5 b4 CMP output w hen compare 0 is matched<br>0 0 : Unchanged<br>0 1 : Inverted<br>1 0 : "L"       | RW |
|                         | TRFC15     |                                                           | 1 1 : "H"                                                                                           |    |
|                         | TRFC16     |                                                           | <sup>b7 b6</sup> CMP output w hen compare 0 is matched<br>0 0 : Unchanged<br>0 1 : Inverted         |    |
|                         | TRFC17     |                                                           | 10:"L"<br>11:"H"                                                                                    | RW |


1. If filter enabled, when the same value from the TRFI pin is sampled three times continuously, the input is determine

2. When the TMOD bit is set to 0 (input capture mode), set bits CCLR, and TRFC14 to TRFC17 to 0.

3. When the TSTART bit in the TRFCR0 register is set to 0 (count stops), rew rite bits CCLR and TMOD.

4. When the TMOD bit is set to 0 (input capture mode), set bits ILVL2 to ILVL0 in the CMP1IC register to 000b (level 0) and set the IR bit to 0 (no interrupt requested).

Figure 17.50 TRFCR1 Register



#### Figure 17.51 TRFOUT Register

## 17.4.1 Input Capture Mode

In input capture mode, the edge of the TRFI pin input signal or fC32 is used as a trigger to latch the timer value and the width or the period of external signal is measured. The TRFI input is equipped with a digital filter, and this prevents errors caused by noise or the like from occurring. Table 17.14 shows the Input Capture Mode Specifications. Figure 17.52 shows an Operating Example in Input Capture Mode.

| Item                                      | Specification                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Count sources                             | f1, f8, f32                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Count operations                          | <ul> <li>Increment</li> <li>Transfer the value in the TRF register to the TRFM0 register at the valid<br/>edge of the measured pulse.</li> </ul>                                                                                                                                                                                                                                                                                     |
| Count period                              | 1/fk × 65536 fk: Frequency of count source                                                                                                                                                                                                                                                                                                                                                                                           |
| Count start condition                     | The TSTART bit in the TRFCR0 register is set to 1 (count starts).                                                                                                                                                                                                                                                                                                                                                                    |
| Count stop condition                      | The TSTART bit in the TRFCR0 register is set to 0 (count stops).                                                                                                                                                                                                                                                                                                                                                                     |
| Interrupt request generation timing       | <ul> <li>The valid edge of TRFI input or fC32 [capture interrupt]</li> <li>When timer RF overflows [timer RF interrupt]</li> </ul>                                                                                                                                                                                                                                                                                                   |
| TRFI pin function                         | Measured pulse input                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TRFO00 to TRFO02,<br>TRFO11 pin functions | Programmable I/O port                                                                                                                                                                                                                                                                                                                                                                                                                |
| Counter value reset timing                | In the following cases, the value in the TRF register is set to 0000h.<br>• When the TSTART bit in the TRFCR0 register is set to 0 (count stops).                                                                                                                                                                                                                                                                                    |
| Read from timer                           | <ul> <li>The count value can be read out by reading the TRF register.</li> <li>The count value at the measured pulse valid edge input can be read out by reading the TRFM0 register.</li> </ul>                                                                                                                                                                                                                                      |
| Write to timer                            | Write to the TRF and TRFM0 registers is disabled.                                                                                                                                                                                                                                                                                                                                                                                    |
| Select functions                          | <ul> <li>TRFI or fC32<sup>(1)</sup> polarity selected<br/>Selects the valid edge of the measured pulse.<br/>(Bits TRFC03 to TRFC04 in the TRFCR0 register.)</li> <li>Digital filter function<br/>The TRFI input is sampled, and when the sampled input level matches as<br/>three times, the level is determined.<br/>Selects the sampling clock of the digital filter.<br/>(Bits TIPF0 to TIPF1 in the TRFCR1 register.)</li> </ul> |

| Table 17.14 | Input Capture Mode Specifications |
|-------------|-----------------------------------|
|-------------|-----------------------------------|

NOTE:

1. Available in the R8C/2H Group only.

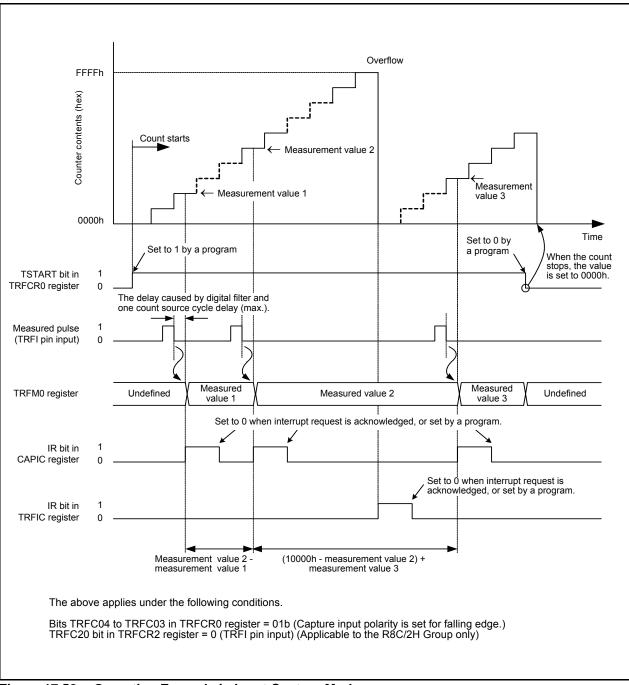



Figure 17.52 Operating Example in Input Capture Mode

## 17.4.1.1 Digital Filter

The TRFI input is sampled, and when the sampled input level matches three times, its level is determined. Select the digital filter function and sampling clock by the TRFCR1 register. Figure 17.53 shows a Block Diagram of Digital Filter.

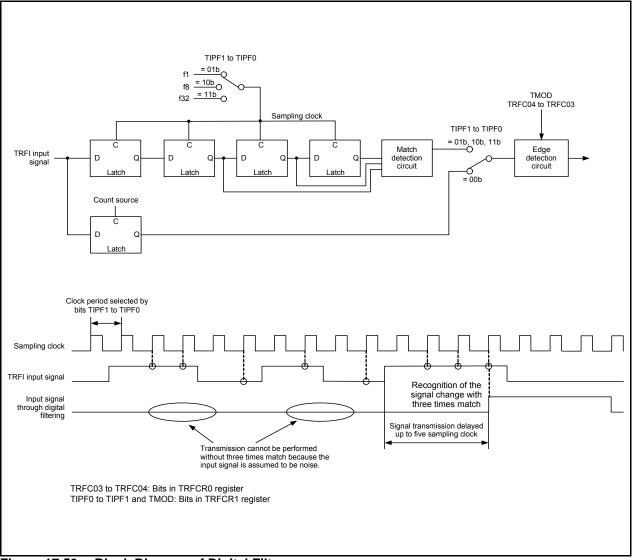



Figure 17.53 Block Diagram of Digital Filter

## 17.4.2 Output Compare Mode

In output compare mode, when the value of the TRF register matches the value of the TRFM0 (compare 0 match) or TRFM1 (compare 1 match) register, a user-set level is output mode from the output-compare output pin.

Table 17.15 shows the Output Compare Mode Specifications. Table 17.16 shows the Output in Output Compare Mode (Example of TRFO00 Pin). Figure 17.54 shows an Operating Example in Output Compare Mode. Figure 17.55 shows an Operating Example in Output Compare Mode ("L" and "H" Held Output in Count Stops).

| Table 17.15 | Output Compare Mode Specifications |
|-------------|------------------------------------|
|-------------|------------------------------------|

| Item                                | Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Count sources                       | f1, f8, f32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| Count operations                    | Increment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| PWM waveform                        | PWM period: $1/fk \times (n + 1)$<br>"L" level width: $1/fk \times (n + 1)$<br>"H" level width: $1/fk \times (n - m)$<br>fk: Frequency of count source<br>m: Value set in the TRFM0 register<br>n: Value set in the TRFM1 register<br>n + 1<br>It applies under the following conditions.<br>• CMP output "H" when compare 0 is matched<br>• CMP output "L" when compare 1 is matched<br>• CMP output not inverted                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Count start condition               | The TSTART bit in the TRFCR0 register is set to 1 (count starts).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Count stop condition                | The TSTART bit in the TRFCR0 register is set to 0 (count stops).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Interrupt request generation timing | <ul> <li>When compare 0 match is generated [compare 0 interrupt]</li> <li>When compare 1 match is generated [compare 1 interrupt]</li> <li>When time RF overflows [timer RF interrupt].</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| TRFO00 to TRFO11 pin<br>functions   | Programmable I/O port or output-compare output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Counter value reset timing          | <ul> <li>In the following cases, the value in the TRF register is set to 0000h.</li> <li>When the TSTART bit in the TRFCR0 register is set to 0 (count stops).</li> <li>The CCLR bit in the TRFCR1 register is set to 1 (the TRF register is set to 0000h at compare 1 match) in the compare 1 matches.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Read from timer                     | <ul> <li>The count value can be read out by reading the TRF register.</li> <li>The value in the compare register can be read out by reading registers TRFM0 and TRFM1.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Write to timer                      | Write to the TRF register is disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Select functions                    | <ul> <li>Output-compare output pin selected<br/>Either 1 pin or multiple pins among TRFO00 to TRFO02, or TRFO10 to TRFO11<br/>(bits TRFOUT0 to TRFOUT4 in the TRFOUT register).</li> <li>Output level at the compare match<br/>Selects "H", "L", inverted, or unchanged (bits TRFC14 to TRFC17 in the TRFCR1<br/>register).</li> <li>Output level inverted<br/>Selects output level inverted or not inverted (bits TRFOUT6 to TRFOUT7 in the<br/>TRFOUT register).</li> <li>Output level at the count stops<br/>Selects "H", "L", or unchanged (bits TRFC05 to TRFC06 in the TRFCR0 register).</li> <li>Timing to set the TRF register to 0000h<br/>Overflow or compare 1 match in the TRFM1 register (the CCLR bit in the TRFCR1<br/>register).</li> <li>TRFO11 pin select function<br/>P3_7 is selected by the TRFOSEL bit in the PINSR4 register.</li> </ul> |  |  |  |

| TRFO00 Output |                    | Bit Setting Value |        |        |                 |         |             |
|---------------|--------------------|-------------------|--------|--------|-----------------|---------|-------------|
|               |                    | TRFCR0 Register   |        |        | TRFOUT Register |         | P1 Register |
|               |                    | TRFC06            | TRFC05 | TSTART | TRFOUT6         | TRFOUT0 | P1_0        |
| Counting      | CMP output         | Х                 | Х      | 1      | 0               | 1       | 1           |
|               | Inverted output of | Х                 | Х      | 1      | 1               | 1       | 1           |
|               | CMP output         |                   |        |        |                 |         |             |
|               | "L" output         | Х                 | Х      | 1      | 0               | 1       | 0           |
|               | "H" output         | Х                 | Х      | 1      | 1               | 1       | 0           |
| Count         | Holds output level | Х                 | 0      | 0      | Х               | 1       | 1           |
| stops         | before count stops |                   |        |        |                 |         |             |
|               | "L" output         | 0                 | 1      | 0      | Х               | 1       | 1           |
|               | "H" output         | 1                 | 1      | 0      | Х               | 1       | 1           |

## Table 17.16 Output in Output Compare Mode (Example of TRFO00 Pin)

X: 0 or 1

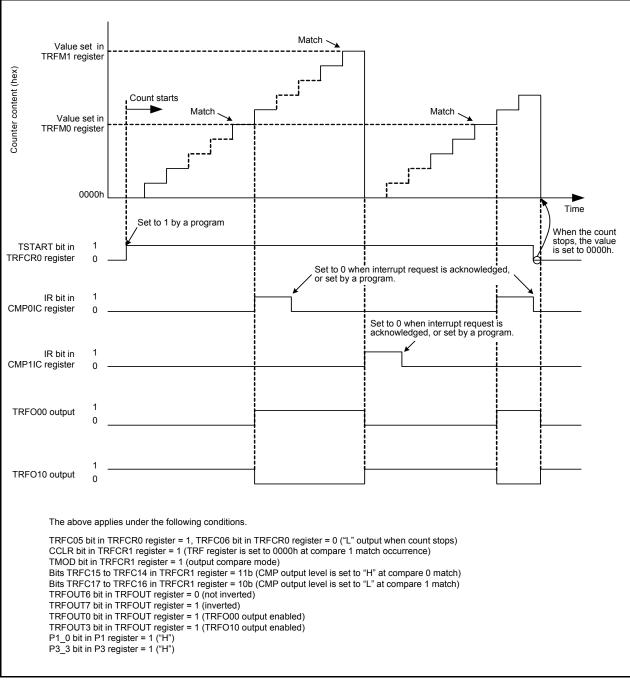
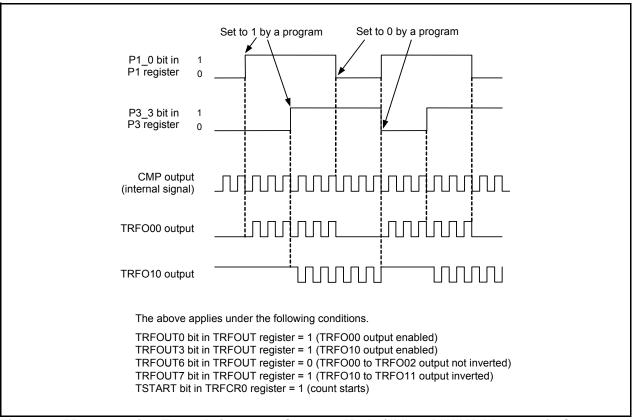




Figure 17.54 Operating Example in Output Compare Mode



# Figure 17.55 Operating Example in Output Compare Mode ("L" and "H" Held Output in Count Stops)

In output compare mode, the same PWM waveform is output from all of pins TRFO00 to TRFO02 and TRFO10 to TRFO11 during count operation. Note that the output waveform can be inverted for pins TRFO00 to TRFO02 or for pins TRFO10 to TRFO11. The output can also be fixed at "L" or "H" for individual pins for a given period.

The behavior when count operation stops can be selected from the following two options: the output level before the count stops is maintained, or output is fixed at "L" or "H".

The values in the compare i register can be read by reading the TRFMi (i = 0 or 1) register. Writing to the TRFMi register causes the values to be stored in the compare i register in the following timing:

- If the TSTART bit is set to 0 (count stops)
- Values are stored simultaneously with the write to the TRFMi register.
- If the TSTART bit is set to 1 (count starts) and the CCLR bit in the TRFCR1 register is set to 0 (free running) Values are stored when the TRF register (counter) overflows.
- If the TSTART bit is set to 1 and the CCLR bit is set to 1 (TRF register set to 0000h at compare 1 match) Values are stored when the compare 1 and TRF register (counter) values match.

#### 17.4.3 Notes on Timer RF

• Access registers TRF, TRFM0, and TRFM1 in 16-bit units.

Example of reading timer RF: MOV.W 0290H,R0

0290H,R0 ; Read out timer RF

• In input capture mode, a capture interrupt request is generated by inputting an edge selected by bits TRFC03 and TRFC04 in the TRFCR0 register even when the TSTART bit in the TRFCR0 register is set to 0 (count stops).

# **18. Serial Interface**

The serial interface in the R8C/2H Group consists of two channels (UART0 and UART2). The serial interface in the R8C/2J Group consists of one channel (UART0). Each UARTi (i = 0 or 2) has an exclusive timer to generate the transfer clock and operates independently.

Figure 18.1 shows a UARTi (i = 0 or 2 (for R8C/2H Group only)) Block Diagram. Figure 18.2 shows a UARTi Transmit/Receive Unit.

UARTi has two modes: clock synchronous serial I/O mode and clock asynchronous serial I/O mode (UART mode). Figures 18.3 to 18.5 show the Registers Associated with UARTi.

UART2 is not implemented in the R8C/2J Group. The description about UART2 in this chapter applies to the R8C/2H Group only.

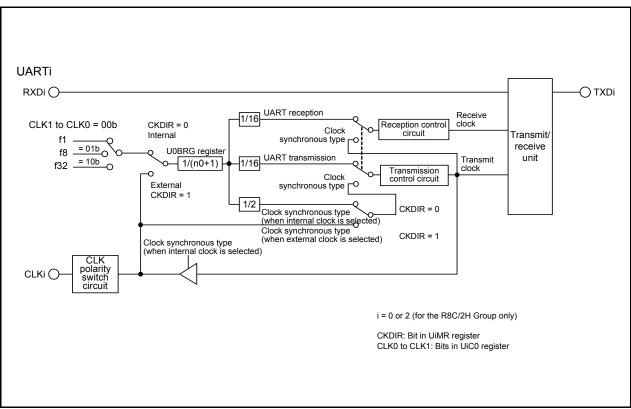



Figure 18.1 UARTi (i = 0 or 2 (for R8C/2H Group only)) Block Diagram



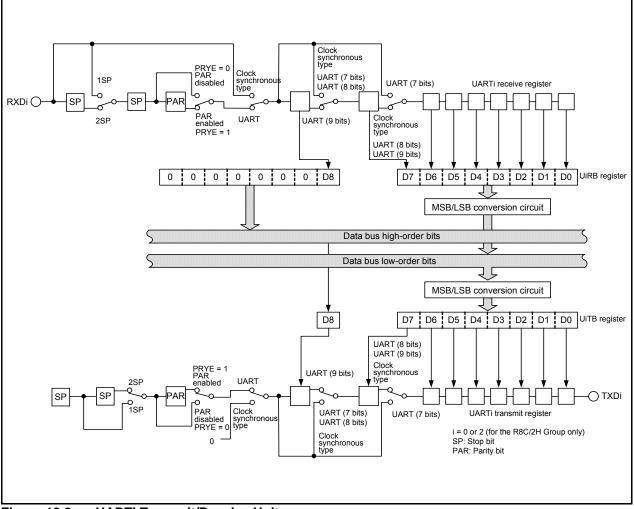



Figure 18.2 UARTi Transmit/Receive Unit

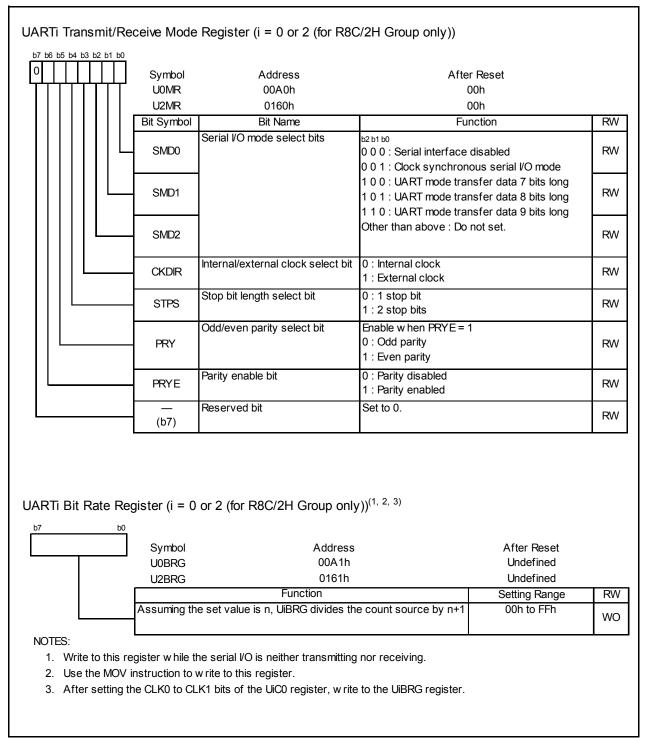
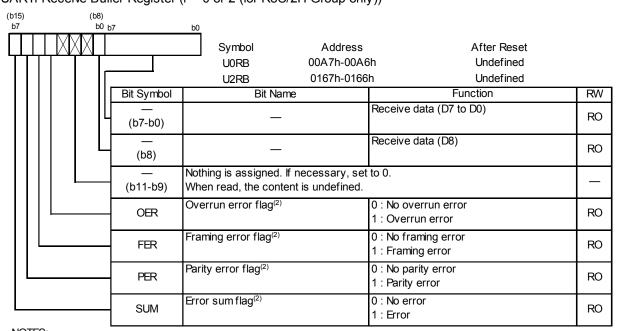



Figure 18.3 Registers U0MR, U2MR and U0BRG, U2BRG




Figure 18.4 Registers U0TB, U2TB and U0C0, U2C0

| UARTi Transmit/Receive Control Register 1 (i = 0 or 2 (for R8C/2H Group only))                 |          |            |                                                            |                                                                              |    |
|------------------------------------------------------------------------------------------------|----------|------------|------------------------------------------------------------|------------------------------------------------------------------------------|----|
| b7 b6 b5 b4 b3 b                                                                               | o2 b1 b0 |            |                                                            |                                                                              |    |
| X 0 Symbol                                                                                     |          |            | Address                                                    | After Reset                                                                  |    |
|                                                                                                |          | U0C1       | 00A5h                                                      | 0000010b                                                                     |    |
|                                                                                                |          | U2C1       | 0165h                                                      | 0000010b                                                                     |    |
|                                                                                                |          | Bit Symbol | Bit Name                                                   | Function                                                                     | RW |
|                                                                                                |          | TE         | Transmit enable bit                                        | 0 : Disables transmission<br>1 : Enables transmission                        | RW |
|                                                                                                |          | TI         | Transmit buffer empty flag                                 | 0 : Data in UiTB register<br>1 : No data in UiTB register                    | RO |
|                                                                                                |          | RE         | Receive enable bit                                         | 0 : Disables reception<br>1 : Enables reception                              | RW |
|                                                                                                |          | RI         | Receive complete flag <sup>(1)</sup>                       | 0 : No data in UiRB register<br>1 : Data in UiRB register                    | RO |
|                                                                                                |          | UilRS      | UARTi transmit interrupt cause select bit                  | 0 : Transmission buffer empty (TI=1)<br>1 : Transmission completed (TXEPT=1) | RW |
|                                                                                                |          | UiRRM      | UARTi continuous receive mode<br>enable bit <sup>(2)</sup> | 0 : Disables continuous receive mode<br>1 : Enables continuous receive mode  | RW |
|                                                                                                |          | <br>(b6)   | Reserved bit                                               | Set to 0.                                                                    | RW |
| —     Nothing is assigned. If necessary, set to 0.       (b7)     When read, the content is 0. |          |            | _                                                          |                                                                              |    |

NOTES:

1. The RI bit is set to 0 when the higher byte of the UiRB register is read out.

2. Set the UiRRM bit to 0 (disables continuous receive mode) in UART mode.



#### UARTi Receive Buffer Register (i = 0 or 2 (for R8C/2H Group only))<sup>(1)</sup>

NOTES:

1. Read out the UiRB register in 16-bit units.

2. Bits SUM, PER, FER, and OER are set to 0 (no error) when bits SMD2 to SMD0 in the UiMR register are set to 000b (serial interface disabled) or the RE bit in the UiC1 register is set to 0 (receive disabled). The SUM bit is set to 0 (no error) when bits PER, FER, and OER are set to 0 (no error). Bits PER and FER are set to 0 even when the higher byte of the UiRB register is read out.

Also, bits PER and FER are set to 0 w hen reading the high-order byte of the UiRB register.

#### Figure 18.5 Registers U0C1, U2C1 and U0RB, U2RB

# 18.1 Clock Synchronous Serial I/O Mode

In clock synchronous serial I/O mode, data is transmitted and received using a transfer clock. Table 18.1 lists the Clock Synchronous Serial I/O Mode Specifications. Table 18.2 lists the Registers Used and Settings in Clock Synchronous Serial I/O Mode<sup>(1)</sup>.

| Table 18.1 | Clock Synchronous Serial I/O Mode Specifications |
|------------|--------------------------------------------------|
|------------|--------------------------------------------------|

| Item                                | Specification                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Transfer data format                | Transfer data length: 8 bits                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Transfer clocks                     | <ul> <li>CKDIR bit in UiMR register is set to 0 (internal clock): fi/(2(n+1)) fi = f1, f8, f32 n = value set in UiBRG register: 00h to FFh</li> <li>The CKDIR bit is set to 1 (external clock): input from CLKi pin</li> </ul>                                                                                                                                                                                                             |  |  |  |
| Transmit start conditions           | <ul> <li>Before transmission starts, the following requirements must be met<sup>(1)</sup></li> <li>The TE bit in the UiC1 register is set to 1 (transmission enabled)</li> <li>The TI bit in the UiC1 register is set to 0 (data in the UiTB register)</li> </ul>                                                                                                                                                                          |  |  |  |
| Receive start conditions            | <ul> <li>Before reception starts, the following requirements must be met<sup>(1)</sup></li> <li>The RE bit in the UiC1 register is set to 1 (reception enabled)</li> <li>The TE bit in the UiC1 register is set to 1 (transmission enabled)</li> <li>The TI bit in the UiC1 register is set to 0 (data in the UiTB register)</li> </ul>                                                                                                    |  |  |  |
| Interrupt request generation timing | <ul> <li>When transmitting, one of the following conditions can be selected         <ul> <li>The UiIRS bit is set to 0 (transmit buffer empty):</li> <li>When transferring data from the UiTB register to UARTi transmit register (when transmission starts).</li> </ul> </li> </ul>                                                                                                                                                       |  |  |  |
|                                     | <ul> <li>The UiIRS bit is set to 1 (transmission completes):<br/>When completing data transmission from UARTi transmit register.</li> <li>When receiving<br/>When data transfer from the UARTi receive register to the UiRB register<br/>(when reception completes).</li> </ul>                                                                                                                                                            |  |  |  |
| Error detection                     | <ul> <li>Overrun error<sup>(2)</sup>         This error occurs if the serial interface starts receiving the next data item before reading the UiRB register and receives the 7th bit of the next data.     </li> </ul>                                                                                                                                                                                                                     |  |  |  |
| Select functions                    | <ul> <li>CLK polarity selection<br/>Transfer data input/output can be selected to occur synchronously with the<br/>rising or the falling edge of the transfer clock.</li> <li>LSB first, MSB first selection<br/>Whether transmitting or receiving data begins with bit 0 or begins with bit 7<br/>can be selected.</li> <li>Continuous receive mode selection<br/>Receive is enabled immediately by reading the UiRB register.</li> </ul> |  |  |  |

i = 0 or 2 (for the R8C/2H Group only) NOTES:

- 1. If an external clock is selected, ensure that the external clock is "H" when the CKPOL bit in the UiC0 register is set to 0 (transmit data output at falling edge and receive data input at rising edge of transfer clock), and that the external clock is "L" when the CKPOL bit is set to 1 (transmit data output at rising edge and receive data input at falling edge of transfer clock).
- 2. If an overrun error occurs, the receive data (b0 to b8) of the UiRB register will be undefined. The IR bit in the SiRIC register remains unchanged.

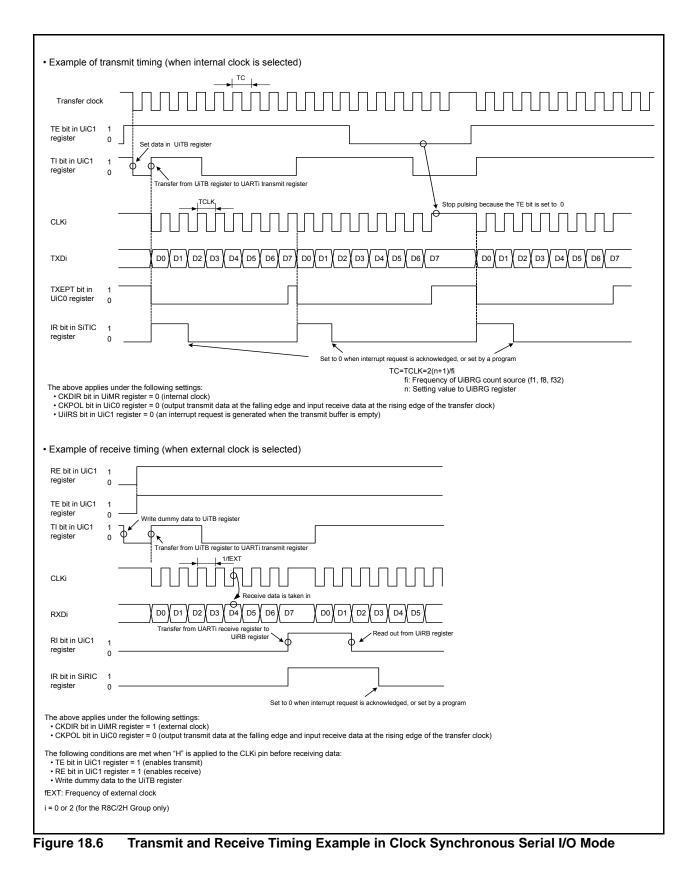
| Register | Bit          | Function                                           |  |  |
|----------|--------------|----------------------------------------------------|--|--|
| UiTB     | 0 to 7       | Set data transmission                              |  |  |
| UiRB     | 0 to 7       | Data reception can be read                         |  |  |
|          | OER          | Overrun error flag                                 |  |  |
| UiBRG    | 0 to 7       | Set bit rate                                       |  |  |
| UiMR     | SMD2 to SMD0 | Set to 001b                                        |  |  |
|          | CKDIR        | Select the internal clock or external clock        |  |  |
| UiC0     | CLK1 to CLK0 | Select the count source in the UiBRG register      |  |  |
|          | TXEPT        | Transmit register empty flag                       |  |  |
|          | NCH          | Select TXDi pin output mode                        |  |  |
|          | CKPOL        | Select the transfer clock polarity                 |  |  |
|          | UFORM        | Select the LSB first or MSB first                  |  |  |
| UiC1     | TE           | Set this bit to 1 to enable transmission/reception |  |  |
|          | TI           | Transmit buffer empty flag                         |  |  |
|          | RE           | Set this bit to 1 to enable reception              |  |  |
|          | RI           | Reception complete flag                            |  |  |
|          | UilRS        | Select the UARTi transmit interrupt source         |  |  |
|          | UiRRM        | Set this bit to 1 to use continuous receive mode   |  |  |

Table 18.2 Registers Used and Settings in Clock Synchronous Serial I/O Mode<sup>(1)</sup>

i = 0 or 2 (for the R8C/2H Group only)

NOTE:

1. Set bits which are not in this table to 0 when writing to the above registers in clock synchronous serial I/O mode.


Table 18.3 lists the I/O Pin Functions in Clock Synchronous Serial I/O Mode. The TXDi pin outputs "H" level between the operating mode selection of UARTi (i = 0 or 2 (for the R8C/2H Group only)) and transfer start. (If the NCH bit is set to 1 (N-channel open-drain output), this pin is in a high-impedance state.)

| Table 18.3 | I/O Pin Functions in Clock Synchronous Serial I/O Mode |
|------------|--------------------------------------------------------|
|------------|--------------------------------------------------------|

| Pin Name                   | Function                                        | Selection Method                                    |
|----------------------------|-------------------------------------------------|-----------------------------------------------------|
| TXD0 (P1_4)                | Output serial data                              | (Outputs dummy data when performing reception only) |
| RXD0 (P1_5)                | Input serial data PD1_5 bit in PD1 register = 0 |                                                     |
|                            |                                                 | (P1_5 can be used as an input port when performing  |
|                            |                                                 | transmission only)                                  |
| CLK0 (P1_6)                | Output transfer clock                           | CKDIR bit in U0MR register = 0                      |
|                            | Input transfer clock                            | CKDIR bit in U0MR register = 1                      |
|                            |                                                 | PD1_6 bit in PD1 register = 0                       |
| TXD2 (P6_3) <sup>(1)</sup> | Output serial data                              | (Outputs dummy data when performing reception only) |
| RXD2 (P6_4) <sup>(1)</sup> | Input serial data                               | PD6_4 bit in PD6 register = 0                       |
|                            |                                                 | (P6_4 can be used as an input port when performing  |
|                            |                                                 | transmission only)                                  |
| CLK2 (P6_5) <sup>(1)</sup> | Output transfer clock                           | CKDIR bit in U2MR register = 0                      |
|                            | Input transfer clock                            | CKDIR bit in U2MR register = 1                      |
|                            |                                                 | PD6_5 bit in PD6 register = 0                       |

NOTE:

1. Applicable to the R8C/2H Group only.



### 18.1.1 Polarity Select Function

Figure 18.7 shows the Transfer Clock Polarity. Use the CKPOL bit in the UiC0 (i = 0 or 2 (for the R8C/2H Group only)) register to select the transfer clock polarity.

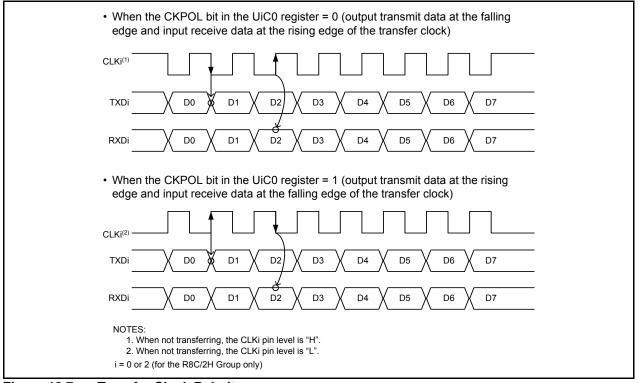
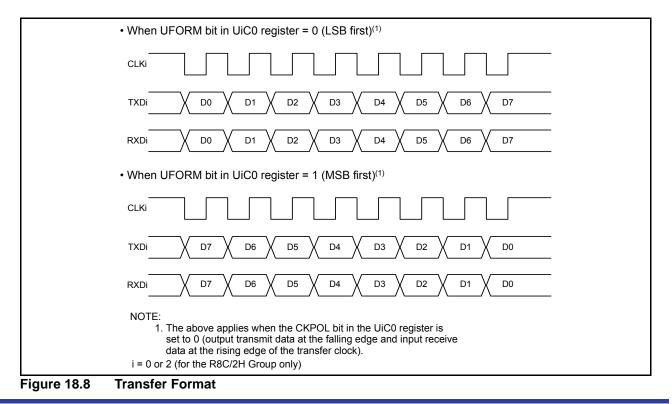




Figure 18.7 Transfer Clock Polarity

# 18.1.2 LSB First/MSB First Select Function

Figure 18.8 shows the Transfer Format. Use the UFORM bit in the UiC0 (i = 0 or 2 (for the R8C/2H Group only)) register to select the transfer format.



### 18.1.3 Continuous Receive Mode

Continuous receive mode is selected by setting the UiRRM (i = 0 or 2 (for the R8C/2H Group only)) bit in the UiC1 register to 1 (enables continuous receive mode). In this mode, reading the UiRB register sets the TI bit in the UiC1 register to 0 (data in the UiTB register). When the UiRRM bit is set to 1, do not write dummy data to the UiTB register by a program.

# 18.2 Clock Asynchronous Serial I/O (UART) Mode

The UART mode allows data transmission and reception after setting the desired bit rate and transfer data format. Table 18.4 lists the UART Mode Specifications. Table 18.5 lists the Registers Used and Settings for UART Mode.

| Item                      | Specification                                                                 |
|---------------------------|-------------------------------------------------------------------------------|
| Transfer data formats     | Character bit (transfer data): Selectable among 7, 8 or 9 bits                |
|                           | Start bit: 1 bit                                                              |
|                           | Parity bit: Selectable among odd, even, or none                               |
|                           | Stop bit: Selectable among 1 or 2 bits                                        |
| Transfer clocks           | • CKDIR bit in UiMR register is set to 0 (internal clock): fj/(16(n+1))       |
|                           | fj = f1, f8, f32 n = value set in UiBRG register: 00h to FFh                  |
|                           | • CKDIR bit is set to 1 (external clock): fEXT/(16(n+1))                      |
|                           | fEXT: Input from CLKi pin, n = value set in UiBRG register: 00h to FFh        |
| Transmit start conditions | Before transmission starts, the following are required                        |
|                           | - TE bit in UiC1 register is set to 1 (transmission enabled)                  |
|                           | - TI bit in UiC1 register is set to 0 (data in UiTB register)                 |
| Receive start conditions  | Before reception starts, the following are required                           |
|                           | - RE bit in UiC1 register is set to 1 (reception enabled)                     |
|                           | - Start bit detected                                                          |
| Interrupt request         | • When transmitting, one of the following conditions can be selected          |
| generation timing         | - UiIRS bit is set to 0 (transmit buffer empty):                              |
| 5                         | When transferring data from the UiTB register to UARTi transmit register      |
|                           | (when transmission starts).                                                   |
|                           | - UilRS bit is set to 1 (transfer ends):                                      |
|                           | When serial interfac.e completes transmitting data from the UARTi             |
|                           | transmit register                                                             |
|                           | • When receiving                                                              |
|                           | When transferring data from the UARTi receive register to UiRB register       |
|                           | (when reception ends).                                                        |
| Error detection           | • Overrun error <sup>(1)</sup>                                                |
|                           | This error occurs if the serial interface starts receiving the next data item |
|                           | before reading the UiRB register and receive the bit preceding the final      |
|                           | stop bit of the next data item.                                               |
|                           | • Framing error                                                               |
|                           | This error occurs when the set number of stop bits is not detected.           |
|                           | Parity error                                                                  |
|                           | This error occurs when parity is enabled, and the number of 1's in parity     |
|                           | and character bits do not match the number of 1's set.                        |
|                           | • Error sum flag                                                              |
|                           | This flag is set is set to 1 when an overrun, framing, or parity error is     |
|                           | generated.                                                                    |

| Table 18.4 | UART Mode Specifications |
|------------|--------------------------|
|------------|--------------------------|

i = 0 or 2 (for the R8C/2H Group only)

NOTE:

1. If an overrun error occurs, the receive data (b0 to b8) of the UiRB register will be undefined. The IR bit in the SiRIC register remains unchanged.

|          | <u> </u>        | 5                                                                   |  |  |
|----------|-----------------|---------------------------------------------------------------------|--|--|
| Register | Bit             | Function                                                            |  |  |
| UiTB     | 0 to 8          | Set transmit data <sup>(1)</sup>                                    |  |  |
| UiRB     | 0 to 8          | Receive data can be read <sup>(1, 2)</sup>                          |  |  |
|          | OER,FER,PER,SUM | Error flag                                                          |  |  |
| UiBRG    | 0 to 7          | Set a bit rate                                                      |  |  |
| UiMR     | SMD2 to SMD0    | Set to 100b when transfer data is 7 bits long                       |  |  |
|          |                 | Set to 101b when transfer data is 8 bits long                       |  |  |
|          |                 | Set to 110b when transfer data is 9 bits long                       |  |  |
|          | CKDIR           | Select the internal clock or external clock                         |  |  |
|          | STPS            | Select the stop bit                                                 |  |  |
|          | PRY, PRYE       | Select whether parity is included and whether odd or even           |  |  |
| UiC0     | CLK0, CLK1      | Select the count source for the UiBRG register                      |  |  |
|          | TXEPT           | Transmit register empty flag                                        |  |  |
|          | NCH             | Select TXDi pin output mode                                         |  |  |
|          | CKPOL           | Set to 0                                                            |  |  |
|          | UFORM           | LSB first or MSB first can be selected when transfer data is 8 bits |  |  |
|          |                 | long. Set to 0 when transfer data is 7 or 9 bits long.              |  |  |
| UiC1     | TE              | Set to 1 to enable transmit                                         |  |  |
|          | TI              | Transmit buffer empty flag                                          |  |  |
|          | RE              | Set to 1 to enable receive                                          |  |  |
|          | RI              | Receive complete flag                                               |  |  |
|          | UiIRS           | Select the source of UARTi transmit interrupt                       |  |  |
|          | UiRRM           | Set to 0                                                            |  |  |

i = 0 or 2 (for the R8C/2H Group only)

NOTES:

- 1. The bits used for transmit/receive data are as follows: Bits 0 to 6 when transfer data is 7 bits long; bits 0 to 7 when transfer data is 8 bits long; bits 0 to 8 when transfer data is 9 bits long.
- 2. The following bits are undefined: Bits 7 and 8 when transfer data is 7 bits long; bit 8 when transfer data is 8 bits long.

Table 18.6 lists the I/O Pin Functions in UART Mode. After the UARTi (i = 0 or 2 (for the R8C/2H Group only)) operating mode is selected, the TXDi pin outputs "H" level. (If the NCH bit is set to 1 (N-channel open-drain output), this pin is in a high-impedance state) until transfer starts.)

Table 18.6 I/O Pin Functions in UART Mode

| Pin name                   | Function              | Selection Method                                                                                              |
|----------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------|
| TXD0 (P1_4)                | Output serial data    | (Cannot be used as a port when performing reception only)                                                     |
| RXD0 (P1_5)                | Input serial data     | PD1_5 bit in PD1 register = 0<br>(P1_5 can be used as an input port when performing transmission only)        |
| CLK0 (P1_6)                | Programmable I/O Port | CKDIR bit in U0MR register = 0                                                                                |
|                            | Input transfer clock  | CKDIR bit in U0MR register = 1<br>PD1_6 bit in PD1 register = 0                                               |
| TXD2 (P6_3) <sup>(1)</sup> | Output serial data    | (Cannot be used as a port when performing reception only)                                                     |
| RXD2 (P6_4) <sup>(1)</sup> | Input serial data     | PD6_4 bit in PD6 register = 0 $(P6_4 \text{ can be used as an input port when performing transmission only})$ |
| CLK2 (P6_5) <sup>(1)</sup> | Programmable I/O Port | CKDIR bit in U2MR register = 0                                                                                |
|                            | Input transfer clock  | CKDIR bit in U2MR register = 1<br>PD6_5 bit in PD6 register = 0                                               |

NOTE:

1. Applicable to the R8C/2H Group only.

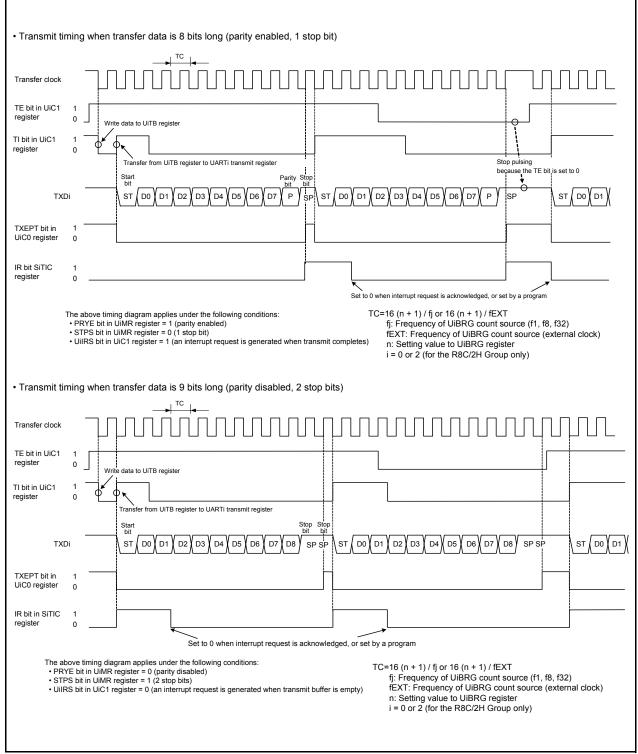
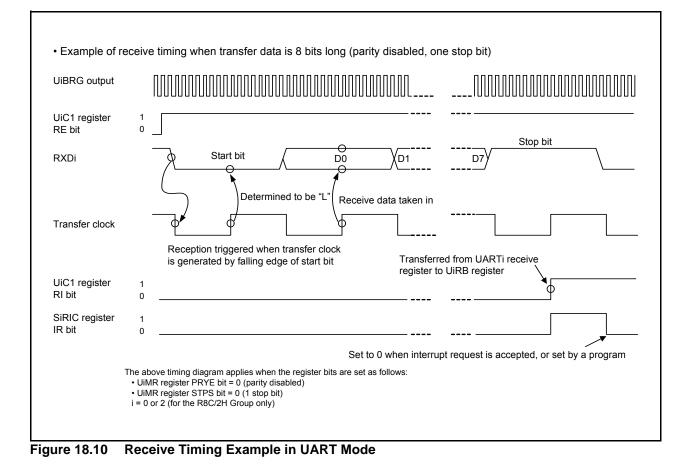




Figure 18.9 Transmit Timing in UART Mode



### 18.2.1 Bit Rate

In UART mode, the bit rate is the frequency divided by the UiBRG (i = 0 or 2 (for the R8C/2H Group only)) register.

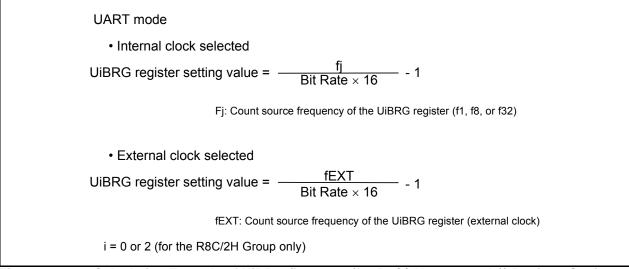



Figure 18.11 Calculation Formula of UiBRG (i = 0 or 2 (for R8C/2H Group only)) Register Setting Value

| Bit Rate (bps) | BRG Count Source | System Clock = 8 MHz |                   |           |
|----------------|------------------|----------------------|-------------------|-----------|
| Bit Rate (bps) | BRG Count Source | UiBRG Setting Value  | Actual Time (bps) | Error (%) |
| 1200           | f8               | 51 (33h)             | 1201.92           | 0.16      |
| 2400           | f8               | 25 (19h)             | 2403.85           | 0.16      |
| 4800           | f8               | 12 (0Ch)             | 4807.69           | 0.16      |
| 9600           | f1               | 51 (33h)             | 9615.38           | 0.16      |
| 14400          | f1               | 34 (22h)             | 14285.71          | -0.79     |
| 19200          | f1               | 25 (19h)             | 19230.77          | 0.16      |
| 28800          | f1               | 16 (10h)             | 29411.76          | 2.12      |
| 31250          | f1               | 15 (0Fh)             | 31250.00          | 0.00      |
| 38400          | f1               | 12 (0Ch)             | 38461.54          | 0.16      |
| 51200          | f1               | 9 (09h)              | 50000.00          | -2.34     |

Table 18.7 Bit Rate Setting Example in UART Mode (Internal Clock Selected)

### **18.3** Notes on Serial Interface

• When reading data from the UiRB (i = 0 or 2 (for the R8C/2H Group only)) register either in the clock synchronous serial I/O mode or in the clock asynchronous serial I/O mode. Ensure the data is read in 16-bit units. When the high-order byte of the UiRB register is read, bits PER and FER in the UiRB register and the RI bit in the UiC1 register are set to 0.

To check receive errors, read the UiRB register and then use the read data.

Example (when reading receive buffer register): MOV.W 00A6H,R0 ; Read the U0RB register

• When writing data to the UiTB register in the clock asynchronous serial I/O mode with 9-bit transfer data length, write data to the high-order byte first then the low-order byte, in 8-bit units.

Example (when reading transmit buffer register):

| MOV.B | #XXH,00A3H | ; Write the high-order byte of U0TB register |
|-------|------------|----------------------------------------------|
| MOV.B | #XXH,00A2H | ; Write the low-order byte of U0TB register  |

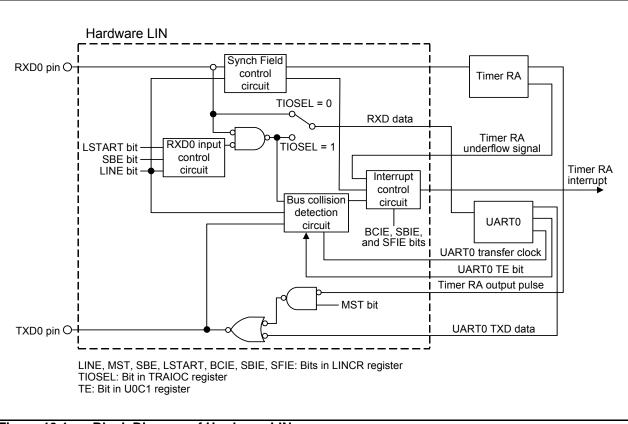
# 19. Hardware LIN

The hardware LIN performs LIN communication in cooperation with timer RA and UARTO.

### 19.1 Features

The hardware LIN has the features listed below. Figure 19.1 shows a Block Diagram of Hardware LIN.

Master mode


- Generates Synch Break
- Detects bus collision

#### Slave mode

- Detects Synch Break
- Measures Synch Field
- Controls Synch Break and Synch Field signal inputs to UART0
- Detects bus collision

NOTE:

1. The WakeUp function is detected by INT1.





# 19.2 Input/Output Pins

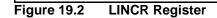
The pin configuration of the hardware LIN is listed in Table 19.1.

# Table 19.1Pin Configuration

| Name                 | Abbreviation | Input/Output | Function                                     |
|----------------------|--------------|--------------|----------------------------------------------|
| Receive data input   | RXD0         | Input        | Receive data input pin of the hardware LIN   |
| Transmit data output | TXD0         | Output       | Transmit data output pin of the hardware LIN |

#### 19.3 **Register Configuration**

The hardware LIN contains the registers listed below. These registers are detailed in Figures 19.2 and 19.3.


- LIN Control Register (LINCR)
- LIN Status Register (LINST)

| b7 b6 | b5 b | 4 b3 b2 | b1 b0 |            |                                                                             |                                                                                                                                                          |    |
|-------|------|---------|-------|------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|       |      |         |       | Symbol     | Address                                                                     | After Reset                                                                                                                                              |    |
|       |      |         |       | LINCR      | 0106h                                                                       | 00h                                                                                                                                                      |    |
|       |      |         |       | Bit Symbol | Bit Name                                                                    | Function                                                                                                                                                 | RW |
|       |      |         |       | SFIE       | Synch Field measurement-<br>completed interrupt enable bit                  | <ul> <li>0 : Disables Synch Field measurement-<br/>completed interrupt</li> <li>1 : Enables Synch Field measurement-<br/>completed interrupt</li> </ul>  | RW |
|       |      |         |       | SBIE       | Synch Break detection interrupt enable bit                                  | 0 : Disables Synch Break detection interrupt<br>1 : Enables Synch Break detection interrupt                                                              | RW |
|       |      | L       |       | BCIE       | Bus collision detection interrupt enable bit                                | 0 : Disables bus collision detection interrupt<br>1 : Enables bus collision detection interrupt                                                          | RW |
|       |      |         |       | RXDSF      | RXD0 input status flag                                                      | 0 : RXD0 input enabled<br>1 : RXD0 input disabled                                                                                                        | RC |
|       |      |         |       | LSTART     | Synch Break detection start bit <sup>(1)</sup>                              | When this bit is set to 1, timer RA input is<br>enabled and RXD0 input is disabled.<br>When read, the content is 0.                                      | RW |
|       |      |         |       | SBE        | RXD0 input unmasking timing<br>select bit (effective only in slave<br>mode) | <ul><li>0 : Unmasked after Synch Break is detected</li><li>1 : Unmasked after Synch Field measurement<br/>is completed</li></ul>                         | RW |
|       |      |         |       | MST        | LIN operation mode setting bit <sup>(2)</sup>                               | <ul> <li>0 : Slave mode</li> <li>(Synch Break detection circuit actuated)</li> <li>1 : Master mode</li> <li>(timer RA output OR'ed with TXD0)</li> </ul> | RW |
|       |      |         |       | LINE       | LIN operation start bit                                                     | 0 : Causes LIN to stop<br>1 : Causes LIN to start operating <sup>(3)</sup>                                                                               | RW |

1. After setting the LSTART bit, confirm that the RXDSF flag is set to 1 before Synch Break input starts.

2. Before changing LIN operation modes, temporarily stop the LIN operation (LINE bit = 0).

3. Inputs to timer RA and UART0 are prohibited immediately after this bit is set to 1. (Refer to Figure 19.5 Example of Header Field Transmission Flow chart (1) and Figure 19.9 Example of Header Field Reception Flow chart **(2)**.)



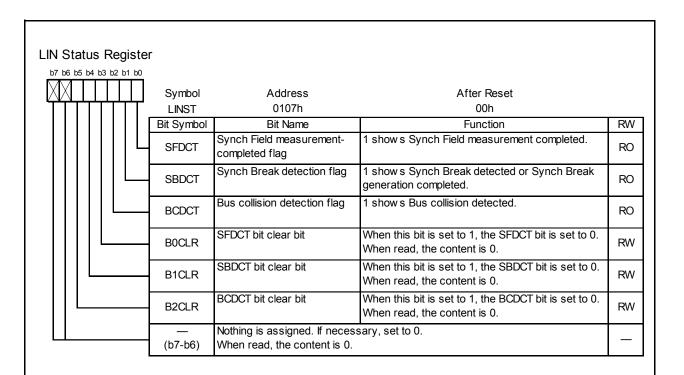



Figure 19.3 LINST Register

### **19.4 Functional Description**

### 19.4.1 Master Mode

Figure 19.4 shows typical operation of the hardware LIN when transmitting a header field in master mode. Figures 19.5 and 19.6 show an Example of Header Field Transmission Flowchart. When transmitting a header field, the hardware LIN operates as described below.

- (1) When the TSTART bit in the TRACR register for timer RA is set by writing 1 in software, the hardware LIN outputs "L" level from the TXD0 pin for the period that is set in registers TRAPRE and TRA for timer RA.
- (2) When timer RA underflows upon reaching the terminal count, the hardware LIN reverses the output of the TXD0 pin and sets the SBDCT flag in the LINST register to 1. Furthermore, if the SBIE bit in the LINCR register is set to 1, it generates a timer RA interrupt.
- (3) The hardware LIN transmits 55h via UART0.
- (4) The hardware LIN transmits an ID field via UART0 after it finishes sending 55h.
- (5) The hardware LIN performs communication for a response field after it finishes sending the ID field.

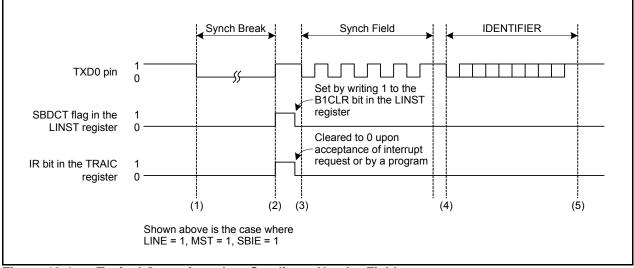
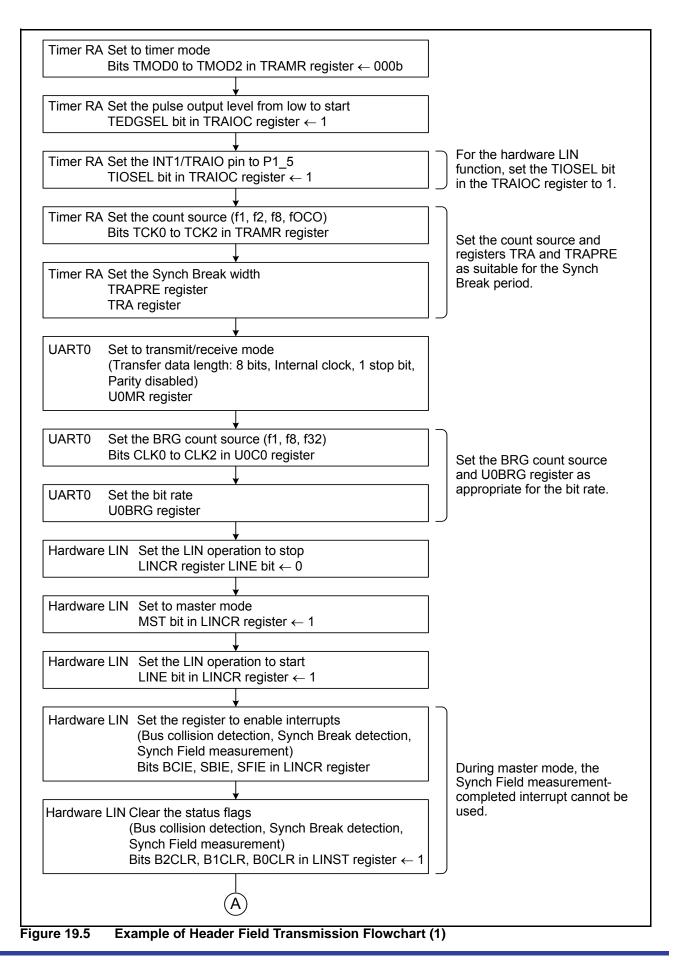
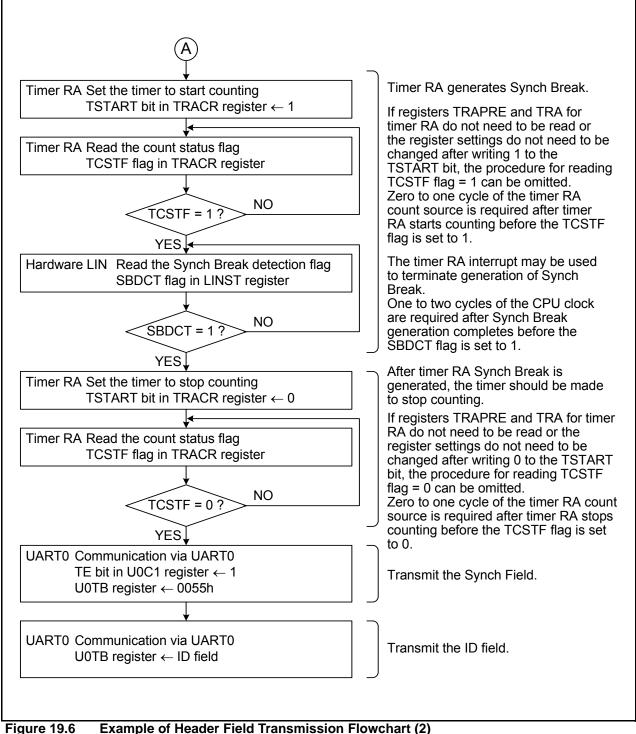





Figure 19.4 Typical Operation when Sending a Header Field





### 19.4.2 Slave Mode

Figure 19.7 shows typical operation of the hardware LIN when receiving a header field in slave mode. Figure 19.8 through Figure 19.10 show an Example of Header Field Reception Flowchart.

When receiving a header field, the hardware LIN operates as described below.

- (1) Synch Break detection is enabled by writing 1 to the LSTART bit in the LINCR register of the hardware LIN.
- (2) When "L" level is input for a duration equal to or greater than the period set in timer RA, the hardware LIN detects it as Synch Break. At this time, the SBDCT flag in the LINST register is set to 1. Furthermore, if the SBIE bit in the LINCR register is set to 1, the hardware LIN generates a timer RA interrupt. Then it goes to Synch Field measurement.
- (3) The hardware LIN receives a Synch Field (55h). At this time, it measures the period of the start bit and bits 0 to 6 by using timer RA. In this case, it is possible to select whether to input the Synch Field signal to RXD0 of UART0 by setting the SBE bit in the LINCR register accordingly.
- (4) The hardware LIN sets the SFDCT flag in the LINST register to 1 when it finishes measuring the Synch Field. Furthermore, if the SFIE bit in the LINCR register is set to 1, it generates a timer RA interrupt.
- (5) After it finishes measuring the Synch Field, calculate a transfer rate from the count value of timer RA and set to UART0 and registers TRAPRE and TRA of timer RA again. Then it receives an ID field via UART0.
- (6) The hardware LIN performs communication for a response field after it finishes receiving the ID field.

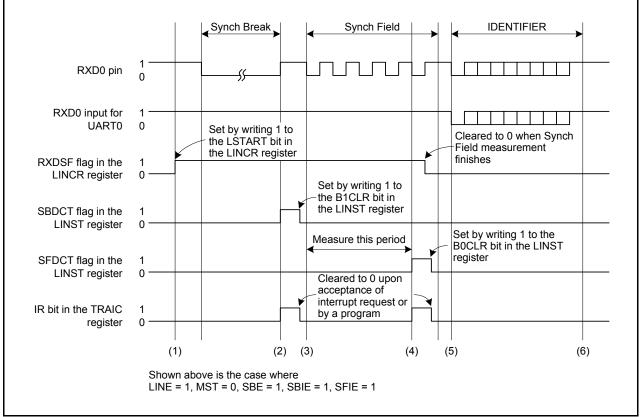



Figure 19.7 Typical Operation when Receiving a Header Field

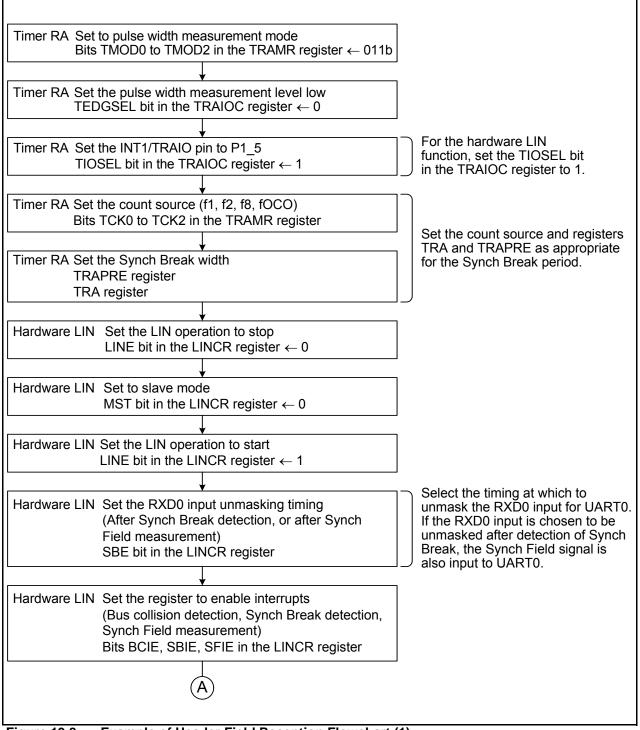



Figure 19.8 Example of Header Field Reception Flowchart (1)

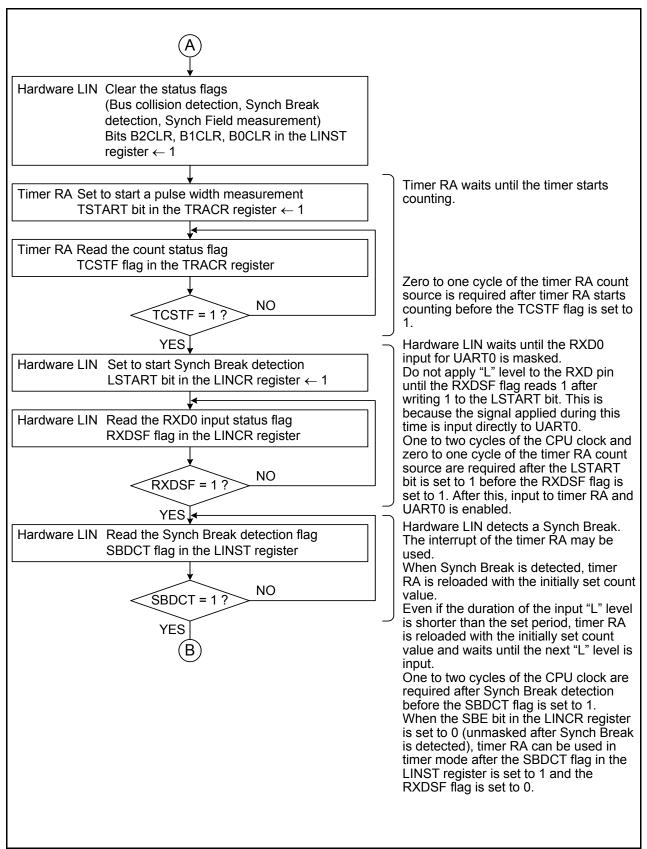



Figure 19.9 Example of Header Field Reception Flowchart (2)

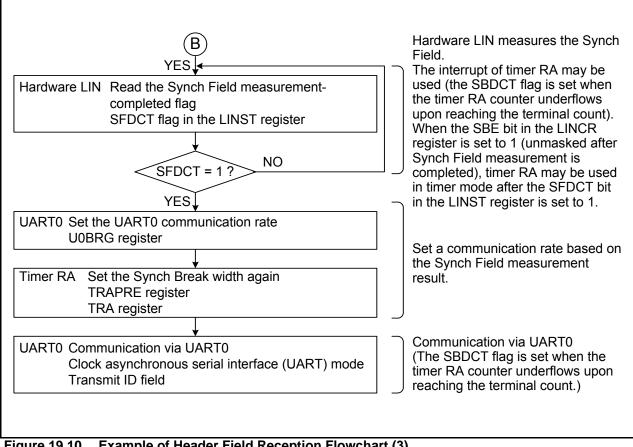



Figure 19.10 Example of Header Field Reception Flowchart (3)

### 19.4.3 Bus Collision Detection Function

The bus collision detection function can be used when UART0 is enabled for transmission (TE bit in the U0C1 register = 1).

Figure 19.11 shows the Typical Operation when a Bus Collision is Detected.

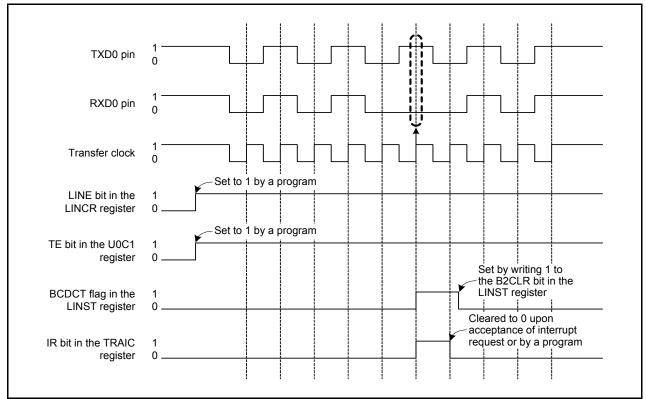



Figure 19.11 Typical Operation when a Bus Collision is Detected

# 19.4.4 Hardware LIN End Processing

Figure 19.12 shows an Example of Hardware LIN Communication Completion Flowchart. Use the following timing for hardware LIN end processing:

- If the hardware bus collision detection function is used
  - Perform hardware LIN end processing after checksum transmission completes.
- If the bus collision detection function is not used Perform hardware LIN end processing after header field transmission and reception complete.

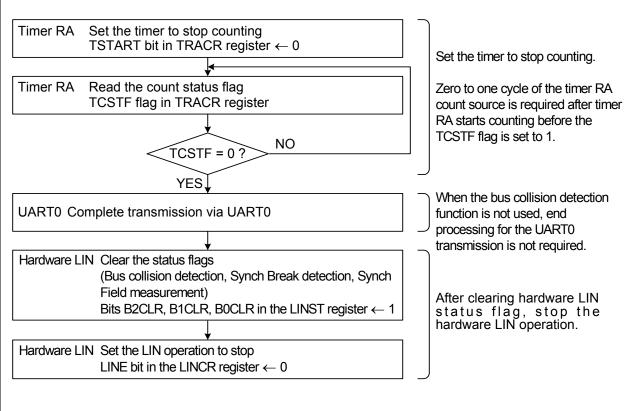



Figure 19.12 Example of Hardware LIN Communication Completion Flowchart

# **19.5** Interrupt Requests

There are four interrupt requests that are generated by the hardware LIN: Synch Break detection, Synch Break generation completed, Synch Field measurement completed, and bus collision detection. These interrupts are shared with timer RA.

Table 19.2 lists the Interrupt Requests of Hardware LIN.

Table 19.2 Interrupt Requests of Hardware LIN

| Interrupt Request                    | Status Flag | Cause of Interrupt                                                                                                                                                                                          |
|--------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Synch Break detection                | SBDCT       | Generated when timer RA has underflowed after measuring<br>the "L" level duration of RXD0 input, or when a "L" level is<br>input for a duration longer than the Synch Break period<br>during communication. |
| Synch Break generation completed     |             | Generated when "L" level output to TXD0 for the duration set by timer RA completes.                                                                                                                         |
| Synch Field<br>measurement completed | SFDCT       | Generated when measurement for 6 bits of the Synch Field by timer RA is completed.                                                                                                                          |
| Bus collision detection              | BCDCT       | Generated when the RXD0 input and TXD0 output values differed at data latch timing while UART0 is enabled for transmission.                                                                                 |

### 19.6 Notes on Hardware LIN

For the time-out processing of the header and response fields, use another timer to measure the duration of time with a Synch Break detection interrupt as the starting point.

# 20. Flash Memory

### 20.1 Overview

Rewrite operations to the flash memory can be performed in three modes: CPU rewrite, standard serial I/O, and parallel I/O.

Table 20.1 lists the Flash Memory Performance (refer to **Table 1.1 Specifications for R8C/2H Group** and **Table 1.2 Specifications for R8C/2J Group** for items not listed in **Table 20.1**). Table 20.2 lists the Flash Memory Rewrite Modes.

### Table 20.1 Flash Memory Performance

| Item                                                                   | Specification                                                |  |  |
|------------------------------------------------------------------------|--------------------------------------------------------------|--|--|
| Flash memory operating mode                                            | 3 modes (CPU rewrite, standard serial I/O, and parallel I/O) |  |  |
| Division of erase block                                                | Refer to Figure 20.1                                         |  |  |
| Programming method                                                     | Byte unit                                                    |  |  |
| Erase method                                                           | Block erase                                                  |  |  |
| Programming and erasure control method                                 | Program and erase control by software command                |  |  |
| Protection method                                                      | Program ROM protection by FMR0 register                      |  |  |
| Number of commands                                                     | 5 commands                                                   |  |  |
| Programming and Block 0 (program ROM) erasure endurance <sup>(1)</sup> | 100 times                                                    |  |  |
| Programming and erasure voltage                                        | VCC = 2.7 to 5.5 V                                           |  |  |
| ID code check function                                                 | Standard serial I/O mode supported                           |  |  |
| ROM code protect                                                       | Parallel I/O mode supported                                  |  |  |

NOTE:

1. Definition of programming and erasure endurance.

The programming and erasure endurance is defined on a per-block basis.

### Table 20.2 Flash Memory Rewrite Modes

| Flash Memory<br>Rewrite Mode | CPU Rewrite Mode           | Standard Serial I/O Mode   | Parallel I/O Mode          |
|------------------------------|----------------------------|----------------------------|----------------------------|
| Function                     | User ROM area is rewritten | User ROM area is rewritten | User ROM area is rewritten |
|                              | by executing software      | by a dedicated serial      | by a dedicated parallel    |
|                              | commands from the CPU.     | programmer.                | programmer.                |
| Areas which can              | User ROM area              | User ROM area              | User ROM area              |
| be rewritten                 |                            |                            |                            |
| Rewrite Program              | User program               | Standard boot program      | -                          |

### 20.2 Memory Map

The flash memory contains a user ROM area and a boot ROM area (reserved area).

Figure 20.1 shows the Flash Memory Block Diagram.

The user ROM area contains program ROM.

The user ROM area is divided into several blocks. The user ROM area can be rewritten in CPU rewrite mode and standard serial I/O and parallel I/O modes.

The rewrite control program (standard boot program) for standard serial I/O mode is stored in the boot ROM area before shipment. The boot ROM area and the user ROM area share the same address, but have separate memory areas.

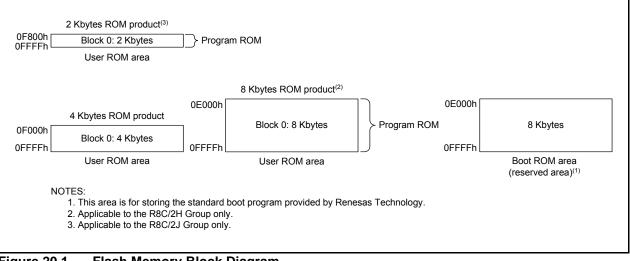



Figure 20.1 Flash Memory Block Diagram

## 20.3 Functions to Prevent Rewriting of Flash Memory

Standard serial I/O mode has an ID code check function, and parallel I/O mode has a ROM code protect function to prevent the flash memory from being read or rewritten or erasure easily.

# 20.3.1 ID Code Check Function

The ID code check function is used in standard serial I/O mode. Unless 3 bytes (addresses from 0FFFCh to 0FFFEh) of the reset vector are set to FFFFFFh, the ID codes sent from the serial programmer or the on-chip debugging emulator and the 7-byte ID codes written in the flash memory are checked to see if they match. If the ID codes do not match, the commands sent from the serial programmer or the on-chip debugging emulator are not acknowledged. For details of the ID code check function, refer to **14. ID Code Areas**.

### 20.3.2 ROM Code Protect Function

The ROM protect function prevents the contents of the flash memory from being read, rewritten, or erased by means of the OFS register when parallel I/O mode is used.

Figure 20.2 shows the OFS Register. Refer to 15. Option Function Select Area for details of the OFS register.

The ROM code protect function is enabled by writing 0 to the ROMCP1 bit and 1 to the ROMCR bit. It disables reading or changing the contents of the on-chip flash memory.

Once ROM code protect is enabled, the content in the internal flash memory cannot be rewritten in parallel I/O mode. To disable ROM code protect, erase the block including the OFS register with CPU rewrite mode or standard serial I/O mode.

| b7 b6 b5 b | 4 b3 b2 b1 b0 |               |                                                         |                                                                                                                                                   |    |
|------------|---------------|---------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----|
|            |               | Symbol<br>OFS | Address<br>0FFFFh                                       | When Shipping<br>FFh <sup>(3)</sup>                                                                                                               |    |
|            |               | Bit Symbol    | Bit Name                                                | Function                                                                                                                                          | RW |
|            |               | WDTON         | Watchdog timer start<br>select bit                      | 0 : Starts w atchdog timer automatically after reset<br>1 : Watchdog timer is inactive after reset                                                | RW |
|            |               | (b1)          | Reserved bit                                            | Set to 1.                                                                                                                                         | RW |
|            |               | ROMCR         | ROM code protect<br>disabled bit                        | 0 : ROM code protect disabled<br>1 : ROMCP1 enabled                                                                                               | RW |
|            |               | ROMCP1        | ROM code protect bit                                    | 0 : ROM code protect enabled<br>1 : ROM code protect disabled                                                                                     | RW |
|            |               | (b4)          | Reserved bit                                            | Set to 1.                                                                                                                                         | RW |
|            |               | LVDOON        | Voltage detection 0<br>circuit start bit <sup>(2)</sup> | <ul> <li>0 : Voltage monitor 0 reset enabled after hardw are reset</li> <li>1 : Voltage monitor 0 reset disabled after hardw are reset</li> </ul> | RW |
|            |               | (b6)          | Reserved bit                                            | Set to 1.                                                                                                                                         | RW |
|            |               | CSPROINI      | Count source protect<br>mode after reset select<br>bit  | 0 : Count source protect mode enabled after reset<br>1 : Count source protect mode disabled after reset                                           | RW |

1. The OFS register is on the flash memory. Write to the OFS register with a program. After writing is completed, do not write additions to the OFS register.

 Setting the LVD0ON bit is only valid after a hardw are reset. To use the pow er-on reset, set the LVD0ON bit to 0 (voltage monitor 0 reset enabled after hardw are reset).

3. If the block including the OFS register is erased, FFh is set to the OFS register.

Figure 20.2 OFS Register

### 20.4 CPU Rewrite Mode

In CPU rewrite mode, the user ROM area can be rewritten by executing software commands from the CPU. Therefore, the user ROM area can be rewritten directly while the MCU is mounted on a board without using a ROM programmer. Execute the software command only to blocks in the user ROM area. Table 20.3 lists the EW0 Mode.

### Table 20.3 EW0 Mode

| Item                                         | EW0 Mode                                                                                    |
|----------------------------------------------|---------------------------------------------------------------------------------------------|
| Operating mode                               | Single-chip mode                                                                            |
| Areas in which a rewrite control program can | RAM (Rewrite control program is executed after                                              |
| be executed                                  | being transferred)                                                                          |
| Areas which can be rewritten                 | User ROM                                                                                    |
| Software command restrictions                | None                                                                                        |
| Modes after program or erase                 | Read status register mode                                                                   |
| Modes after read status register             | Read status register mode                                                                   |
| CPU status during auto- write and auto-erase | Operating                                                                                   |
| Flash memory status detection                | <ul> <li>Read bits FMR00, FMR06, and FMR07 in the<br/>FMR0 register by a program</li> </ul> |
|                                              | Execute the read status register command and                                                |
|                                              | read bits SR7, SR5, and SR4 in the status register.                                         |
| CPU clock                                    | 5 MHz or below                                                                              |

### 20.4.1 Register Description

The registers used in CPU rewrite mode are described.

### 20.4.1.1 FMR0 Register (FMR0)

Figure 20.3 shows the FMR0 Register.

| 07 b6 b5 b4 b3 | b2 b1 b0 |             |                                               |                                                                                                                                     |    |
|----------------|----------|-------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----|
| L I I I I I    |          | Symbol      | Address                                       | After Reset                                                                                                                         |    |
|                |          | FMR0        | 01B7h                                         | 0000001b                                                                                                                            | -  |
|                |          | Bit Symbol  | Bit Name                                      | Function                                                                                                                            | RW |
|                |          | FMR00       | RY/BY status flag                             | 0 : Busy (w riting or erasing in progress)<br>1 : Ready                                                                             | RO |
|                |          | - FMR01     | CPU rew rite mode select bit <sup>(1)</sup>   | 0 : CPU rew rite mode disabled<br>1 : CPU rew rite mode enabled                                                                     | RW |
|                |          | FMR02       | Block 0 rew rite enable bit <sup>(2, 6)</sup> | 0 : Disables rew rite<br>1 : Enables rew rite                                                                                       | RW |
|                |          | FMSTP       | Flash memory stop bit <sup>(3, 5)</sup>       | 0 : Enables flash memory operation<br>1 : Stops flash memory<br>(enters low -pow er consumption state<br>and flash memory is reset) | RW |
|                |          | <br>(b5-b4) | Reserved bits                                 | Set to 0.                                                                                                                           | RW |
|                |          | FMR06       | Program status flag <sup>(4)</sup>            | 0 : Completed successfully<br>1 : Terminated by error                                                                               | RO |
|                |          | FMR07       | Erase status flag <sup>(4)</sup>              | 0 : Completed successfully<br>1 : Terminated by error                                                                               | RO |

NOTES:

- 1. To set this bit to 1, set it to 1 immediately after setting it first to 0. Do not generate an interrupt betw een setting the bit to 0 and setting it to 1. Enter read array mode and set this bit to 0.
- 2. Set this bit to 1 immediately after setting it first to 0 w hile the FMR01 bit is set to 1. Do not generate an interrupt betw een setting the bit to 0 and setting it to 1.
- 3. Set this bit by a program located in a space other than the flash memory.
- 4. This bit is set to 0 by executing the clear status command.
- 5. This bit is enabled when the FMR01 bit is set to 1 (CPU rew rite mode). When the FMR01 bit is set to 0, writing 1 to the FMSTP bit causes the FMSTP bit to be set to 1. The flash memory does not enter low -pow er consumption state nor is it reset.
- 6. When setting the FMR01 bit to 0 (CPU rew rite mode disabled), the FMR02 bit is set to 0 (disables rew rite).

Figure 20.3 FMR0 Register

#### • FMR00 Bit

This bit indicates the operating status of the flash memory. The bits value is 0 during programming, erasure, or erase-suspend mode; otherwise, it is 1.

• FMR01 Bit

The MCU is made ready to accept commands by setting the FMR01 bit to 1 (CPU rewrite mode).

• FMR02 Bit

Rewriting of block 0 does not accept program or block erase commands if the FMR02 bit is set to 0 (rewrite disabled).

Rewriting of block 0 is controlled by FMR15 bit if the FMR02 bit is set to 1 (rewrite enabled).

• FMSTP Bit

This bit is used to initialize the flash memory control circuits, and also to reduce the amount of current consumed by the flash memory. Access to the flash memory is disabled by setting the FMSTP bit to 1. Therefore, the FMSTP bit must be written to by a program transferred to the RAM. In the following cases, set the FMSTP bit to 1:

- When flash memory access resulted in an error while erasing or programming in EW0 mode (FMR00 bit not reset to 1 (ready))
- To provide lower consumption in low-speed on-chip oscillator mode and low-speed clock mode.

Note that when going to stop or wait mode while the CPU rewrite mode is disabled, the FMR0 register does not need to be set because the power for the flash memory is automatically turned off and is turned back on again after returning from stop or wait mode.

• FMR06 Bit

This is a read-only bit indicating the status of an auto-program operation. The bit is set to 1 when a program error occurs; otherwise, it is set to 0. For details, refer to the description in **Table 20.4 Errors and FMR0 Register Status**.

#### • FMR07 Bit

This is a read-only bit indicating the status of an auto-erase operation. The bit is set to 1 when an erase error occurs; otherwise, it is set to 0. Refer to **Table 20.4 Errors and FMR0 Register Status** for details.

| -          | ster (Status | Farme                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------|--------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | r) Status    | Error                     | Error Occurrence Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| FMR07(SR5) | FMR06(SR4)   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1          | 1            | Command sequence<br>error | <ul> <li>When a command is not written correctly.</li> <li>When D0h or FFh is not written in the 2nd byte of the block erase command.<sup>(1)</sup></li> <li>When the program command or block erase command is executed while rewriting is disabled by the FMR02 bit in the FMR0 register, or the FMR15 bit in the FMR1 register.</li> <li>When an address not allocated in flash memory is input during erase command input</li> <li>When attempting to erase the block for which rewriting is disabled during erase command input.</li> <li>When an address not allocated in flash memory is input during write command input.</li> <li>When an address not allocated in flash memory is input during write command input.</li> </ul> |
| 1          | 0            | Erase error               | <ul> <li>When the block erase command is executed<br/>but auto-erasure does not complete correctly</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0          | 1            | Program error             | <ul> <li>When the program command is executed but<br/>not auto-programming does not complete.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0          | 0            | Completed successfully    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

NOTE:

1. When FFh is written in the 2nd byte of the block erase command, the MCU enters read array mode, and the command code written in the 1st byte is disabled.

# 20.4.1.2 FMR1 Register (FMR1)

Figure 20.4 shows the FMR1 Register.

| b7 b6 | b5 b4 b3 b2 b1 b0 | _          |                                               |                                               |    |
|-------|-------------------|------------|-----------------------------------------------|-----------------------------------------------|----|
| 10    | 0000              | Symbol     | Address                                       | After Reset                                   |    |
| ┯╍┯   | ┯┹┰┸┲┸┲┸┲         | FMR1       | 01B5h                                         | 100000Xb                                      |    |
|       |                   | Bit Symbol | Bit Name                                      | Function                                      | R  |
|       |                   | (b0)       | Reserved bit                                  | When read, the content is undefined.          | R  |
|       |                   | (b4-b1)    | Reserved bits                                 | Set to 0.                                     | R  |
|       |                   | - FMR15    | Block 0 rew rite disable bit <sup>(1,2)</sup> | 0 : Enables rew rite<br>1 : Disables rew rite | R  |
|       |                   | (b6)       | Reserved bit                                  | Set to 0.                                     | R\ |
|       |                   | (b7)       | Reserved bit                                  | Set to 1.                                     | R\ |

 While the FMR01 bit is set to 1 (CPU rew rite mode enabled), FMR15 bit can be written to. To set this bit to 0, set it to 0 immediately after setting it first to 1. To set this bit to 1, set it to 1.

### Figure 20.4 FMR1 Register

• FMR15 Bit

When the FMR02 bit is set to 1 (rewrite enabled) and the FMR15 bit is set to 0 (rewrite enabled), block 0 accepts program and block erase commands.

# 20.4.1.3 FMR4 Register (FMR4)

Figure 20.5 shows the FMR4 Register.

| b7 b6 | 6 b5 b | 4 b3 b2 b1 b0 |             |                                                                    |                                                               |    |
|-------|--------|---------------|-------------|--------------------------------------------------------------------|---------------------------------------------------------------|----|
|       | Х      | 000           | Symbol      | Address                                                            | After Reset                                                   |    |
|       |        |               | FMR4        | 01B3h                                                              | 0100000b                                                      |    |
|       |        |               | Bit Symbol  | Bit Name                                                           | Function                                                      | RW |
|       |        |               | <br>(b2-b0) | Reserved bits                                                      | Set to 0.                                                     | RW |
|       |        |               | FMR43       | Erase command flag                                                 | 0 : Erase not executed<br>1 : Erase execution in progress     | RO |
|       |        |               | FMR44       | Program command flag                                               | 0 : Program not executed<br>1 : Program execution in progress | RO |
|       |        |               | (b5)        | Nothing is assigned. If necess<br>When read, the content is 0.     | ary, set to 0.                                                | -  |
|       |        |               | FMR46       | Read status flag                                                   | 0 : Disables reading<br>1 : Enables reading                   | RO |
|       |        |               | FMR47       | Low -current-consumption read mode enable bit <sup>(1, 2, 3)</sup> | 0 : Disable<br>1 : Enable                                     | RW |

NOTES:

- 1. To set this bit to 1, set it to 1 immediately after setting it first to 0. Do not generate an interrupt betw een setting the bit to 0 and setting it to 1.
- 2. In high-speed on-chip oscillator mode, set the FMR47 bit to 0 (disabled).
- 3. Set the FMR01 bit to 0 (CPU rew rite mode disabled) in low-current-consumption read mode.

#### Figure 20.5 FMR4 Register

• FMR43 Bit

When the auto-erase operation starts, the FMR43 bit is set to 1 (erase execution in progress). When the auto-erase operation ends, the FMR43 bit is set to 0 (erase not executed).

• FMR44 Bit

When the auto-program operation starts, the FMR44 bit is set to 1 (program execution in progress). When the auto-program operation ends, the FMR44 bit is set to 0 (program not executed).

• FMR46 Bit

The FMR46 bit is set to 0 (reading disabled) during auto-program or auto-erase execution. Do not access the flash memory while this bit is set to 0.

• FMR47 Bit

Current consumption when reading the flash memory can be reduced by setting the FMR47 bit to 1 (enabled) in low-speed clock mode and low-speed on-chip oscillator mode.

Refer to 21.2.10 Low-Current-Consumption Read Mode for details of the handling procedure.

### 20.4.2 Status Check Procedure

When an error occurs, bits FMR06 to FMR07 in the FMR0 register are set to 1, indicating the occurrence of an error. Therefore, checking these status bits (full status check) can be used to determine the execution result. Figure 20.6 shows the Full Status Check and Handling Procedure for Individual Errors.

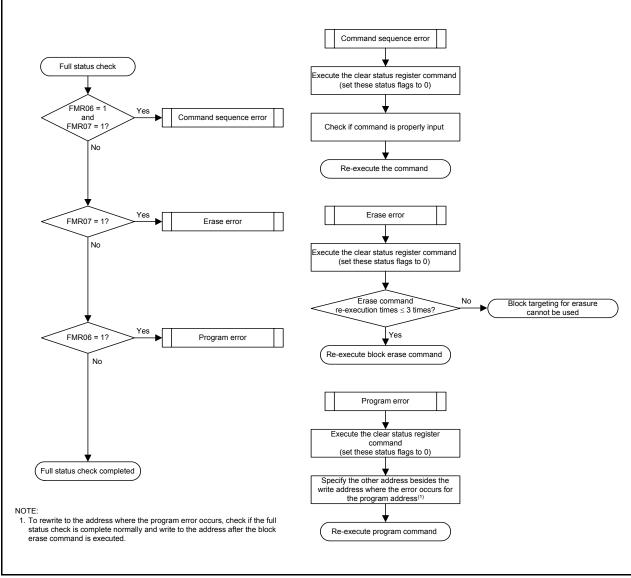



Figure 20.6 Full Status Check and Handling Procedure for Individual Errors

### 20.4.3 EW0 Mode

The MCU enters CPU rewrite mode and software commands can be acknowledged by setting the FMR01 bit in the FMR0 register to 1 (CPU rewrite mode enabled). In this case, since the FMR11 bit in the FMR1 register is set to 0, EW0 mode is selected.

Use software commands to control program and erase operations. The FMR0 register or the status register can be used to determine when program and erase operations complete. Figure 20.7 shows How to Set and Exit EW0 Mode.

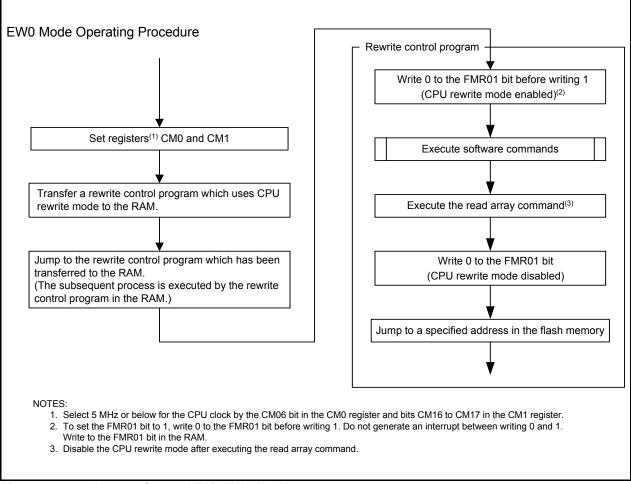



Figure 20.7 How to Set and Exit EW0 Mode

### 20.4.3.1 Software Commands

There are five types of software commands:

- Read array
- Read status register
- Clear status register
- Program
- Block erase

Figure 20.8 shows Software Command Status Transition Diagram in EW0 Mode.

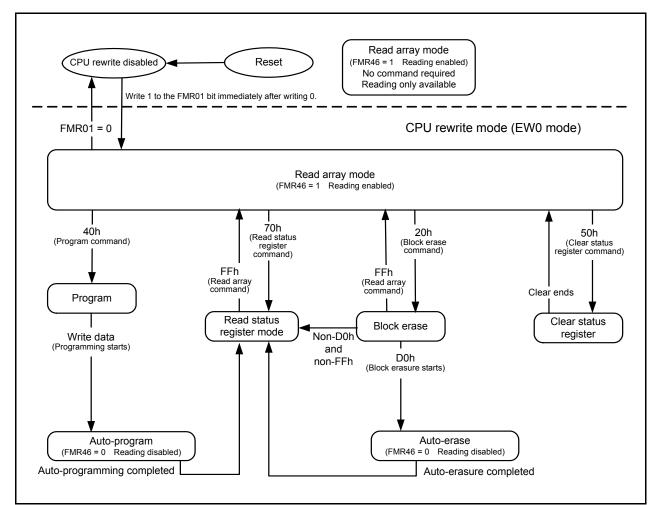



Figure 20.8 Software Command Status Transition Diagram in EW0 Mode

#### • Read Array Command

The read array command reads the flash memory.

When FFh is written to an address in the user ROM area, the MCU enters read array mode. In this mode, the contents of the specified address can be read.

Read array mode continues until other commands are written. The MCU enters this mode after a reset is deasserted.

• Read Status Register Command

The read status register command is used to read the status register. Figure 20.9 shows Status Register. The status register indicates the operating status of the flash memory and whether an erase or program operation has completed normally or in error (refer to **Table 20.4 Errors and FMR0 Register Status**). When 70h is written to an address in the user ROM area, the MCU enters read status register mode. When the address in the user ROM area is read subsequently, the status register can be read.

The MCU remains in read status register mode until the next read array command is written.

The status of the status register can be determined by reading bits FMR00, FMR06, and FMR07 in the FMR0 register.

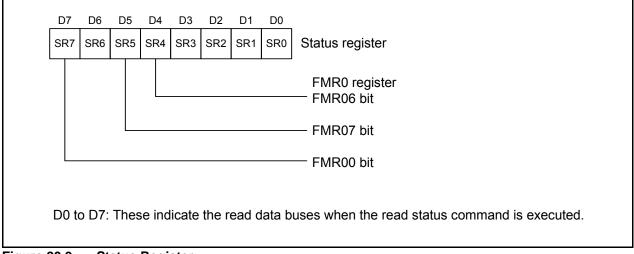



Figure 20.9 Status Register

• Clear Status Register Command

The clear status register command sets the status register to 0.

When 50h is written to an address in the user ROM area, bits FMR07 and FMR06 in the FMR0 register and bits SR5 and SR4 in the status register are set to 00b.

#### Program Command

The program command writes data to the flash memory in 1-byte units.

When 40h is written and then data is written to the write address, an auto-program operation (data program and verify) starts.

The FMR00 bit in the FMR0 register can be used to determine whether auto-programming has completed. The FMR00 bit is set to 0 during auto-programming and set to 1 when auto-programming completes.

The FMR06 bit in the FMR0 register can be used to determine the result of auto-programming after it has been finished (refer to **20.4.2 Status Check Procedure**).

Do not write additions to the already programmed addresses.

Also, when the FMR02 bit in the FMR0 register is set to 0 (rewrite disabled), or the FMR02 bit is set to 1 (rewrite enabled) and the FMR15 bit in the FMR1 register is set to 1 (rewrite disabled), program commands targeting block 0 are not acknowledged.

Figure 20.10 shows the Program Command in EW0 Mode.

In EW0 mode, the MCU enters read status register mode at the same time auto-programming starts and the status register can be read. In this case, the MCU remains in read status register mode until the next read array command is written.

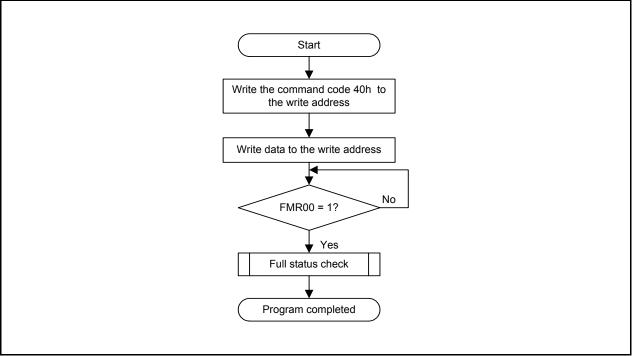



Figure 20.10 Program Command in EW0 Mode

#### • Block Erase

When 20h is first written and then D0h is written to a given block address, an auto-erase operation (erase and verify) of the specified block starts.

The FMR00 bit in the FMR0 register can be used to determine whether auto-erasure has completed.

The FMR00 bit is set to 0 during auto-erasure and set to 1 when auto-erasure completes.

The FMR07 bit in the FMR0 register can be used to determine the result of auto-erasure after auto-erasure has completed (refer to **20.4.2 Status Check Procedure**).

Also, when the FMR02 bit in the FMR0 register is set to 0 (rewrite disabled), or the FMR02 bit is set to 1 (rewrite enabled) and the FMR15 bit in the FMR1 register is set to 1 (rewrite disabled), block erase commands targeting block 0 are not acknowledged.

In EW0 mode, the MCU enters read status register mode at the same time auto-erasure starts and the status register can be read. In this case, the MCU remains in read status register mode until the next read array command is written.

Figure 20.11 shows the Block Erase Command in EW0 Mode.

If the programming and erasure endurance is n (n = 100, 1000, or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1-Kbyte block, and then the block is erased, the erase count stands at one. When performing 100 or more rewrites, the actual erase count can be reduced by executing programming operations in such a way that all blank areas are used before performing an erase operation. Avoid rewriting only particular blocks and try to average out the programming and erasure endurance of the blocks. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.

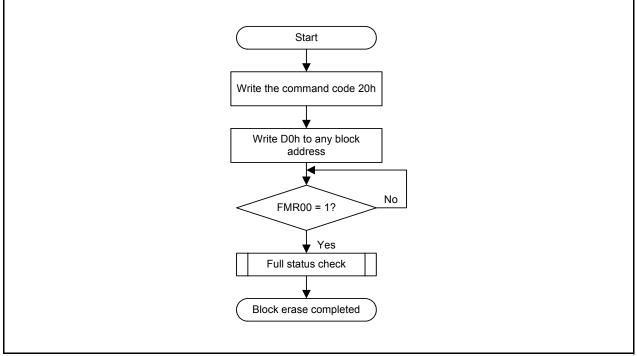



Figure 20.11 Block Erase Command in EW0 Mode

### 20.4.3.2 EW0 Mode Interrupts

In EW0 mode, maskable interrupts can be used by allocating a vector in RAM. Table 20.5 lists the EW0 Mode Interrupts. Refer to **20.7.1.3 Non-Maskable Interrupts** for details of the non-maskable interrupt.

#### Table 20.5 EW0 Mode Interrupts

| Status              | When Maskable Interrupt Request is Acknowledged |
|---------------------|-------------------------------------------------|
| During auto-erasure | Interrupt handling is executed.                 |
| Auto-programming    |                                                 |

### 20.5 Standard Serial I/O Mode

In standard serial I/O mode, the user ROM area can be rewritten while the MCU is mounted on-board by using a serial programmer which is suitable for the MCU.

There are three types of standard serial I/O modes:

- Standard serial I/O mode 1 .....Clock synchronous serial I/O used to connect with a serial programmer
- Standard serial I/O mode 2 .....Clock asynchronous serial I/O used to connect with a serial programmer
- Standard serial I/O mode 3 ......Special clock asynchronous serial I/O used to connect with a serial programmer

This MCU uses Standard serial I/O mode 3.

Refer to **Appendix 2. Connection Examples with On-Chip Debugging Emulator**. Contact the manufacturer of your serial programmer for details. Refer to the user's manual of your serial programmer for instructions on how to use it.

Table 20.6 lists the Pin Functions (Flash Memory Standard Serial I/O Mode 3), and Figure 20.12 shows an Example of Pin Processing in Standard Serial I/O Mode 3.

After processing the pins shown in Table 20.6 and rewriting the flash memory using the programmer, apply "H" to the MODE pin and reset the hardware to run a program in the flash memory in single-chip mode.

### 20.5.1 ID Code Check Function

The ID code check function determines whether the ID codes sent from the serial programmer and those written in the flash memory match.

Refer to 14. ID Code Areas for details of the ID code check.

| Pin                                               | Name                                            | I/O                    | Description                                                                                     |
|---------------------------------------------------|-------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------|
| VCC,VSS                                           | Power input                                     |                        | Apply the voltage guaranteed for programming and erasure to the VCC pin and 0 V to the VSS pin. |
| RESET                                             | Reset input                                     | I                      | Reset input pin.                                                                                |
| P4_3/XCIN <sup>(1)</sup>                          | P4_3 input/clock input                          | I                      | Connect crystal oscillator between pins XCIN and XCOUT when connecting external oscillator.     |
| P4_4/XCOUT <sup>(1)</sup>                         | P4_4 output/clock output                        | 0                      | To use P4_3 as an input port, input a "H" or "L" level signal or leave the pin open.            |
|                                                   |                                                 |                        | To use P4_4 as an output port, leave the pin open.                                              |
| P1_0 to P1_7                                      | Input port P1                                   | I                      | Input a "H" or "L" level signal or leave the pin open.                                          |
| P3_3, P3_7                                        | Input port P3                                   | Ι                      |                                                                                                 |
| P4_5                                              | Input port P4                                   | Ι                      |                                                                                                 |
| P6_3 to P6_5 <sup>(1)</sup>                       | Input port P6                                   | Ι                      |                                                                                                 |
| MODE                                              | MODE                                            | I/O                    | Serial data I/O pin. Connect to the flash programmer.                                           |
| P3_3, P3_7<br>P4_5<br>P6_3 to P6_5 <sup>(1)</sup> | Input port P3<br>Input port P4<br>Input port P6 | <br> <br> <br> <br> /O | Input a "H" or "L" level signal or leave the pin or                                             |

**Table 20.6** Pin Functions (Flash Memory Standard Serial I/O Mode 3)

NOTE:

1. Ports P4\_3, P4\_4, P6\_3, and P6\_4 are not available in the R8C/2J Group.

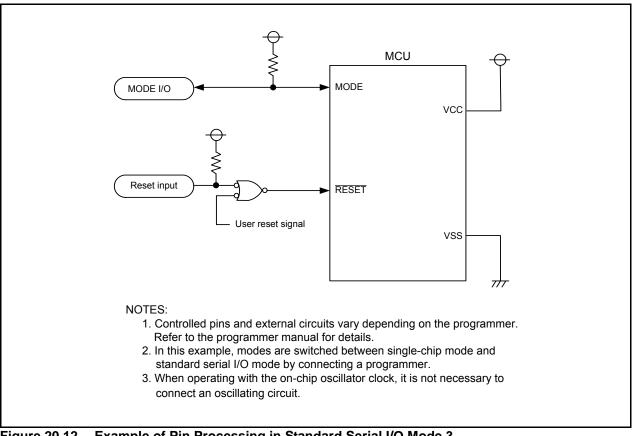



Figure 20.12 Example of Pin Processing in Standard Serial I/O Mode 3

### 20.6 Parallel I/O Mode

Parallel I/O mode is used to input and output software commands, addresses and data necessary to control (read, program, and erase) the on-chip flash memory. Use a parallel programmer which supports this MCU. Contact the manufacturer of the parallel programmer for more information, and refer to the user's manual of the parallel programmer for details on how to use it.

ROM areas shown in Figure 20.1 can be rewritten in parallel I/O mode.

### 20.6.1 ROM Code Protect Function

The ROM code protect function disables the reading and rewriting of the flash memory. (Refer to **20.3.2 ROM Code Protect Function**.)

### 20.7 Notes on Flash Memory

### 20.7.1 CPU Rewrite Mode

#### 20.7.1.1 Operating Speed

Before entering CPU rewrite mode (EW0 mode), select 5 MHz or below for the CPU clock using the CM06 bit in the CM0 register and bits CM16 to CM17 in the CM1 register.

### 20.7.1.2 Prohibited Instructions

The following instructions cannot be used in EW0 mode because they reference data in the flash memory: UND, INTO, and BRK.

### 20.7.1.3 Non-Maskable Interrupts

#### • EW0 Mode

Once a watchdog timer, voltage monitor1, voltage monitor 2, comparator 1, or comparator 2 interrupt request is acknowledged, auto-erasure or auto-programming is forcibly stopped immediately and the flash memory is reset. Interrupt handling starts after a fixed period and the flash memory restarts.

As the block during auto-erasure or the address during auto-programming is forcibly stopped, the normal value may not be readable. Execute auto-erasure again and ensure it completes normally.

The watchdog timer does not stop during command operation, so that interrupt requests may be generated. Initialize the watchdog timer regularly.

Do not use the address match interrupt while a command is being executed because the vector of the address match interrupt is allocated in ROM.

Do not use a non-maskable interrupt while block 0 is being automatically erased because the fixed vector is allocated in block 0.

### 20.7.1.4 How to Access

Write 0 before writing 1 when setting Bits FMR01, FMR02 in the FMR0 register, or FMR11 bit in the FMR1 register to 1. Do not generate an interrupt between writing 0 and 1.

### 20.7.1.5 Rewriting User ROM Area

In EW0 Mode, if the supply voltage drops while rewriting any block in which a rewrite control program is stored, it may not be possible to rewrite the flash memory because the rewrite control program cannot be rewritten correctly. In this case, use standard serial I/O mode.

### 20.7.1.6 Program

Do not write additions to the already programmed address.

#### 20.7.1.7 Program and Erase Voltage for Flash Memory

To perform programming and erasure, use VCC = 2.7 V to 5.5 V as the supply voltage. Do not perform programming and erasure at less than 2.7 V.

## 21. Reducing Power Consumption

### 21.1 Overview

This chapter describes key points and processing methods for reducing power consumption.

### 21.2 Key Points and Processing Methods for Reducing Power Consumption

Key points for reducing power consumption are shown below. They should be referred to when designing a system or creating a program.

### 21.2.1 Voltage Detection Circuit

When voltage monitor 1 and comparator 1 are not used, set the VCA26 bit in the VCA2 register to 0 (voltage detection 1 circuit disabled). When voltage monitor 2 and comparator 2 are not used, set the VCA27 bit in the VCA2 register to 0 (voltage detection 2 circuit disabled).

If the power-on reset and voltage monitor 0 reset are not used, set the VCA25 bit in the VCA2 register to 0 (voltage detection 0 circuit disabled).

### 21.2.2 Ports

Even after the MCU enters wait mode or stop mode, the states of the I/O ports are retained. Current flows into the output ports in the active state, and shoot-through current flows into the input ports in the high-impedance state. Unnecessary ports should be set to input and fixed to a stable electric potential before the MCU enters wait mode or stop mode.

### 21.2.3 Clocks

Power consumption generally depends on the number of the operating clocks and their frequencies. The fewer the number of operating clocks or the lower their frequencies, the more power consumption decreases. Unnecessary clocks should be stopped accordingly.

Stopping low-speed on-chip oscillator oscillation: CM14 bit in CM1 register (for R8C/2H Group only) Stopping high-speed on-chip oscillator oscillation: HRA00 bit in HRA0 register

### 21.2.4 Selecting Oscillation Drive Capacity (for R8C/2H Group only)

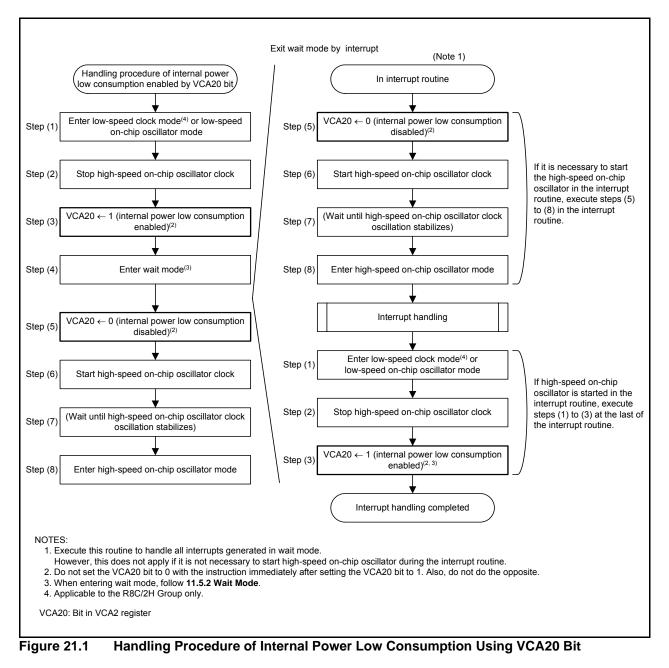
Set the drive capacity of the XCIN clock oscillation circuit to "LOW". Confirm that the circuit oscillates stably while it is in the "LOW" state.

Selecting XCIN-XCOUT drive capacity: CM03 bit in CM0 register

### 21.2.5 Wait Mode, Stop Mode

Power consumption can be reduced in wait mode and stop mode. Refer to 11.4 Power Control for details.

### 21.2.6 Stopping Peripheral Function Clocks


If the peripheral function f1, f2, f4, f8, and f32 clocks are not necessary in wait mode, set the CM02 bit in the CM0 register to 1 (peripheral function clock stops in wait mode). This will stop the f1, f2, f4, f8, and f32 clocks in wait mode.

### 21.2.7 Timers

If timer RA is not used, set the TCKCUT bit in the TRAMR register to 1 (count source cutoff). If timer RB is not used, set the TCKCUT bit in the TRBMR register to 1 (count source cutoff).

### 21.2.8 Reducing Internal Power Consumption

When the MCU enters wait mode using low-speed clock mode or low-speed on-chip oscillator mode, internal power consumption can be reduced by using the VCA20 bit in the VCA2 register. Figure 21.1 shows the Handling Procedure of Internal Power Low Consumption Using VCA20 Bit. To enable internal power low consumption by the VCA20 bit, follow Figure 21.1 Handling Procedure of Internal Power Low Consumption Using VCA20 Bit.



### 21.2.9 Stopping Flash Memory

In low-speed on-chip oscillator mode and low-speed clock mode, power consumption can be further reduced by stopping the flash memory using the FMSTP bit in the FMR0 register.

Access to the flash memory is disabled by setting the FMSTP bit to 1 (flash memory stops). The FMSTP bit must be written to by a program transferred to RAM.

When the MUC enters stop mode or wait mode while CPU rewrite mode is disabled, the power for the flash memory is automatically turned off. It is turned back on again after the MCU exit stop mode or wait mode. This eliminates the need to set the FMR0 register.

Figure 21.2 shows the Handling Procedure Example of Low Power Consumption Using FMSTP Bit.

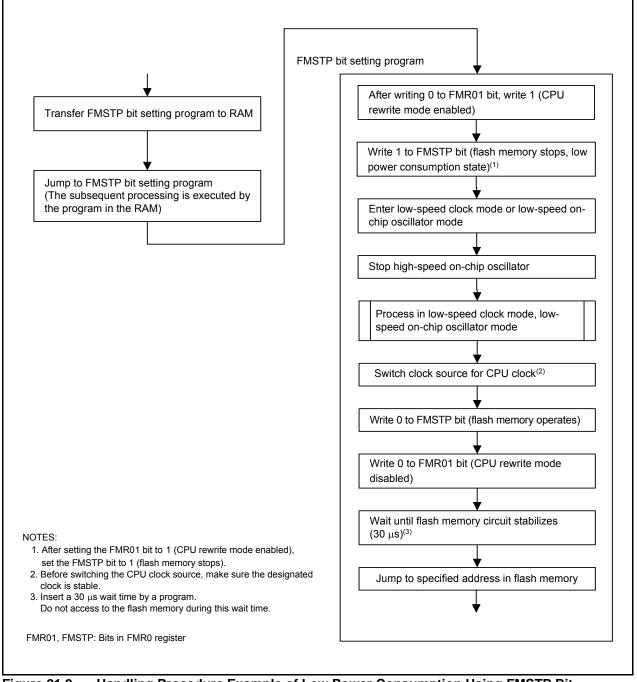
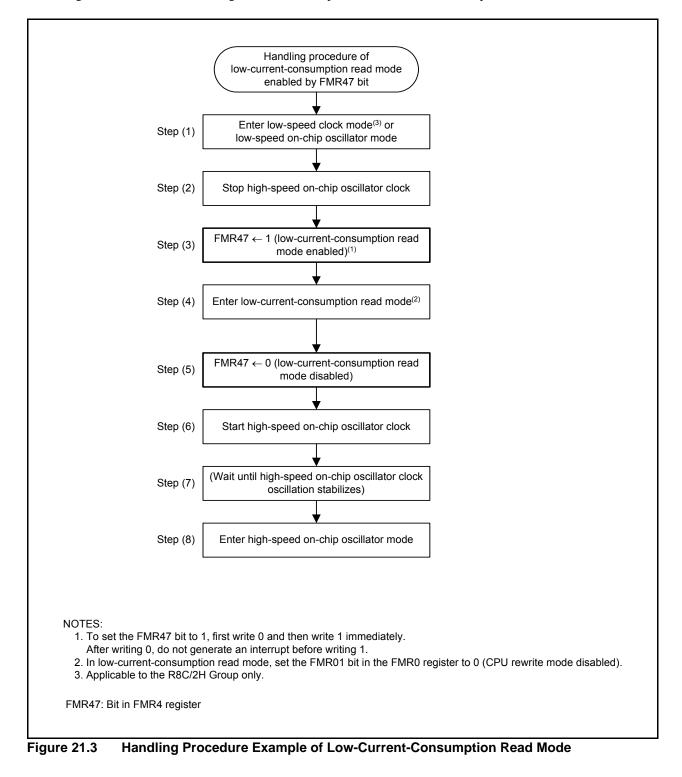




Figure 21.2 Handling Procedure Example of Low Power Consumption Using FMSTP Bit

### 21.2.10 Low-Current-Consumption Read Mode

In low-speed clock mode (for the R8C/2H Group only) and low-speed on-chip oscillator mode, the current consumption when reading the flash memory can be reduced by setting the FMR47 bit in the FMR4 register to 1 (enabled).

Figure 21.3 shows the Handling Procedure Example of Low-Current-Consumption Read Mode.



# 22. Electrical Characteristics

### 22.1 R8C/2H Group

#### Table 22.1 Absolute Maximum Ratings

| Symbol | Parameter                     | Condition   | Rated Value                                      | Unit |
|--------|-------------------------------|-------------|--------------------------------------------------|------|
| Vcc    | Supply voltage                |             | –0.3 to 6.5                                      | V    |
| VI     | Input voltage                 |             | -0.3 to Vcc + 0.3                                | V    |
| Vo     | Output voltage                |             | -0.3 to Vcc + 0.3                                | V    |
| Pd     | Power dissipation             | Topr = 25°C | 500                                              | mW   |
| Topr   | Operating ambient temperature |             | -20 to 85 (N version) /<br>-40 to 85 (D version) | °C   |
| Tstg   | Storage temperature           |             | -65 to 150                                       | °C   |

#### Table 22.2 Recommended Operating Conditions

| Currente e l | Dever                           | ata :                                            | Canditiona                                                                                                                                                    |         | Standard |         | Unit |
|--------------|---------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|---------|------|
| Symbol       | Param                           | leter                                            | Conditions                                                                                                                                                    | Min.    | Тур.     | Max.    | Unit |
| Vcc          | Supply voltage                  |                                                  |                                                                                                                                                               | 2.2     | -        | 5.5     | V    |
| Vss          | Supply voltage                  |                                                  |                                                                                                                                                               | -       | 0        | -       | V    |
| Vih          | Input "H" voltage               |                                                  |                                                                                                                                                               | 0.8 Vcc | -        | Vcc     | V    |
| VIL          | Input "L" voltage               |                                                  |                                                                                                                                                               | 0       | -        | 0.2 Vcc | V    |
| IOH(sum)     | Peak sum output "H"<br>current  | Sum of all pins IOH(peak)                        |                                                                                                                                                               | -       | -        | -160    | mA   |
| IOH(sum)     | Average sum output "H" current  | Sum of all pins IOH(avg)                         |                                                                                                                                                               | -       | _        | -80     | mA   |
| IOH(peak)    | Peak output "H" current         | All pins                                         |                                                                                                                                                               | -       | -        | -10     | mA   |
| IOH(avg)     | Average output "H"<br>current   | All pins                                         |                                                                                                                                                               | -       | -        | -5      | mA   |
| IOL(sum)     | Peak sum output "L" currents    | Sum of all pins IOL(peak)                        |                                                                                                                                                               | -       | -        | 160     | mA   |
| IOL(sum)     | Average sum output "L" currents | Sum of all pins IOL(avg)                         |                                                                                                                                                               | -       | —        | 80      | mA   |
| IOL(peak)    | Peak output "L" currents        | All pins                                         |                                                                                                                                                               | -       | -        | 10      | mA   |
| IOL(avg)     | Average output "L" current      | All pins                                         |                                                                                                                                                               | -       | -        | 5       | mA   |
| f(XCIN)      | XCIN clock input oscillation    | frequency                                        | $2.2~V \leq Vcc \leq 5.5~V$                                                                                                                                   | 0       | -        | 70      | kHz  |
| -            | System clock                    | OCD2 = 0<br>XCIN clock selected                  | $2.2 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$                                                                                                            | 0       | -        | 70      | kHz  |
|              |                                 | OCD2 = 1<br>On-chip oscillator clock<br>selected | HRA01 = 0<br>Low-speed on-chip<br>oscillator selected                                                                                                         | -       | 125      | _       | kHz  |
|              |                                 |                                                  | $\begin{array}{l} \text{HRA01 = 1} \\ \text{High-speed on-chip} \\ \text{oscillator selected} \\ \text{2.7 V} \leq \text{Vcc} \leq 5.5 \text{ V} \end{array}$ | -       | _        | 8       | MHz  |
|              |                                 |                                                  | $\begin{array}{l} \text{HRA01 = 1} \\ \text{High-speed on-chip} \\ \text{oscillator selected} \\ \text{2.2 V} \leq \text{Vcc} \leq 5.5 \text{ V} \end{array}$ | -       | -        | 4       | MHz  |

NOTES:

1. Vcc = 2.2 to 5.5 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

The average output current indicates the average value of current measured during 100 ms.

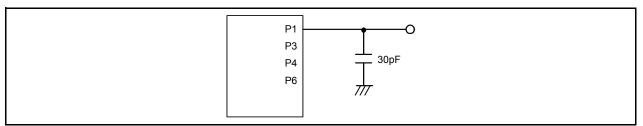



Figure 22.1 Ports P1, P3, P4, and P6 Timing Measurement Circuit

| Symbol | Parameter                              | Conditions                 |                    | Unit |      |       |
|--------|----------------------------------------|----------------------------|--------------------|------|------|-------|
|        | Faranielei                             | Conditions                 | Min.               | Тур. | Max. | Unit  |
| -      | Program/erase endurance <sup>(2)</sup> |                            | 100 <sup>(3)</sup> | -    | -    | times |
| -      | Byte program time                      |                            | -                  | 50   | 400  | μs    |
| -      | Block erase time                       |                            | -                  | 0.4  | 9    | S     |
| -      | Program, erase voltage                 |                            | 2.7                | -    | 5.5  | V     |
| -      | Read voltage                           |                            | 2.2                | -    | 5.5  | V     |
| -      | Program, erase temperature             |                            | 0                  | -    | 60   | °C    |
| -      | Data hold time <sup>(7)</sup>          | Ambient temperature = 55°C | 20                 | -    | -    | year  |

#### Table 22.3 Flash Memory (Program ROM) Electrical Characteristics

NOTES:

1. Vcc = 2.7 to 5.5 V at  $T_{opr}$  = 0 to 60°C, unless otherwise specified.

Definition of programming/erasure endurance
 The programming and erasure endurance is defined on a per-block basis.
 If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024
 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

7. The data hold time includes time that the power supply is off or the clock is not supplied.

| Table 22.4         Voltage Detection 0 Circuit Electrical Characteristics |  |
|---------------------------------------------------------------------------|--|
|---------------------------------------------------------------------------|--|

| Symbol  | Parameter                                                                    | Condition              | Standard |      |      | Unit |
|---------|------------------------------------------------------------------------------|------------------------|----------|------|------|------|
| Symbol  | Farameter                                                                    | Condition              | Min.     | Тур. | Max. | Unit |
| Vdet0   | Voltage detection level                                                      |                        | 2.2      | 2.3  | 2.4  | V    |
| _       | Voltage detection circuit self power consumption                             | VCA25 = 1, Vcc = 5.0 V | -        | 0.9  | -    | μA   |
| td(E-A) | Waiting time until voltage detection circuit operation starts <sup>(2)</sup> |                        | -        | -    | 300  | μS   |
| Vccmin  | MCU operating voltage minimum value                                          |                        | 2.2      | -    | -    | V    |

NOTES:

1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).

2. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

#### Table 22.5 Voltage Detection 1 Circuit Electrical Characteristics

| Symbol  | Parameter                                                                    | Condition              | Standard |      |      | Unit |
|---------|------------------------------------------------------------------------------|------------------------|----------|------|------|------|
| Symbol  | Falanielei                                                                   | Condition              | Min.     | Тур. | Max. | Unit |
| Vdet1   | Voltage detection level <sup>(4)</sup>                                       |                        | 2.70     | 2.85 | 3.00 | V    |
| -       | Voltage monitor 1 interrupt request generation time <sup>(2)</sup>           |                        | -        | 40   | _    | μS   |
| -       | Voltage detection circuit self power consumption                             | VCA26 = 1, Vcc = 5.0 V | -        | 0.6  | -    | μA   |
| td(E-A) | Waiting time until voltage detection circuit operation starts <sup>(3)</sup> |                        | -        | -    | 100  | μS   |

NOTES:

- 1. The measurement condition is Vcc = 2.2 to 5.5 V and  $T_{opr}$  = -20 to 85°C (N version) / -40 to 85°C (D version).
- 2. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.
- 3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.
- 4. This parameter shows the voltage detection level when the power supply drops. The voltage detection level when the power supply rises is higher than the voltage detection level when the power supply drops by approximately 0.1 V.

#### Table 22.6 Voltage Detection 2 Circuit Electrical Characteristics

| Symbol  | Parameter                                                                    | Condition              | Standard |      |      | Unit |
|---------|------------------------------------------------------------------------------|------------------------|----------|------|------|------|
| Symbol  | Falanielei                                                                   | Condition              | Min.     | Тур. | Max. | Unit |
| Vdet2   | Voltage detection level                                                      |                        | 3.3      | 3.6  | 3.9  | V    |
| -       | Voltage monitor 2 interrupt request generation time <sup>(2)</sup>           |                        | -        | 40   | -    | μS   |
| -       | Voltage detection circuit self power consumption                             | VCA27 = 1, Vcc = 5.0 V | -        | 0.6  | -    | μA   |
| td(E-A) | Waiting time until voltage detection circuit operation starts <sup>(3)</sup> |                        | -        | -    | 100  | μS   |

NOTES:

1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).

2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes  $V_{det2}$ .

3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

| Symbol | Parameter                                               | Condition | Standard |      |       | Unit    |
|--------|---------------------------------------------------------|-----------|----------|------|-------|---------|
|        | Falance                                                 | Condition | Min.     | Тур. | Max.  | Unit    |
| Vpor1  | Power-on reset valid voltage <sup>(4)</sup>             |           | -        | -    | 0.1   | V       |
| Vpor2  | Power-on reset or voltage monitor 0 reset valid voltage |           | 0        | —    | Vdet0 | V       |
| trth   | External power Vcc rise gradient <sup>(2)</sup>         |           | 20       | -    | -     | mV/msec |

| Table 22.7 | Power-on Reset Circuit, | Voltage Monitor 0 Reset | Electrical Characteristics <sup>(3)</sup> |
|------------|-------------------------|-------------------------|-------------------------------------------|
|------------|-------------------------|-------------------------|-------------------------------------------|

NOTES:

- 1. The measurement condition is Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
- 2. This condition (external power Vcc rise gradient) does not apply if Vcc  $\ge$  1.0 V.
- 3. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVD0ON bit in the OFS register to 0, the VW0C0 and VW0C6 bits in the VW0C register to 1 respectively, and the VCA25 bit in the VCA2 register to 1.
- 4.  $t_{w(por1)}$  indicates the duration the external power Vcc must be held below the effective voltage (Vpor1) to enable a power on reset. When turning on the power for the first time, maintain  $t_{w(por1)}$  for 30 s or more if  $-20^{\circ}C \le T_{opr} \le 85^{\circ}C$ , maintain  $t_{w(por1)}$  for 3,000 s or more if  $-40^{\circ}C \le T_{opr} < -20^{\circ}C$ .



- 1. When using the voltage monitor 0 digital filter, ensure that the voltage is within the MCU operation voltage range (2.2 V or above) during the sampling time.
- The sampling clock can be selected. Refer to 6. Voltage Detection Circuit for details.
- 3. Vdet0 indicates the voltage detection level of the voltage detection 0 circuit. Refer to 6. Voltage Detection Circuit for details.

Figure 22.2 Reset Circuit Electrical Characteristics

| Symbol         Parameter           Vref         Internal reference voltage           Vcref         External input reference voltage | Baramatar                               | Condition                                   |      | Unit |           |    |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------|------|------|-----------|----|
|                                                                                                                                     | Condition                               | Min.                                        | Тур. | Max. | Unit      |    |
| Vref                                                                                                                                | Internal reference voltage              | Vcc = 2.2 V to 5.5 V, Topr = 25°C           | 1.15 | 1.25 | 1.35      | V  |
|                                                                                                                                     |                                         | Vcc = 2.2 V to 5.5 V,<br>Topr = -40 to 85°C | _    | 1.25 | -         | V  |
| Vcref                                                                                                                               | External input reference voltage        | Vcc = 2.2 V to 4.0 V                        | 0.5  | -    | Vcc - 1.1 | V  |
|                                                                                                                                     |                                         | Vcc = 4.0 V to 5.5 V                        | 0.5  | -    | Vcc - 1.5 | V  |
| Vcin                                                                                                                                | External comparison voltage input range |                                             | -0.3 | -    | Vcc + 0.3 | V  |
| Vofs                                                                                                                                | Input offset voltage                    |                                             | -    | 20   | 120       | mV |
| Tcrsp                                                                                                                               | Response time                           |                                             | -    | 4    | -         | μS |

#### **Table 22.8 Comparator Electrical Characteristics**

NOTE:

1. The measurement condition is Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

#### Table 22.9 **High-speed On-Chip Oscillator Circuit Electrical Characteristics**

| Symbol | Parameter                                                                       | Condition                                                                       |      | Standard |      | Unit |
|--------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------|----------|------|------|
| Symbol | Faranteter                                                                      | Condition                                                                       | Min. | Тур.     | Max. | Onit |
| fOCO-F | High-speed on-chip oscillator frequency temperature • supply voltage dependence | $V_{CC} = 4.75 V \text{ to } 5.25 V$<br>Topr = 0 to $60^{\circ}C^{(2)}$         | 7.76 | 8        | 8.24 | MHz  |
|        |                                                                                 | $V_{CC} = 2.7 V \text{ to } 5.5 V$<br>Topr = -20 to $85^{\circ}C^{(2)}$         | 7.68 | 8        | 8.32 | MHz  |
|        |                                                                                 | $V_{CC} = 2.7 V \text{ to } 5.5 V$<br>Topr = -40 to $85^{\circ}C^{(2)}$         | 7.44 | 8        | 8.32 | MHz  |
|        |                                                                                 | $V_{CC} = 2.2 \text{ V to } 5.5 \text{ V}$<br>Topr = -20 to $85^{\circ}C^{(3)}$ | 7.04 | 8        | 8.96 | MHz  |
|        |                                                                                 | Vcc = 2.2 V to 5.5 V<br>Topr = -40 to 85°C <sup>(3)</sup>                       | 6.8  | 8        | 9.2  | MHz  |

NOTES:

1. The measurement condition is Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. These standard values show when the HRA1 register is set to the value before shipment and the HRA2 register is set to 00h.

3. These standard values show when the correction value in the FRA6 register is written into the HRA1 register.

#### Table 22.10 Low-speed On-Chip Oscillator Circuit Electrical Characteristics

| Symbol | Parameter                              | Condition                | Standard |      |      | Unit |
|--------|----------------------------------------|--------------------------|----------|------|------|------|
| Symbol |                                        | Condition                | Min.     | Тур. | Max. | Unit |
| fOCO-S | Low-speed on-chip oscillator frequency |                          | 30       | 125  | 250  | kHz  |
| _      | Oscillation stability time             |                          | -        | 10   | 100  | μS   |
| _      | Self power consumption at oscillation  | Vcc = 5.0 V, Topr = 25°C | -        | 15   | Ì    | μA   |

NOTE:

1. Vcc = 2.2 to 5.5 V, Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

#### Table 22.11 Power Supply Circuit Timing Characteristics

| Symbol  | Parameter                                                                   | Condition | Standard |      |      | Unit |
|---------|-----------------------------------------------------------------------------|-----------|----------|------|------|------|
| Symbol  | i arameter                                                                  | Condition | Min.     | Тур. | Max. | Onit |
| td(P-R) | Time for internal power supply stabilization during power-on <sup>(2)</sup> |           | 1        | -    | 2000 | μS   |
| td(R-S) | STOP exit time <sup>(3)</sup>                                               |           | -        | -    | 150  | μS   |

NOTES:

The measurement condition is Vcc = 2.2 to 5.5 V and Topr = 25°C.
 Waiting time until the internal power supply generation circuit stabilizes during power-on.

3. Time until system clock supply starts after the interrupt is acknowledged to exit stop mode.

| Symbol  | Doro                  | motor                                                           | Condition           | S         | Standard |      |    |
|---------|-----------------------|-----------------------------------------------------------------|---------------------|-----------|----------|------|----|
| Symbol  | Parameter Condition - |                                                                 | Min.                | Тур.      | Max.     | Unit |    |
| Vон     | Output "H" voltage    |                                                                 | Іон = –5 mA         | Vcc - 2.0 | -        | Vcc  | V  |
|         |                       |                                                                 | Іон = –200 μА       | Vcc - 0.5 | -        | Vcc  | V  |
| Vol     | Output "L" voltage    |                                                                 | IoL = 5 mA          | -         | -        | 2.0  | V  |
|         |                       |                                                                 | Ιοι = 200 μΑ        | -         | -        | 0.45 | V  |
| Vt+-Vt- | Hysteresis            | INT0, INT1,<br>KI0, KI1, KI2, KI3,<br>RXD0, RXD2,<br>CLK0, CLK2 |                     | 0.1       | 0.5      | _    | V  |
|         |                       | RESET                                                           |                     | 0.1       | 1.0      | -    | V  |
| Ін      | Input "H" current     |                                                                 | VI = 5 V, Vcc = 5 V | -         | _        | 5.0  | μΑ |
| lı∟     | Input "L" current     |                                                                 | VI = 0 V, Vcc = 5 V | -         | -        | -5.0 | μA |
| Rpullup | Pull-up resistance    |                                                                 | VI = 0 V, Vcc = 5 V | 30        | 50       | 167  | kΩ |
| Rfxcin  | Feedback resistance   | XCIN                                                            |                     | -         | 18       | -    | MΩ |
| VRAM    | RAM hold voltage      |                                                                 | During stop mode    | 2.0       | -        | -    | V  |

| Table 22.12 Electrical Characteristics (1) [Vcc = 5 V | 2.12 Electrical Char | acteristics (1) [Vcc = 5 V | 1 |
|-------------------------------------------------------|----------------------|----------------------------|---|
|-------------------------------------------------------|----------------------|----------------------------|---|

NOTE: 1. Vcc = 4.2 to 5.5 V at  $T_{opr}$  = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

| Table 22.13 | Electrical Characteristics (2) [Vcc = 5 V]                                                                      |
|-------------|-----------------------------------------------------------------------------------------------------------------|
|             | (Topr = $-20$ to $85^{\circ}$ C (N version) / $-40$ to $85^{\circ}$ C (D version), unless otherwise specified.) |

| Symbol | Parameter                                                        |                                       | Condition                                                                                                                                                                                                                                               |      | Standar | d    | Unit |
|--------|------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|------|------|
| Symbol |                                                                  |                                       |                                                                                                                                                                                                                                                         | Min. | Тур.    | Max. | Unit |
| Icc    | Power supply current $(Vcc = 3.3 \text{ to } 5.5 \text{ V})$     | High-speed<br>on-chip oscillator mode | High-speed on-chip oscillator on = 8 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                                                                                    | -    | 5       | 8    | mA   |
|        | Single-chip mode,<br>output pins are open,<br>other pins are Vss |                                       | High-speed on-chip oscillator on = 8 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                                                                                    | -    | 2       | _    | mA   |
|        |                                                                  | Low-speed<br>on-chip oscillator mode  | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8, FMR47 = 1                                                                                                                                                | -    | 130     | 300  | μA   |
|        |                                                                  | Low-speed clock mode                  | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz (low drive)<br>FMR47 = 1                                                                                                                     | -    | 130     | 300  | μA   |
|        |                                                                  |                                       | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz (low drive)<br>Program operation on RAM<br>Flash memory off, FMSTP = 1                                                                       | _    | 30      | _    | μA   |
|        |                                                                  | Wait mode                             | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock operation<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1                                                          | _    | 25      | 75   | μA   |
|        |                                                                  |                                       | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1                                                                | -    | 23      | 60   | μA   |
|        |                                                                  |                                       | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz (high drive)<br>While a WAIT instruction is executed<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1<br>BGR trimming circuit disabled (BGRCR0 = 1) | -    | 4       | -    | μA   |
|        |                                                                  |                                       | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz (low drive)<br>While a WAIT instruction is executed<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1<br>BGR trimming circuit disabled (BGRCR0 = 1)  | -    | 2.2     | -    | μA   |
|        |                                                                  |                                       | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz (high drive)<br>While a WAIT instruction is executed<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1<br>BGR trimming circuit enabled (BGRCR0 = 0)  |      | 8       | _    | μA   |
|        |                                                                  |                                       | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz (low drive)<br>While a WAIT instruction is executed<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1<br>BGR trimming circuit enabled (BGRCR0 = 0)   | -    | 6       | _    | μA   |
|        |                                                                  | Stop mode                             | XCIN clock off, Topr = 25°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>BGR trimming circuit disabled (BGRCR0 = 1)                                     | -    | 0.8     | 3    | μA   |
|        |                                                                  |                                       | XCIN clock off, Topr = 85°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>BGR trimming circuit disabled (BGRCR0 = 1)                                     | -    | 1.2     | _    | μA   |
|        |                                                                  |                                       | XCIN clock off, Topr = 25°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>BGR trimming circuit enabled (BGRCR0 = 0)                                      | -    | 5       | 8    | μA   |
|        |                                                                  |                                       | XCIN clock off, Topr = 85°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>BGR trimming circuit enabled (BGRCR0 = 0)                                      | -    | 5.5     | _    | μA   |

### Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C) [Vcc = 5 V]

#### Table 22.14 XCIN Input

| Symbol    | Parameter             | Stan | Unit |      |
|-----------|-----------------------|------|------|------|
| Symbol    | Falanielei            | Min. | Max. | Unit |
| tc(XCIN)  | XCIN input cycle time | 14   | -    | μS   |
| twh(xcin) | XCIN input "H" width  | 7    | -    | μS   |
| twl(xcin) | XCIN input "L" width  | 7    | -    | μS   |

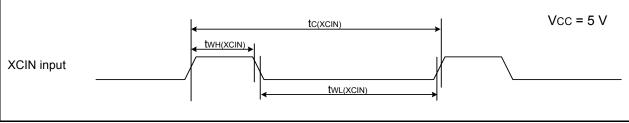



Figure 22.3 XCIN Input Timing Diagram when Vcc = 5 V

#### Table 22.15 TRAIO Input

| Symbol     | Parameter              | Stan | Unit |      |
|------------|------------------------|------|------|------|
|            |                        | Min. | Max. | Unit |
| tc(TRAIO)  | TRAIO input cycle time | 100  | -    | ns   |
| twh(traio) | TRAIO input "H" width  | 40   | -    | ns   |
| twl(traio) | TRAIO input "L" width  | 40   | -    | ns   |

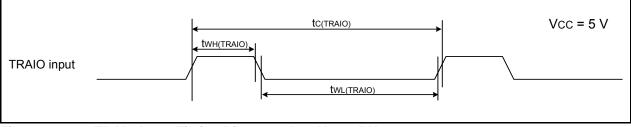
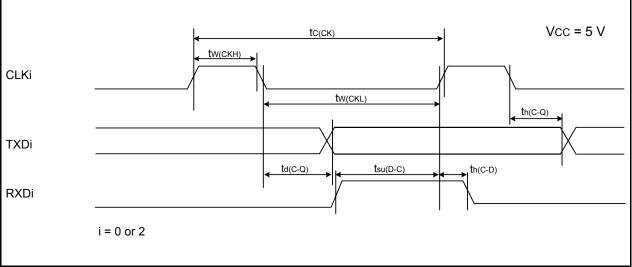




Figure 22.4 TRAIO Input Timing Diagram when Vcc = 5 V

| Table 22.10 Senai Internace | Table 22.16 | Serial Interface |
|-----------------------------|-------------|------------------|
|-----------------------------|-------------|------------------|

| Symbol   | Parameter              | Star | Standard |      |  |
|----------|------------------------|------|----------|------|--|
|          | Farameter              | Min. | Max.     | Unit |  |
| tc(CK)   | CLKi input cycle time  | 200  | -        | ns   |  |
| tw(скн)  | CLKi input "H" width   | 100  | -        | ns   |  |
| tw(CKL)  | CLKi input "L" width   | 100  | -        | ns   |  |
| td(C-Q)  | TXDi output delay time | -    | 50       | ns   |  |
| th(C-Q)  | TXDi hold time         | 0    | -        | ns   |  |
| tsu(D-C) | RXDi input setup time  | 50   | -        | ns   |  |
| th(C-D)  | RXDi input hold time   | 90   | -        | ns   |  |

i = 0 or 2





### Table 22.17 External Interrupt INTi (i = 0 or 1) Input

| Symbol Parameter |                      | Standard           |      | Unit |
|------------------|----------------------|--------------------|------|------|
| Symbol           |                      |                    | Max. | Unit |
| tw(INH)          | INTi input "H" width | 250(1)             | -    | ns   |
| tw(INL)          | INTi input "L" width | 250 <sup>(2)</sup> | -    | ns   |

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

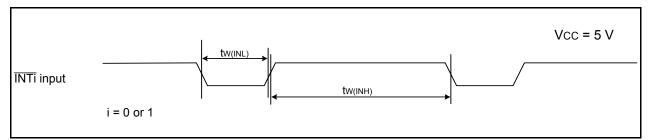
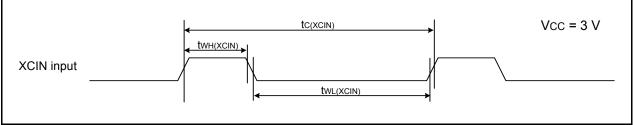



Figure 22.6 External Interrupt INTi Input Timing Diagram when Vcc = 5 V

| Symbol  | Parameter           | Condition                                                       | 5                   | Standard  |      |      |    |
|---------|---------------------|-----------------------------------------------------------------|---------------------|-----------|------|------|----|
| Symbol  | Farameter           |                                                                 | Min.                | Тур.      | Max. | Unit |    |
| Vон     | Output "H" voltage  |                                                                 | Іон = –1 mA         | Vcc - 0.5 | -    | Vcc  | V  |
| Vol     | Output "L" voltage  |                                                                 | IoL = 1 mA          | -         | -    | 0.5  | V  |
| Vt+-Vt- | Hysteresis          | INT0, INT1,<br>KI0, KI1, KI2, KI3,<br>RXD0, RXD2,<br>CLK0, CLK2 |                     | 0.1       | 0.3  | -    | V  |
|         |                     | RESET                                                           |                     | 0.1       | 0.4  | -    | V  |
| Ін      | Input "H" current   |                                                                 | VI = 3 V, Vcc = 3 V | -         | _    | 4.0  | μA |
| lı∟     | Input "L" current   |                                                                 | VI = 0 V, Vcc = 3 V | -         | -    | -4.0 | μA |
| Rpullup | Pull-up resistance  |                                                                 | VI = 0 V, Vcc = 3 V | 66        | 160  | 500  | kΩ |
| Rfxcin  | Feedback resistance | XCIN                                                            |                     | -         | 18   | _    | MΩ |
| VRAM    | RAM hold voltage    |                                                                 | During stop mode    | 1.8       | _    | _    | V  |

Table 22.18 Electrical Characteristics (3) [Vcc = 3 V]

NOTE: 1. Vcc =2.7 to 3.3 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.


# Table 22.19Electrical Characteristics (4) [Vcc = 3 V]<br/>(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

| Symbol | Parameter                                                         |                                       | Condition                                                                                                                                                                                                                                               |      | Standar | ď    | Unit |
|--------|-------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|------|------|
| ,      |                                                                   |                                       |                                                                                                                                                                                                                                                         | Min. | Тур.    | Max. |      |
| lcc    | Power supply current<br>(Vcc = 2.7 to 3.3 V)<br>Single-chip mode. | High-speed<br>on-chip oscillator mode | High-speed on-chip oscillator on = 8 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                                                                                    | -    | 5       | -    | mA   |
|        | output pins are open,<br>other pins are Vss                       |                                       | High-speed on-chip oscillator on = 8 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                                                                                    | -    | 2       | -    | mA   |
|        |                                                                   | Low-speed<br>on-chip oscillator mode  | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8, FMR47 = 1                                                                                                                                                | -    | 130     | 300  | μA   |
|        |                                                                   | Low-speed clock mode                  | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz (low drive)<br>FMR47 = 1                                                                                                                     | -    | 130     | 300  | μA   |
|        |                                                                   |                                       | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz (low drive)<br>Program operation on RAM<br>Flash memory off, FMSTP = 1                                                                       | -    | 30      | -    | μA   |
|        |                                                                   | Wait mode                             | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock operation<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1                                                          | -    | 25      | 70   | μA   |
|        |                                                                   |                                       | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1                                                                | _    | 23      | 55   | μA   |
|        |                                                                   |                                       | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz (high drive)<br>While a WAIT instruction is executed<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1<br>BGR trimming circuit disabled (BGRCR0 = 1) | -    | 3.8     | _    | μA   |
|        |                                                                   |                                       | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz (low drive)<br>While a WAIT instruction is executed<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1<br>BGR trimming circuit disabled (BGRCR0 = 1)  | _    | 2       | _    | μA   |
|        |                                                                   |                                       | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz (high drive)<br>While a WAIT instruction is executed<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1<br>BGR trimming circuit enabled (BGRCR0 = 0)  | _    | 8       | _    | μA   |
|        |                                                                   |                                       | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz (low drive)<br>While a WAIT instruction is executed<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1<br>BGR trimming circuit enabled (BGRCR0 = 0)   | _    | 6       | -    | μA   |
|        |                                                                   | Stop mode                             | XCIN clock off, Topr = 25°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>BGR trimming circuit disabled (BGRCR0 = 1)                                     | _    | 0.7     | 3    | μA   |
|        |                                                                   |                                       | XCIN clock off, Topr = 85°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>BGR trimming circuit disabled (BGRCR0 = 1)                                     | -    | 1.1     | _    | μA   |
|        |                                                                   |                                       | XCIN clock off, Topr = 25°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>BGR trimming circuit enabled (BGRCR0 = 0)                                      | -    | 5       | 7    | μA   |
|        |                                                                   |                                       | XCIN clock off, Topr = 85°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>BGR trimming circuit enabled (BGRCR0 = 0)                                      | -    | 5.5     | _    | μA   |

### Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = 25°C) [Vcc = 3 V]

#### Table 22.20 XCIN Input

| Symbol    | Parameter             |    | Standard |      |  |
|-----------|-----------------------|----|----------|------|--|
|           |                       |    | Max.     | Unit |  |
| tc(XCIN)  | XCIN input cycle time | 14 | -        | μS   |  |
| twh(xcin) | XCIN input "H" width  | 7  | -        | μS   |  |
| twl(xcin) | XCIN input "L" width  | 7  | -        | μS   |  |





#### Table 22.21 TRAIO Input

| Symbol     | Parameter              |     | Standard |      |  |
|------------|------------------------|-----|----------|------|--|
|            |                        |     | Max.     | Unit |  |
| tc(TRAIO)  | TRAIO input cycle time | 300 | -        | ns   |  |
| twh(traio) | TRAIO input "H" width  | 120 | -        | ns   |  |
| twl(traio) | TRAIO input "L" width  | 120 | -        | ns   |  |

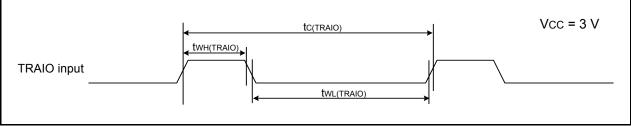
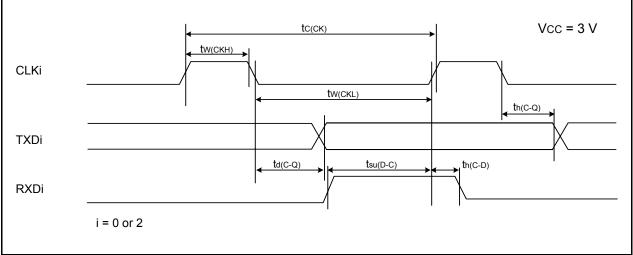




Figure 22.8 TRAIO Input Timing Diagram when Vcc = 3 V

#### Table 22.22Serial Interface

| Symbol   | Parameter              |     | Standard |      |  |
|----------|------------------------|-----|----------|------|--|
|          |                        |     | Max.     | Unit |  |
| tc(CK)   | CLKi input cycle time  | 300 | -        | ns   |  |
| tw(CKH)  | CLKi input "H" width   | 150 | -        | ns   |  |
| tw(CKL)  | CLKi Input "L" width   | 150 | -        | ns   |  |
| td(C-Q)  | TXDi output delay time | -   | 80       | ns   |  |
| th(C-Q)  | TXDi hold time         | 0   | -        | ns   |  |
| tsu(D-C) | RXDi input setup time  | 70  | -        | ns   |  |
| th(C-D)  | RXDi input hold time   | 90  | -        | ns   |  |

i = 0 or 2





### Table 22.23 External Interrupt INTi (i = 0 or 1) Input

| Symbol  | Parameter            |                    | Standard |      |  |
|---------|----------------------|--------------------|----------|------|--|
|         |                      |                    | Max.     | Unit |  |
| tw(INH) | INTi input "H" width | 380 <sup>(1)</sup> | -        | ns   |  |
| tw(INL) | INTi input "L" width | 380(2)             | -        | ns   |  |

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

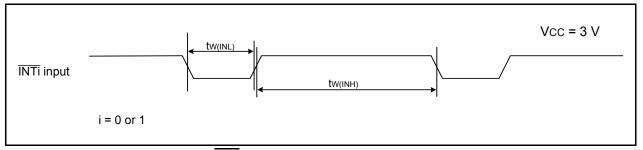
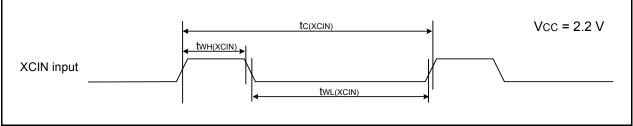



Figure 22.10 External Interrupt INTi Input Timing Diagram when Vcc = 3 V

| Symbol  | Parameter           | Condition                                                       | Standard         |           |      | - Unit |    |
|---------|---------------------|-----------------------------------------------------------------|------------------|-----------|------|--------|----|
| Symbol  | Parameter           |                                                                 | Min.             | Тур.      | Max. | Unit   |    |
| Vон     | Output "H" voltage  |                                                                 | Іон = –1 mA      | Vcc - 0.5 | -    | Vcc    | V  |
| Vol     | Output "L" voltage  |                                                                 | IoL = 1 mA       | -         | _    | 0.5    | V  |
| Vt+-Vt- | Hysteresis          | INT0, INT1,<br>KI0, KI1, KI2, KI3,<br>RXD0, RXD2,<br>CLK0, CLK2 |                  | 0.05      | 0.3  | -      | V  |
|         |                     | RESET                                                           |                  | 0.05      | 0.15 | -      | V  |
| Ін      | Input "H" current   |                                                                 | VI = 2.2 V       | -         | _    | 4.0    | μA |
| lı∟     | Input "L" current   |                                                                 | VI = 0 V         | -         | -    | -4.0   | μA |
| Rpullup | Pull-up resistance  |                                                                 | VI = 0 V         | 100       | 200  | 600    | kΩ |
| Rfxcin  | Feedback resistance | XCIN                                                            |                  | -         | 35   | _      | MΩ |
| VRAM    | RAM hold voltage    | •                                                               | During stop mode | 1.8       | -    | -      | V  |

Table 22.24 Electrical Characteristics (5) [Vcc = 2.2 V]

NOTE: 1. Vcc = 2.2 V at T<sub>opr</sub> = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.


| Table 22.25 | Electrical Characteristics (6) [Vcc = 2.2 V]                                                                    |
|-------------|-----------------------------------------------------------------------------------------------------------------|
|             | (Topr = $-20$ to $85^{\circ}$ C (N version) / $-40$ to $85^{\circ}$ C (D version), unless otherwise specified.) |

| Symbol | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | Condition                                                                                                                                                                                                                                              | Min. | Standar<br>Typ. | d<br>Max. | Unit |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|-----------|------|
| Icc    | Power supply current<br>(Vcc = 2.2 to 2.7 V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | High-speed<br>on-chip oscillator mode | High-speed on-chip oscillator on = 4 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                                                                                   | -    | 3.5             | _         | mA   |
|        | Single-chip mode,<br>output pins are open,<br>other pins are Vss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | High-speed on-chip oscillator on = 4 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                                                                                   | -    | 1.5             | -         | mA   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Low-speed<br>on-chip oscillator mode  | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8, FMR47 = 1                                                                                                                                               | -    | 100             | 230       | μΑ   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Low-speed clock mode                  | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz (low drive)<br>FMR47 = 1                                                                                                                    | -    | 100             | 230       | μA   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz (low drive)<br>Program operation on RAM<br>Flash memory off, FMSTP = 1                                                                      | -    | 25              | _         | μA   |
|        | Wait mode       High-speed on-chip oscillator on Uow-speed on-chip oscillator on While a WAIT instruction is exercised on the second on the seco | VCA27 = VCA26 = VCA25 = 0             | -                                                                                                                                                                                                                                                      | 22   | 60              | μA        |      |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VCA27 = VCA26 = VCA25 = 0             | -                                                                                                                                                                                                                                                      | 20   | 55              | μA        |      |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                                                                                                                                                                                                                        | -    | 3               | _         | μΑ   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                                                                                                                                                                                                                        | -    | 1.8             | _         | μA   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>XCIN clock oscillator on = 32 kHz (high drive)<br>While a WAIT instruction is executed<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1<br>BGR trimming circuit enabled (BGRCR0 = 0) | -    | 7               | -         | μA   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                                                                                                                                                                                                                        | -    | 6               | _         | μA   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stop mode                             | XCIN clock off, Topr = 25°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>BGR trimming circuit disabled (BGRCR0 = 1)                                    | -    | 0.7             | 3         | μΑ   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | XCIN clock off, Topr = 85°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>BGR trimming circuit disabled (BGRCR0 = 1)                                    | -    | 1.1             | _         | μA   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | XCIN clock off, Topr = 25°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>BGR trimming circuit enabled (BGRCR0 = 0)                                     | -    | 5               | 7         | μA   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | XCIN clock off, Topr = 85°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>BGR trimming circuit enabled (BGRCR0 = 0)                                     | -    | 5.5             | _         | μA   |

### Timing requirements (Unless Otherwise Specified: Vcc = 2.2 V, Vss = 0 V at Topr = 25°C) [Vcc = 2.2 V]

#### Table 22.26 XCIN Input

| Symbol    | Parameter             |    | Standard |      |  |
|-----------|-----------------------|----|----------|------|--|
|           |                       |    | Max.     | Unit |  |
| tc(XCIN)  | XCIN input cycle time | 14 | -        | μS   |  |
| twh(xcin) | XCIN input "H" width  | 7  | -        | μS   |  |
| twl(xcin) | XCIN input "L" width  | 7  | -        | μS   |  |





### Table 22.27 TRAIO Input

| Symbol     | Parameter              |     | Standard |      |  |
|------------|------------------------|-----|----------|------|--|
|            |                        |     | Max.     | Unit |  |
| tc(TRAIO)  | TRAIO input cycle time | 500 | -        | ns   |  |
| twh(traio) | TRAIO input "H" width  | 200 | -        | ns   |  |
| twl(traio) | TRAIO input "L" width  | 200 | -        | ns   |  |

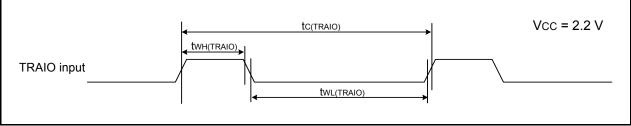
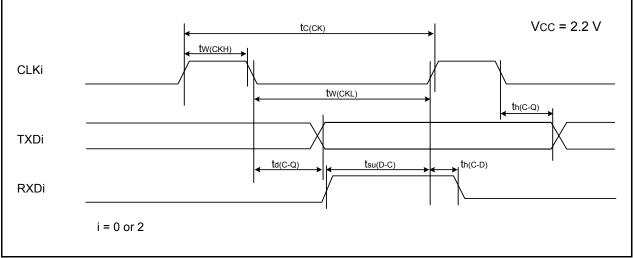
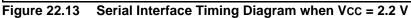





Figure 22.12 TRAIO Input Timing Diagram when Vcc = 2.2 V

| Symbol   | Parameter              |      | Standard |      |  |
|----------|------------------------|------|----------|------|--|
| Symbol   | Faianelei              | Min. | Max.     | Unit |  |
| tc(CK)   | CLKi input cycle time  | 800  | -        | ns   |  |
| tw(ckh)  | CLKi input "H" width   | 400  | -        | ns   |  |
| tw(CKL)  | CLKi input "L" width   | 400  | -        | ns   |  |
| td(C-Q)  | TXDi output delay time | -    | 200      | ns   |  |
| th(C-Q)  | TXDi hold time         | 0    | -        | ns   |  |
| tsu(D-C) | RXDi input setup time  | 150  | -        | ns   |  |
| th(C-D)  | RXDi input hold time   | 90   | -        | ns   |  |

i = 0 or 2





### Table 22.29 External Interrupt INTi (i = 0 or 1) Input

| Symbol  | /mbol Parameter -    |         | Standard |      |  |
|---------|----------------------|---------|----------|------|--|
| Symbol  |                      |         | Max.     | Unit |  |
| tw(INH) | INTi input "H" width | 1000(1) | -        | ns   |  |
| tw(INL) | INTi input "L" width | 1000(2) | -        | ns   |  |

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

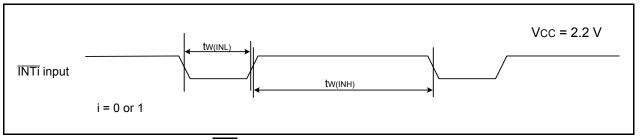



Figure 22.14 External Interrupt INTi Input Timing Diagram when Vcc = 2.2 V

### 22.2 R8C/2J Group

| Table 22.30 | Absolute | Maximum | Ratings |
|-------------|----------|---------|---------|
|-------------|----------|---------|---------|

| Symbol | Parameter                     | Condition   | Rated Value                                      | Unit |
|--------|-------------------------------|-------------|--------------------------------------------------|------|
| Vcc    | Supply voltage                |             | -0.3 to 6.5                                      | V    |
| VI     | Input voltage                 |             | -0.3 to Vcc + 0.3                                | V    |
| Vo     | Output voltage                |             | -0.3 to Vcc + 0.3                                | V    |
| Pd     | Power dissipation             | Topr = 25°C | 500                                              | mW   |
| Topr   | Operating ambient temperature |             | -20 to 85 (N version) /<br>-40 to 85 (D version) | °C   |
| Tstg   | Storage temperature           |             | -65 to 150                                       | °C   |

#### Table 22.31 Recommended Operating Conditions

| Symbol    | Parameter                       | Conditions                |                                                                                                                                                               | Unit    |      |         |      |
|-----------|---------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|---------|------|
| Symbol    | Faiali                          | ielei                     | Conditions                                                                                                                                                    | Min.    | Тур. | Max.    | Unit |
| Vcc       | Supply voltage                  |                           |                                                                                                                                                               | 2.2     | -    | 5.5     | V    |
| Vss       | Supply voltage                  |                           |                                                                                                                                                               | -       | 0    | -       | V    |
| Vih       | Input "H" voltage               |                           |                                                                                                                                                               | 0.8 Vcc | -    | Vcc     | V    |
| VIL       | Input "L" voltage               |                           |                                                                                                                                                               | 0       | -    | 0.2 Vcc | V    |
| IOH(sum)  | Peak sum output "H"<br>current  | Sum of all pins IOH(peak) |                                                                                                                                                               | -       | _    | -160    | mA   |
| IOH(sum)  | Average sum output "H" current  | Sum of all pins IOH(avg)  |                                                                                                                                                               | -       | _    | -80     | mA   |
| IOH(peak) | Peak output "H" current         | All pins                  |                                                                                                                                                               | -       | -    | -10     | mA   |
| IOH(avg)  | Average output "H"<br>current   | All pins                  |                                                                                                                                                               | -       | -    | -5      | mA   |
| IOL(sum)  | Peak sum output "L" currents    | Sum of all pins IOL(peak) |                                                                                                                                                               | -       | _    | 160     | mA   |
| IOL(sum)  | Average sum output "L" currents | Sum of all pins IOL(avg)  |                                                                                                                                                               | -       | -    | 80      | mA   |
| IOL(peak) | Peak output "L" currents        | All pins                  |                                                                                                                                                               | -       | I    | 10      | mA   |
| OL(avg)   | Average output "L" current      | All pins                  |                                                                                                                                                               | -       | -    | 5       | mA   |
| -         | System clock                    |                           | HRA01 = 0<br>Low-speed on-chip<br>oscillator selected                                                                                                         | -       | 125  | -       | kHz  |
|           |                                 |                           | $\begin{array}{l} \text{HRA01 = 1} \\ \text{High-speed on-chip} \\ \text{oscillator selected} \\ \text{2.7 V} \leq \text{Vcc} \leq 5.5 \text{ V} \end{array}$ | -       | _    | 8       | MHz  |
|           |                                 |                           | HRA01 = 1<br>High-speed on-chip<br>oscillator selected<br>$2.2 V \le Vcc \le 5.5 V$                                                                           | -       | -    | 4       | MHz  |

NOTES:

1. Vcc = 2.2 to 5.5 V at  $T_{opr}$  = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. The average output current indicates the average value of current measured during 100 ms.

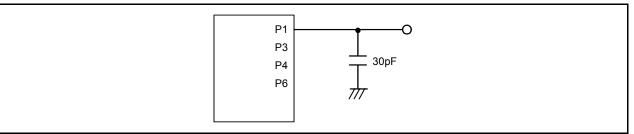



Figure 22.15 Ports P1, P3, P4, and P6 Timing Measurement Circuit

| Symbol | Parameter                              | Conditions                 |                    | Unit |      |       |
|--------|----------------------------------------|----------------------------|--------------------|------|------|-------|
| Symbol | Falanielei                             | Conditions                 | Min.               | Тур. | Max. | Unit  |
| -      | Program/erase endurance <sup>(2)</sup> |                            | 100 <sup>(3)</sup> | -    | -    | times |
| -      | Byte program time                      |                            | -                  | 50   | 400  | μS    |
| -      | Block erase time                       |                            | -                  | 0.4  | 9    | s     |
| -      | Program, erase voltage                 |                            | 2.7                | -    | 5.5  | V     |
| -      | Read voltage                           |                            | 2.2                | -    | 5.5  | V     |
| -      | Program, erase temperature             |                            | 0                  | -    | 60   | °C    |
| -      | Data hold time <sup>(7)</sup>          | Ambient temperature = 55°C | 20                 | -    |      | year  |

#### Table 22.32 Flash Memory (Program ROM) Electrical Characteristics

NOTES:

1. Vcc = 2.7 to 5.5 V at  $T_{opr}$  = 0 to 60°C, unless otherwise specified.

Definition of programming/erasure endurance
 The programming and erasure endurance is defined on a per-block basis.
 If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024
 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

7. The data hold time includes time that the power supply is off or the clock is not supplied.

| Table 22.33 | Voltage Detection 0 Circuit Electrical Characteristics |
|-------------|--------------------------------------------------------|
|-------------|--------------------------------------------------------|

| Symbol  | Parameter                                                                          | Condition              | Standard |      |      | Unit |
|---------|------------------------------------------------------------------------------------|------------------------|----------|------|------|------|
| Symbol  | Farameter                                                                          | Condition              |          | Тур. | Max. | Unit |
| Vdet0   | Voltage detection level                                                            |                        | 2.2      | 2.3  | 2.4  | V    |
| -       | Voltage detection circuit self power consumption                                   | VCA25 = 1, Vcc = 5.0 V | -        | 0.9  | -    | μA   |
| td(E-A) | (E-A) Waiting time until voltage detection circuit operation starts <sup>(2)</sup> |                        | -        | -    | 300  | μS   |
| Vccmin  | MCU operating voltage minimum value                                                |                        | 2.2      | -    | -    | V    |

NOTES:

1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).

2. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

#### Table 22.34 Voltage Detection 1 Circuit Electrical Characteristics

| Symbol  | Parameter                                                                    | Condition              |      | Unit |      |      |
|---------|------------------------------------------------------------------------------|------------------------|------|------|------|------|
| Symbol  | Falancici                                                                    | Condition              | Min. | Тур. | Max. | Unit |
| Vdet1   | Voltage detection level <sup>(4)</sup>                                       |                        | 2.70 | 2.85 | 3.00 | V    |
| -       | Voltage monitor 1 interrupt request generation time <sup>(2)</sup>           |                        | -    | 40   | -    | μS   |
| -       | Voltage detection circuit self power consumption                             | VCA26 = 1, Vcc = 5.0 V | -    | 0.6  | -    | μA   |
| td(E-A) | Waiting time until voltage detection circuit operation starts <sup>(3)</sup> |                        | -    | -    | 100  | μS   |

NOTES:

- 1. The measurement condition is Vcc = 2.2 to 5.5 V and  $T_{opr}$  = -20 to 85°C (N version) / -40 to 85°C (D version).
- 2. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.
- 3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.
- 4. This parameter shows the voltage detection level when the power supply drops. The voltage detection level when the power supply rises is higher than the voltage detection level when the power supply drops by approximately 0.1 V.

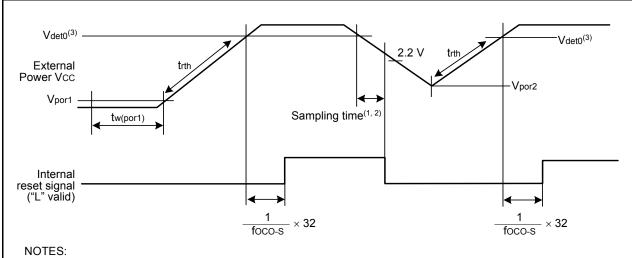
#### Table 22.35 Voltage Detection 2 Circuit Electrical Characteristics

| Symbol  | Parameter                                                                    | Condition              |      | Unit |      |      |
|---------|------------------------------------------------------------------------------|------------------------|------|------|------|------|
| Symbol  |                                                                              | Condition              | Min. | Тур. | Max. | Unit |
| Vdet2   | Voltage detection level                                                      |                        | 3.3  | 3.6  | 3.9  | V    |
| -       | Voltage monitor 2 interrupt request generation time <sup>(2)</sup>           |                        | -    | 40   | -    | μS   |
| -       | Voltage detection circuit self power consumption                             | VCA27 = 1, Vcc = 5.0 V | -    | 0.6  | -    | μA   |
| td(E-A) | Waiting time until voltage detection circuit operation starts <sup>(3)</sup> |                        | -    | -    | 100  | μS   |

NOTES:

1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).

2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes  $V_{det2}$ .


3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

| Symbol | Parameter                                               | Condition |      | Unit |       |         |
|--------|---------------------------------------------------------|-----------|------|------|-------|---------|
|        |                                                         |           | Min. | Тур. | Max.  | Unit    |
| Vpor1  | Power-on reset valid voltage <sup>(4)</sup>             |           | -    | -    | 0.1   | V       |
| Vpor2  | Power-on reset or voltage monitor 0 reset valid voltage |           | 0    | -    | Vdet0 | V       |
| trth   | External power Vcc rise gradient <sup>(2)</sup>         |           | 20   | _    | -     | mV/msec |

| Table 22.36 | Power-on Reset Circuit, | Voltage Monitor 0 Reset | Electrical Characteristics <sup>(3)</sup> |
|-------------|-------------------------|-------------------------|-------------------------------------------|
|-------------|-------------------------|-------------------------|-------------------------------------------|

NOTES:

- 1. The measurement condition is Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
- 2. This condition (external power Vcc rise gradient) does not apply if Vcc  $\ge$  1.0 V.
- 3. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVD0ON bit in the OFS register to 0, the VW0C0 and VW0C6 bits in the VW0C register to 1 respectively, and the VCA25 bit in the VCA2 register to 1.
- 4.  $t_{w(por1)}$  indicates the duration the external power Vcc must be held below the effective voltage (Vpor1) to enable a power on reset. When turning on the power for the first time, maintain  $t_{w(por1)}$  for 30 s or more if  $-20^{\circ}C \le T_{opr} \le 85^{\circ}C$ , maintain  $t_{w(por1)}$  for 3,000 s or more if  $-40^{\circ}C \le T_{opr} < -20^{\circ}C$ .



- 1. When using the voltage monitor 0 digital filter, ensure that the voltage is within the MCU operation voltage range (2.2 V or above) during the sampling time.
- The sampling clock can be selected. Refer to 6. Voltage Detection Circuit for details.
- 3. Vdet0 indicates the voltage detection level of the voltage detection 0 circuit. Refer to 6. Voltage Detection Circuit for details.

Figure 22.16 Reset Circuit Electrical Characteristics

| Symbol | Parameter                               | Condition                                   |      | Unit |           |      |
|--------|-----------------------------------------|---------------------------------------------|------|------|-----------|------|
| Symbol | Farameter                               | Condition                                   | Min. | Тур. | Max.      | Unit |
| Vref   | Internal reference voltage              | Vcc = 2.2 V to 5.5 V, Topr = 25°C           | 1.15 | 1.25 | 1.35      | V    |
|        |                                         | Vcc = 2.2 V to 5.5 V,<br>Topr = -40 to 85°C | _    | 1.25 | -         | V    |
| Vcref  | External input reference voltage        | Vcc = 2.2 V to 4.0 V                        | 0.5  | -    | Vcc - 1.1 | V    |
|        |                                         | Vcc = 4.0 V to 5.5 V                        | 0.5  | -    | Vcc - 1.5 | V    |
| Vcin   | External comparison voltage input range |                                             | -0.3 | -    | Vcc + 0.3 | V    |
| Vofs   | Input offset voltage                    |                                             | -    | 20   | 120       | mV   |
| Tcrsp  | Response time                           |                                             | -    | 4    | -         | μS   |

| Table 22.37 | Comparator | Electrical | Characteristics |
|-------------|------------|------------|-----------------|
|             |            |            |                 |

NOTE:

1. The measurement condition is Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

#### Table 22.38 High-speed On-Chip Oscillator Circuit Electrical Characteristics

| Symbol | Parameter                                                                       | Condition                                                                           | Standard |      |      | Unit |
|--------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------|------|------|------|
| Symbol | Falalletei                                                                      | Condition                                                                           | Min.     | Тур. | Max. | Unit |
| fOCO-F | High-speed on-chip oscillator frequency temperature • supply voltage dependence | $V_{CC} = 4.75 V \text{ to } 5.25 V$<br>Topr = 0 to $60^{\circ}C^{(2)}$             | 7.76     | 8    | 8.24 | MHz  |
|        |                                                                                 | $V_{CC} = 2.7 V \text{ to } 5.5 V$<br>$T_{opr} = -20 \text{ to } 85^{\circ}C^{(2)}$ | 7.68     | 8    | 8.32 | MHz  |
|        |                                                                                 | $V_{CC} = 2.7 V \text{ to } 5.5 V$<br>$T_{opr} = -40 \text{ to } 85^{\circ}C^{(2)}$ | 7.44     | 8    | 8.32 | MHz  |
|        |                                                                                 | $V_{CC} = 2.2 V \text{ to } 5.5 V$<br>$T_{opr} = -20 \text{ to } 85^{\circ}C^{(3)}$ | 7.04     | 8    | 8.96 | MHz  |
|        |                                                                                 | Vcc = 2.2 V to 5.5 V<br>Topr = -40 to 85°C <sup>(3)</sup>                           | 6.8      | 8    | 9.2  | MHz  |

NOTES:

1. The measurement condition is Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. These standard values show when the HRA1 register is set to the value before shipment and the HRA2 register is set to 00h.

3. These standard values show when the correction value in the FRA6 register is written into the HRA1 register.

#### Table 22.39 Low-speed On-Chip Oscillator Circuit Electrical Characteristics

| Symbol | Parameter                              | Condition                | Standard |      |      | Unit |
|--------|----------------------------------------|--------------------------|----------|------|------|------|
| Symbol |                                        | Condition                | Min.     | Тур. | Max. | Unit |
| fOCO-S | Low-speed on-chip oscillator frequency |                          | 30       | 125  | 250  | kHz  |
| -      | Oscillation stability time             |                          | -        | 10   | 100  | μS   |
| _      | Self power consumption at oscillation  | Vcc = 5.0 V, Topr = 25°C | -        | 15   | -    | μA   |

NOTE:

1. Vcc = 2.2 to 5.5 V, Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

#### Table 22.40 Power Supply Circuit Timing Characteristics

| Symbol  | Parameter                                                                   | Condition | Standard |      |      | Unit |
|---------|-----------------------------------------------------------------------------|-----------|----------|------|------|------|
| Symbol  | Faianetei Conditi                                                           |           | Min.     | Тур. | Max. | Onic |
| td(P-R) | Time for internal power supply stabilization during power-on <sup>(2)</sup> |           | 1        | -    | 2000 | μS   |
| td(R-S) | STOP exit time <sup>(3)</sup>                                               |           | -        | -    | 150  | μS   |

NOTES:

The measurement condition is Vcc = 2.2 to 5.5 V and Topr = 25°C.
 Waiting time until the internal power supply generation circuit stabilizes during power-on.
 Time until system clock supply starts after the interrupt is acknowledged to exit stop mode.

| Cumbal  | Parameter          |                                                  | Condition           | S         | Standard |      |      |
|---------|--------------------|--------------------------------------------------|---------------------|-----------|----------|------|------|
| Symbol  | Pala               | imeter                                           | Condition           | Min.      | Тур.     | Max. | Unit |
| Vон     | Output "H" voltage |                                                  | Іон = –5 mA         | Vcc - 2.0 | -        | Vcc  | V    |
|         |                    |                                                  | Іон = –200 µА       | Vcc - 0.5 | -        | Vcc  | V    |
| Vol     | Output "L" voltage |                                                  | lo∟ = 5 mA          | -         | -        | 2.0  | V    |
|         |                    |                                                  | Ιοι = 200 μΑ        | -         | -        | 0.45 | V    |
| Vt+-Vt- | Hysteresis         | INT0, INT1,<br>KI0, KI1, KI2, KI3,<br>RXD0, CLK0 |                     | 0.1       | 0.5      | -    | V    |
|         |                    | RESET                                            |                     | 0.1       | 1.0      | -    | V    |
| Ін      | Input "H" current  |                                                  | VI = 5 V, Vcc = 5 V | -         | _        | 5.0  | μA   |
| lı∟     | Input "L" current  |                                                  | VI = 0 V, Vcc = 5 V | -         | -        | -5.0 | μA   |
| Rpullup | Pull-up resistance |                                                  | VI = 0 V, Vcc = 5 V | 30        | 50       | 167  | kΩ   |
| VRAM    | RAM hold voltage   |                                                  | During stop mode    | 2.0       | -        | -    | V    |

Table 22.41 Electrical Characteristics (1) [Vcc = 5 V]

NOTE:

1. Vcc = 4.2 to 5.5 V at Topr = -20 to  $85^{\circ}$ C (N version) / -40 to  $85^{\circ}$ C (D version), unless otherwise specified.

| Table 22.42 | Electrical Characteristics (2) [Vcc = 5 V]                                                  |
|-------------|---------------------------------------------------------------------------------------------|
|             | (Topr = $-20$ to 85°C (N version) / $-40$ to 85°C (D version), unless otherwise specified.) |

| Symbol | Parameter                                                         |                                          | Condition                                                                                                                                                                                           |      | Standard |      |      |
|--------|-------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|------|------|
| Symbol | Parameter                                                         |                                          |                                                                                                                                                                                                     | Min. | Тур.     | Max. | Unit |
| Icc    | Power supply current<br>(Vcc = 3.3 to 5.5 V)<br>Single-chip mode, | High-speed<br>on-chip oscillator<br>mode | High-speed on-chip oscillator on = 8 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                                | -    | 5        | 8    | mA   |
|        | output pins are open,<br>other pins are Vss                       |                                          | High-speed on-chip oscillator on = 8 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                                | _    | 2        | _    | mA   |
|        |                                                                   | Low-speed<br>on-chip oscillator<br>mode  | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8, FMR47 = 1                                                                                            | _    | 130      | 300  | μA   |
|        |                                                                   | Wait mode                                | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock operation<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1      | _    | 25       | 75   | μA   |
|        |                                                                   |                                          | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1            | _    | 23       | 60   | μA   |
|        |                                                                   | Stop mode                                | Topr = 25°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>BGR trimming circuit disabled (BGRCR0 = 1) | _    | 0.8      | 3    | μA   |
|        |                                                                   |                                          | Topr = 85°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>BGR trimming circuit disabled (BGRCR0 = 1) | _    | 1.2      | _    | μA   |
|        |                                                                   |                                          | Topr = 25°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>BGR trimming circuit enabled (BGRCR0 = 0)  | _    | 5        | 8    | μA   |
|        |                                                                   |                                          | Topr = 85°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>BGR trimming circuit enabled (BGRCR0 = 0)  | _    | 5.5      | -    | μA   |

#### Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C) [Vcc = 5 V]

#### Table 22.43 TRAIO Input

| Symbol     | Parameter              |     | Standard |      |  |
|------------|------------------------|-----|----------|------|--|
|            |                        |     | Max.     | Unit |  |
| tc(TRAIO)  | TRAIO input cycle time | 100 | -        | ns   |  |
| twh(traio) | TRAIO input "H" width  | 40  | -        | ns   |  |
| twl(traio) | TRAIO input "L" width  | 40  | -        | ns   |  |

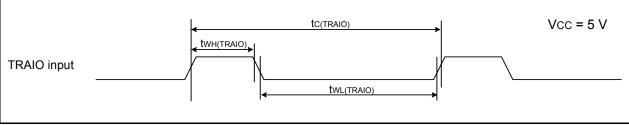
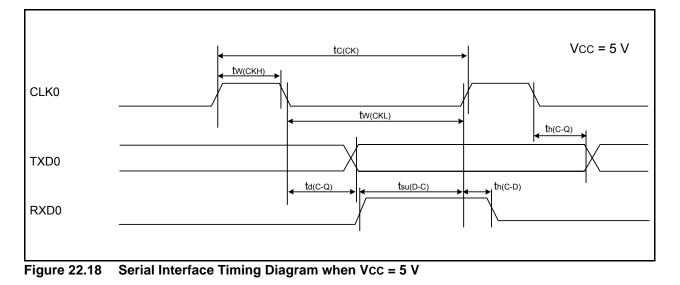




Figure 22.17 TRAIO Input Timing Diagram when Vcc = 5 V

| Table 2 | 22.44 | Serial | Interface |
|---------|-------|--------|-----------|
|         |       |        |           |

| Symbol   | Parameter              |     | Standard |      |  |
|----------|------------------------|-----|----------|------|--|
|          |                        |     | Max.     | Unit |  |
| tc(CK)   | CLK0 input cycle time  | 200 | -        | ns   |  |
| tw(скн)  | CLK0 input "H" width   | 100 | -        | ns   |  |
| tw(CKL)  | CLK0 input "L" width   | 100 | -        | ns   |  |
| td(C-Q)  | TXD0 output delay time | -   | 50       | ns   |  |
| th(C-Q)  | TXD0 hold time         | 0   | -        | ns   |  |
| tsu(D-C) | RXD0 input setup time  | 50  | -        | ns   |  |
| th(C-D)  | RXD0 input hold time   | 90  | -        | ns   |  |



# Table 22.45 External Interrupt INTi (i = 0 or 1) Input

| Symbol  | Parameter            |                    | Standard |      |  |
|---------|----------------------|--------------------|----------|------|--|
|         |                      |                    | Max.     | Unit |  |
| tw(INH) | INTi input "H" width | 250 <sup>(1)</sup> | -        | ns   |  |
| tw(INL) | INTi input "L" width | 250(2)             | I        | ns   |  |

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

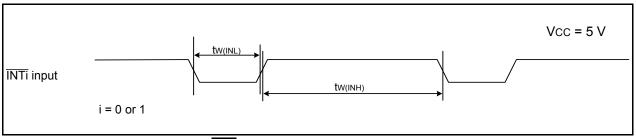


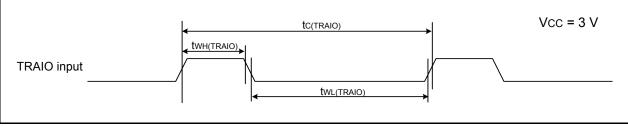

Figure 22.19 External Interrupt INTi Input Timing Diagram when Vcc = 5 V

| Symbol  | Parameter          |                                                  | Condition           | 9         | Standard |      |      |  |
|---------|--------------------|--------------------------------------------------|---------------------|-----------|----------|------|------|--|
| Symbol  |                    |                                                  | Condition           | Min.      | Тур.     | Max. | Unit |  |
| Vон     | Output "H" voltage |                                                  | Іон = –1 mA         | Vcc - 0.5 | -        | Vcc  | V    |  |
| Vol     | Output "L" voltage |                                                  | IoL = 1 mA          | -         | -        | 0.5  | V    |  |
| VT+-VT- | Hysteresis         | INTO, INT1,<br>KIO, KI1, KI2, KI3,<br>RXD0, CLK0 |                     | 0.1       | 0.3      | -    | V    |  |
|         |                    | RESET                                            |                     | 0.1       | 0.4      | -    | V    |  |
| Ін      | Input "H" current  |                                                  | VI = 3 V, Vcc = 3 V | -         | -        | 4.0  | μA   |  |
| lı∟     | Input "L" current  |                                                  | VI = 0 V, Vcc = 3 V | -         | -        | -4.0 | μA   |  |
| Rpullup | Pull-up resistance |                                                  | VI = 0 V, Vcc = 3 V | 66        | 160      | 500  | kΩ   |  |
| VRAM    | RAM hold voltage   |                                                  | During stop mode    | 1.8       | -        | -    | V    |  |

| Table 22.46 | Electrical Characteristics (3) [Vcc = 3 V] |
|-------------|--------------------------------------------|
|             |                                            |

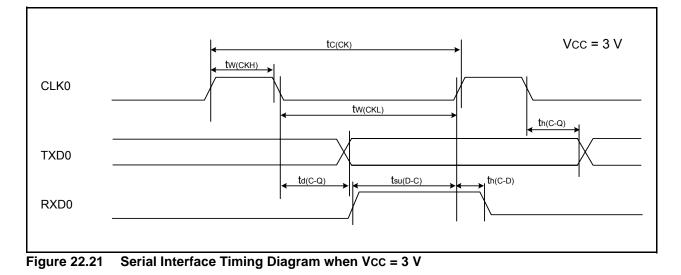
NOTE:

1. Vcc =2.7 to 3.3 V at  $T_{opr}$  = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.


| Table 22.47 | Electrical Characteristics (4) [Vcc = 3 V]                                                  |
|-------------|---------------------------------------------------------------------------------------------|
|             | (Topr = $-20$ to 85°C (N version) / $-40$ to 85°C (D version), unless otherwise specified.) |

|        |                                                                   |                                          |                                                                                                                                                                                                               | Ś    | Standar | d    |      |
|--------|-------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|------|------|
| Symbol | Parameter                                                         |                                          | Condition                                                                                                                                                                                                     | Min. | Тур.    | Max. | Unit |
| Icc    | Power supply current<br>(Vcc = 2.7 to 3.3 V)<br>Single-chip mode, | High-speed<br>on-chip oscillator<br>mode | High-speed on-chip oscillator on = 8 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                                          | -    | 5       | _    | mA   |
|        | output pins are open,<br>other pins are Vss                       |                                          | High-speed on-chip oscillator on = 8 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                                          | -    | 2       | -    | mA   |
|        |                                                                   | Low-speed<br>on-chip oscillator<br>mode  | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8, FMR47 = 1                                                                                                      | -    | 130     | 300  | μA   |
|        |                                                                   | Wait mode                                | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock operation<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1                | _    | 25      | 70   | μA   |
|        |                                                                   |                                          | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1                      | _    | 23      | 55   | μA   |
|        |                                                                   | Stop mode                                | Topr = 25°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>BGR trimming circuit disabled (BGRCR0 = 1)           | _    | 0.7     | 3    | μA   |
|        |                                                                   |                                          | Topr = $85^{\circ}$ C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>BGR trimming circuit disabled (BGRCR0 = 1) | _    | 1.1     | _    | μA   |
|        |                                                                   |                                          | Topr = 25°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>BGR trimming circuit enabled (BGRCR0 = 0)            | _    | 5       | 7    | μA   |
|        |                                                                   |                                          | Topr = 85°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>BGR trimming circuit enabled (BGRCR0 = 0)            | _    | 5.5     | -    | μA   |

#### Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = 25°C) [Vcc = 3 V]


#### Table 22.48 TRAIO Input

| Symbol     | Parameter              |     | Standard |      |  |
|------------|------------------------|-----|----------|------|--|
| Symbol     |                        |     | Max.     | Unit |  |
| tc(TRAIO)  | TRAIO input cycle time | 300 | -        | ns   |  |
| twh(traio) | TRAIO input "H" width  | 120 | -        | ns   |  |
| twl(traio) | TRAIO input "L" width  | 120 | -        | ns   |  |





| Symbol   | Parameter              |     | Standard |      |  |
|----------|------------------------|-----|----------|------|--|
| Symbol   |                        |     | Max.     | Unit |  |
| tc(CK)   | CLK0 input cycle time  | 300 | -        | ns   |  |
| tw(ckh)  | CLK0 input "H" width   | 150 | -        | ns   |  |
| tw(CKL)  | CLK0 Input "L" width   | 150 | -        | ns   |  |
| td(C-Q)  | TXD0 output delay time | -   | 80       | ns   |  |
| th(C-Q)  | TXD0 hold time         | 0   | -        | ns   |  |
| tsu(D-C) | RXD0 input setup time  | 70  | -        | ns   |  |
| th(C-D)  | RXD0 input hold time   | 90  | -        | ns   |  |



#### Table 22.50 External Interrupt INTi (i = 0 or 1) Input

| Symbol  | Parameter            |        | Standard |      |  |
|---------|----------------------|--------|----------|------|--|
| Symbol  | Falameter            | Min.   | Max.     | Unit |  |
| tw(INH) | INTi input "H" width | 380(1) | -        | ns   |  |
| tw(INL) | INTi input "L" width | 380(2) | I        | ns   |  |

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

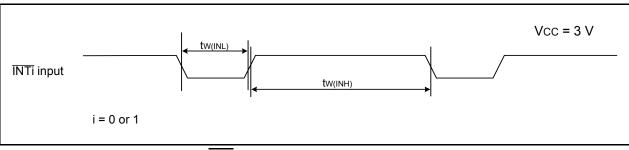


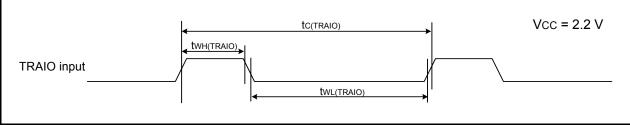

Figure 22.22 External Interrupt INTi Input Timing Diagram when Vcc = 3 V

| Symbol  | Parameter           |                                                  | Condition        | S         | Unit |      |      |
|---------|---------------------|--------------------------------------------------|------------------|-----------|------|------|------|
| Symbol  |                     |                                                  | Condition        | Min.      | Тур. | Max. | Unit |
| Vон     | Output "H" voltage  |                                                  | Іон = –1 mA      | Vcc - 0.5 | -    | Vcc  | V    |
| Vol     | Output "L" voltage  |                                                  | IoL = 1 mA       | -         | -    | 0.5  | V    |
| Vt+-Vt- | Hysteresis          | INT0, INT1,<br>KI0, KI1, KI2, KI3,<br>RXD0, CLK0 |                  | 0.05      | 0.3  | -    | V    |
|         |                     | RESET                                            |                  | 0.05      | 0.15 | -    | V    |
| Ін      | Input "H" current   |                                                  | VI = 2.2 V       | -         | -    | 4.0  | μA   |
| lı∟     | Input "L" current   |                                                  | VI = 0 V         | -         | -    | -4.0 | μA   |
| RPULLUP | Pull-up resistance  |                                                  | VI = 0 V         | 100       | 200  | 600  | kΩ   |
| Rfxcin  | Feedback resistance | XCIN                                             |                  | -         | 35   | -    | MΩ   |
| VRAM    | RAM hold voltage    |                                                  | During stop mode | 1.8       | -    | -    | V    |

Table 22.51 Electrical Characteristics (5) [Vcc = 2.2 V]

NOTE:

1. Vcc = 2.2 V at T<sub>opr</sub> = -20 to  $85^{\circ}$ C (N version) / -40 to  $85^{\circ}$ C (D version), unless otherwise specified.


| Table 22.52 | Electrical Characteristics (6) [Vcc = 2.2 V]                                                                  |
|-------------|---------------------------------------------------------------------------------------------------------------|
|             | (Topr = $-20$ to $85^{\circ}C$ (N version) / $-40$ to $85^{\circ}C$ (D version), unless otherwise specified.) |

| Symbol | Deremeter                                                         |                                          | Condition                                                                                                                                                                                           |      | Standar | d    | Linit |
|--------|-------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|------|-------|
| Symbol | Parameter                                                         |                                          | Condition                                                                                                                                                                                           | Min. | Тур.    | Max. | Unit  |
| lcc    | Power supply current<br>(Vcc = 2.2 to 2.7 V)<br>Single-chip mode, | High-speed<br>on-chip oscillator<br>mode | High-speed on-chip oscillator on = 4 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>No division                                                                                                |      | 3.5     | -    | mA    |
|        | output pins are open,<br>other pins are Vss                       |                                          | High-speed on-chip oscillator on = 4 MHz<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8                                                                                                | -    | 1.5     | _    | mA    |
|        |                                                                   | Low-speed<br>on-chip oscillator<br>mode  | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>Divide-by-8, FMR47 = 1                                                                                            | _    | 100     | 230  | μA    |
|        |                                                                   | Wait mode                                | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock operation<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1      | -    | 22      | 60   | μΑ    |
|        |                                                                   |                                          | High-speed on-chip oscillator off<br>Low-speed on-chip oscillator on = 125 kHz<br>While a WAIT instruction is executed<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>VCA20 = 1            | _    | 20      | 55   | μA    |
|        |                                                                   | Stop mode                                | Topr = 25°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>BGR trimming circuit disabled (BGRCR0 = 1) | _    | 0.7     | 3    | μA    |
|        |                                                                   |                                          | Topr = 85°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>BGR trimming circuit disabled (BGRCR0 = 1) | _    | 1.1     | -    | μA    |
|        |                                                                   |                                          | Topr = 25°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>BGR trimming circuit enabled (BGRCR0 = 0)  | _    | 5       | 7    | μA    |
|        |                                                                   |                                          | Topr = 85°C<br>High-speed on-chip oscillator off<br>Low-speed on-chip oscillator off<br>CM10 = 1<br>Peripheral clock off<br>VCA27 = VCA26 = VCA25 = 0<br>BGR trimming circuit enabled (BGRCR0 = 0)  | _    | 5.5     | _    | μA    |

#### Timing requirements (Unless Otherwise Specified: Vcc = 2.2 V, Vss = 0 V at Topr = 25°C) [Vcc = 2.2 V]

#### Table 22.53 TRAIO Input

| Symbol     | Parameter              |     | Standard |      |  |
|------------|------------------------|-----|----------|------|--|
| Symbol     |                        |     | Max.     | Unit |  |
| tc(TRAIO)  | TRAIO input cycle time | 500 | -        | ns   |  |
| twh(traio) | TRAIO input "H" width  | 200 | -        | ns   |  |
| twl(traio) | TRAIO input "L" width  | 200 | -        | ns   |  |





| Table 22.54Serial Interface |
|-----------------------------|
|-----------------------------|

| Symbol   | Parameter              |     | Standard |      |
|----------|------------------------|-----|----------|------|
|          |                        |     | Max.     | Unit |
| tc(CK)   | CLK0 input cycle time  | 800 | -        | ns   |
| tw(ckh)  | CLK0 input "H" width   | 400 | -        | ns   |
| tw(CKL)  | CLK0 input "L" width   | 400 | -        | ns   |
| td(C-Q)  | TXD0 output delay time | -   | 200      | ns   |
| th(C-Q)  | TXD0 hold time         | 0   | -        | ns   |
| tsu(D-C) | RXD0 input setup time  | 150 | -        | ns   |
| th(C-D)  | RXD0 input hold time   | 90  | -        | ns   |

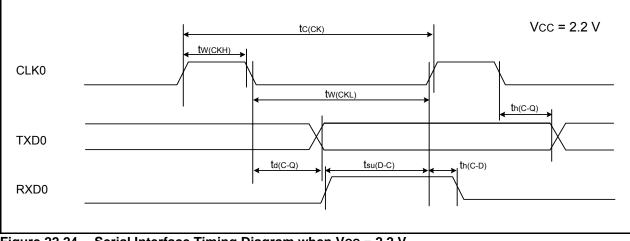



Figure 22.24 Serial Interface Timing Diagram when VCC = 2.2 V

# Table 22.55 External Interrupt INTi (i = 0 or 1) Input

| Symbol  | Parameter            | Standard            |      | Unit |
|---------|----------------------|---------------------|------|------|
| Symbol  | Symbol Parameter     |                     | Max. | Unit |
| tw(INH) | INTi input "H" width | 1000(1)             | -    | ns   |
| tw(INL) | INTi input "L" width | 1000 <sup>(2)</sup> | -    | ns   |

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

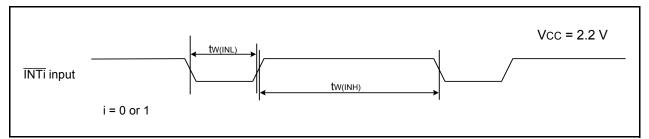



Figure 22.25 External Interrupt INTi Input Timing Diagram when Vcc = 2.2 V

# 23. Usage Notes

# 23.1 Notes on I/O Ports

# 23.1.1 Port P4\_3, P4\_4 (for R8C/2H Group only)

Ports P4\_3 and P4\_4 are also used as the XCIN function and the XCOUT function, respectively. During a reset period and after a reset release, these ports are set to the XCIN and XCOUT functions. Pins P4\_3 and P4\_4 can be switched to the port functions by setting the CM04 bit in the CM0 register to 0 (ports P4\_3 and P4\_4) by a program.

To use ports P4\_3 and P4\_4 as ports, note the following:

• Port P4\_3

After a reset until the CM04 bit is set to 0 (ports P4\_3 and P4\_4) by a program, a typical 10 M $\Omega$  impedance is connected between the P4\_3 pin and the MCU power supply or GND. If the XCIN is set to intermediate-level input or left floating, a shoot-through current flows into the oscillation driver.

• Port P4\_4

Use port P4\_4 as an output port by setting the PD4\_4 bit in the PD4 register to 1 (output mode). After a reset until the CM04 bit is set to 0 (ports P4\_3 and P4\_4) by a program, the P4\_4 pin may output an intermediate potential of about 2.0 V.

# 23.2 Notes on Clock Generation Circuit

#### 23.2.1 Stop Mode

When entering stop mode, set the FMR01 bit in the FMR0 register to 0 (CPU rewrite mode disabled) and the CM10 bit in the CM1 register to 1 (stop mode). An instruction queue pre-reads 4 bytes from the instruction which sets the CM10 bit to 1 (stop mode) and the program stops.

Insert at least 4 NOP instructions following the JMP.B instruction after the instruction which sets the CM10 bit to 1.

• Program example to enter stop mode

| BCLR        | 1,FMR0    | ; CPU rewrite mode disabled |
|-------------|-----------|-----------------------------|
| BSET        | 0,PRCR    | ; Protect disabled          |
| FSET        | Ι         | ; Enable interrupt          |
| BSET        | 0,CM1     | ; Stop mode                 |
| JMP.B       | LABEL_001 |                             |
| LABEL_001 : |           |                             |
| NOP         |           |                             |

#### 23.2.2 Wait Mode

When entering wait mode, set the FMR01 bit in the FMR0 register to 0 (CPU rewrite mode disabled) and execute the WAIT instruction. An instruction queue pre-reads 4 bytes from the WAIT instruction and the program stops. Insert at least 4 NOP instructions after the WAIT instruction.

• Program example to execute the WAIT instruction

BCLR 1,FMR0 FSET I WAIT NOP NOP NOP NOP ; CPU rewrite mode disabled ; Enable interrupt ; Wait mode

# 23.2.3 Oscillation Circuit Constants

Ask the manufacturer of the oscillator to specify the best oscillation circuit constants for your system.

# 23.3 Notes on Interrupts

# 23.3.1 Reading Address 00000h

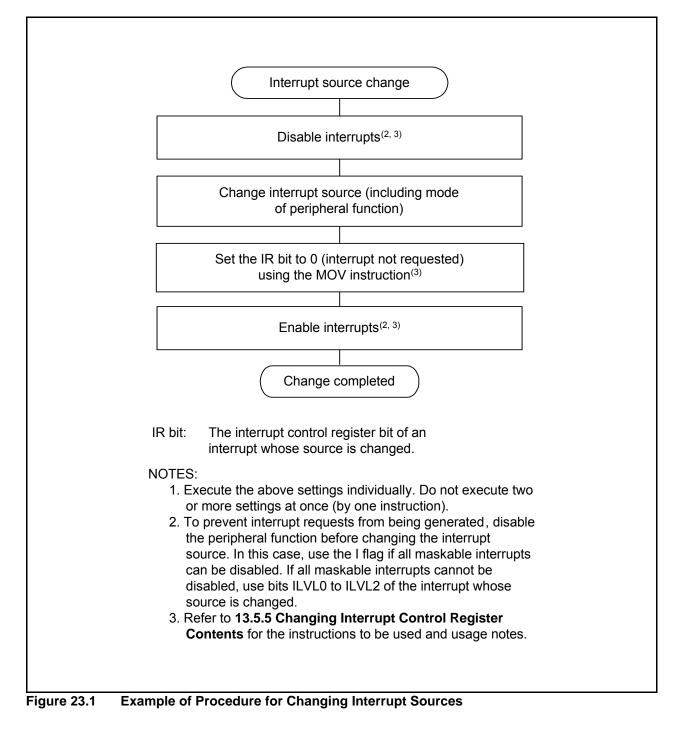
Do not read address 00000h by a program. When a maskable interrupt request is acknowledged, the CPU reads interrupt information (interrupt number and interrupt request level) from 00000h in the interrupt sequence. At this time, the acknowledged interrupt IR bit is set to 0.

If address 00000h is read by a program, the IR bit for the interrupt which has the highest priority among the enabled interrupts is set to 0. This may cause the interrupt to be canceled, or an unexpected interrupt to be generated.

# 23.3.2 SP Setting

Set any value in the SP before an interrupt is acknowledged. The SP is set to 0000h after reset. Therefore, if an interrupt is acknowledged before setting a value in the SP, the program may run out of control.

# 23.3.3 External Interrupt and Key Input Interrupt


Either "L" level or an "H" level of width shown in the Electrical Characteristics is necessary for the signal input to pins  $\overline{\text{INT0}}$ ,  $\overline{\text{INT1}}$  and pins  $\overline{\text{KI0}}$  to  $\overline{\text{KI3}}$ , regardless of the CPU clock.

For details, refer to Table 22.17 (VCC = 5V), Table 22.23 (VCC = 3V), Table 22.29 (VCC = 2.2V), Table 22.45 (VCC = 5V), Table 22.50 (VCC = 3V), and Table 22.55 (VCC = 2.2V) External Interrupt INTi (i = 0 or 1) Input.

#### 23.3.4 **Changing Interrupt Sources**

The IR bit in the interrupt control register may be set to 1 (interrupt requested) when the interrupt source changes. When using an interrupt, set the IR bit to 0 (no interrupt requested) after changing the interrupt source. In addition, changes of interrupt sources include all factors that change the interrupt sources assigned to individual software interrupt numbers, polarities, and timing. Therefore, if a mode change of a peripheral function involves interrupt sources, edge polarities, and timing, set the IR bit to 0 (no interrupt requested) after the change. Refer to the individual peripheral function for its related interrupts.

Figure 23.1 shows an Example of Procedure for Changing Interrupt Sources.



## 23.3.5 Changing Interrupt Control Register Contents

- (a) The contents of an interrupt control register can only be changed while no interrupt requests corresponding to that register are generated. If interrupt requests may be generated, disable interrupts before changing the interrupt control register contents.
- (b) When changing the contents of an interrupt control register after disabling interrupts, be careful to choose appropriate instructions.

#### Changing any bit other than IR bit

If an interrupt request corresponding to a register is generated while executing the instruction, the IR bit may not be set to 1 (interrupt requested), and the interrupt request may be ignored. If this causes a problem, use the following instructions to change the register: AND, OR, BCLR, BSET **Changing IR bit** 

If the IR bit is set to 0 (interrupt not requested), it may not be set to 0 depending on the instruction used. Therefore, use the MOV instruction to set the IR bit to 0.

(c) When disabling interrupts using the I flag, set the I flag as shown in the sample programs below. Refer to (b) regarding changing the contents of interrupt control registers by the sample programs.

Sample programs 1 to 3 are for preventing the I flag from being set to 1 (interrupts enabled) before the interrupt control register is changed for reasons of the internal bus or the instruction queue buffer.

# Example 1: Use NOP instructions to prevent I flag from being set to 1 before interrupt control register is changed

| INT_SWITC | CH1:       |                             |
|-----------|------------|-----------------------------|
| FCLR      | Ι          | ; Disable interrupts        |
| AND.B     | #00H,0056H | ; Set TRAIC register to 00h |
| NOP       |            | •                           |
| NOP       |            |                             |
| FSET      | Ι          | ; Enable interrupts         |
|           |            |                             |

# Example 2: Use dummy read to delay FSET instruction

INT\_SWITCH2:

| FCLR  | Ι          | ; Disable interrupts        |
|-------|------------|-----------------------------|
| AND.B | #00H,0056H | ; Set TRAIC register to 00h |
| MOV.W | MEM,R0     | ; <u>Dummy read</u>         |
| FSET  | Ι          | ; Enable interrupts         |

#### Example 3: Use POPC instruction to change I flag

| INT_SWITCH3: |            |                             |  |  |
|--------------|------------|-----------------------------|--|--|
| PUSHC        | FLG        |                             |  |  |
| FCLR         | Ι          | ; Disable interrupts        |  |  |
| AND.B        | #00H,0056H | ; Set TRAIC register to 00h |  |  |
| POPC         | FLG        | ; Enable interrupts         |  |  |
|              |            |                             |  |  |

# 23.4 Notes on ID Code Areas

## 23.4.1 Setting Example of ID Code Areas

As the ID code areas are allocated in the flash memory (not in the SFRs), they cannot be rewritten by executing an instruction. Write appropriate values when creating a program. The following shows a setting example.

• To set 55h in all of the ID code areas

```
.org 00FFDCH
```

| 0                         |                   |
|---------------------------|-------------------|
| .lword dummy   (5500000h) | ; UND             |
| .lword dummy   (5500000h) | ; INTO            |
| .lword dummy ; BREAK      |                   |
| .lword dummy   (5500000h) | ; ADDRESS MATCH   |
| .lword dummy   (5500000h) | ; SET SINGLE STEP |
| .lword dummy   (5500000h) | ; WDT             |
| .lword dummy   (5500000h) | ; ADDRESS BREAK   |
| .lword dummy   (5500000h) | ; RESERVE         |
|                           |                   |

(Programming formats vary depending on the compiler. Check the compiler manual.)

# 23.5 Notes on Option Function Select Area

# 23.5.1 Setting Example of Option Function Select Area

As the option function select area is allocated in the flash memory (not in the SFRs), they cannot be rewritten by executing an instruction. Write appropriate values when creating a program. The following shows a setting example.

• To set FFh in the OFS register .org 00FFFCH .lword reset | (0FF000000h) ; RESET (Programming formats vary depending on the compiler. Check the compiler manual.)

# 23.6 Notes on Timers

#### 23.6.1 Notes on Timer RA

- Timer RA stops counting after a reset. Set the values in the timer RA and timer RA prescalers before the count starts.
- Even if the prescaler and timer RA are read out in 16-bit units, these registers are read 1 byte at a time by the MCU. Consequently, the timer value may be updated during the period when these two registers are being read.
- In pulse period measurement mode, bits TEDGF and TUNDF in the TRACR register can be set to 0 by writing 0 to these bits by a program. However, these bits remain unchanged if 1 is written. When using the READ-MODIFY-WRITE instruction for the TRACR register, the TEDGF or TUNDF bit may be set to 0 although these bits are set to 1 while the instruction is being executed. In this case, write 1 to the TEDGF or TUNDF bit which is not supposed to be set to 0 with the MOV instruction.
- When changing to pulse period measurement mode from another mode, the contents of bits TEDGF and TUNDF are undefined. Write 0 to bits TEDGF and TUNDF before the count starts.
- The TEDGF bit may be set to 1 by the first timer RA prescaler underflow generated after the count starts.
- When using the pulse period measurement mode, leave two or more periods of the timer RA prescaler immediately after the count starts, then set the TEDGF bit to 0.
- The TCSTF bit retains 0 (count stops) for 0 to 1 cycle of the count source after setting the TSTART bit to 1 (count starts) while the count is stopped.

During this time, do not access registers associated with timer  $RA^{(1)}$  other than the TCSTF bit. Timer RA starts counting at the first valid edge of the count source after The TCSTF bit is set to 1 (during count). The TCSTF bit remains 1 for 0 to 1 cycle of the count source after setting the TSTART bit to 0 (count stops) while the count is in progress. Timer RA counting is stopped when the TCSTF bit is set to 0. During this time, do not access registers associated with timer  $RA^{(1)}$  other than the TCSTF bit.

#### NOTE:

1. Registers associated with timer RA: TRACR, TRAIOC, TRAMR, TRAPRE, and TRA.

- When the TRAPRE register is continuously written during count operation (TCSTF bit is set to 1), allow three or more cycles of the count source clock for each write interval.
- When the TRA register is continuously written during count operation (TCSTF bit is set to 1), allow three or more cycles of the prescaler underflow for each write interval.

## 23.6.2 Notes on Timer RB

- Timer RB stops counting after a reset. Set the values in the timer RB and timer RB prescalers before the count starts.
- Even if the prescaler and timer RB is read out in 16-bit units, these registers are read 1 byte at a time by the MCU. Consequently, the timer value may be updated during the period when these two registers are being read.
- In programmable one-shot generation mode and programmable wait one-shot generation mode, when setting the TSTART bit in the TRBCR register to 0, 0 (stops counting) or setting the TOSSP bit in the TRBOCR register to 1 (stops one-shot), the timer reloads the value of reload register and stops. Therefore, in programmable one-shot generation mode and programmable wait one-shot generation mode, read the timer count value before the timer stops.
- The TCSTF bit remains 0 (count stops) for 1 to 2 cycles of the count source after setting the TSTART bit to 1 (count starts) while the count is stopped.

During this time, do not access registers associated with timer  $RB^{(1)}$  other than the TCSTF bit. Timer RB starts counting at the first valid edge of the count source after the TCSTF bit is set to 1 (during count). The TCSTF bit remains 1 for 1 to 2 cycles of the count source after setting the TSTART bit to 0 (count stops) while the count is in progress. Timer RB counting is stopped when the TCSTF bit is set to 0. During this time, do not access registers associated with timer  $RB^{(1)}$  other than the TCSTF bit.

NOTE:

- 1. Registers associated with timer RB: TRBCR, TRBOCR, TRBIOC, TRBMR, TRBPRE, TRBSC, and TRBPR.
- If the TSTOP bit in the TRBCR register is set to 1 during timer operation, timer RB stops immediately.
- If 1 is written to the TOSST or TOSSP bit in the TRBOCR register, the value of the TOSSTF bit changes after one or two cycles of the count source have elapsed. If the TOSSP bit is written to 1 during the period between when the TOSST bit is written to 1 and when the TOSSTF bit is set to 1, the TOSSTF bit may be set to either 0 or 1 depending on the content state. Likewise, if the TOSSTF bit is written to 1 during the period between when the TOSSP bit is written to 1 and when the TOSSTF bit is set to 0, the TOSSTF bit may be set to either 0 or 1.

# 23.6.2.1 Timer mode

The following workaround should be performed in timer mode.

To write to registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), note the following points:

- When the TRBPRE register is written continuously, allow three or more cycles of the count source for each write interval.
- When the TRBPR register is written continuously, allow three or more cycles of the prescaler underflow for each write interval.

#### 23.6.2.2 Programmable waveform generation mode

The following three workarounds should be performed in programmable waveform generation mode.

- (1) To write to registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), note the following points:
- When the TRBPRE register is written continuously, allow three or more cycles of the count source for each write interval.
- When the TRBPR register is written continuously, allow three or more cycles of the prescaler underflow for each write interval.
- (2) To change registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), synchronize the TRBO output cycle using a timer RB interrupt, etc. This operation should be preformed only once in the same output cycle. Also, make sure that writing to the TRBPR register does not occur during period A shown in Figures 23.2 and 23.3.

The following shows the detailed workaround examples.

• Workaround example (a):

As shown in Figure 23.2, write to registers TRBSC and TRBPR in the timer RB interrupt routine. These write operations must be completed by the beginning of period A.

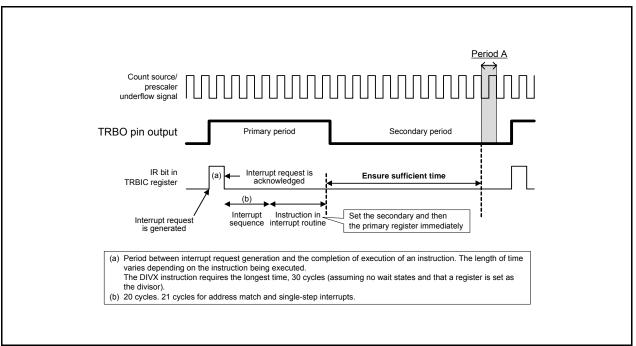



Figure 23.2 Workaround Example (a) When Timer RB interrupt is Used

• Workaround example (b):

As shown in Figure 23.3 detect the start of the primary period by the TRBO pin output level and write to registers TRBSC and TRBPR. These write operations must be completed by the beginning of period A. If the port register's bit value is read after the port direction register's bit corresponding to the TRBO pin is set to 0 (input mode), the read value indicates the TRBO pin output value.

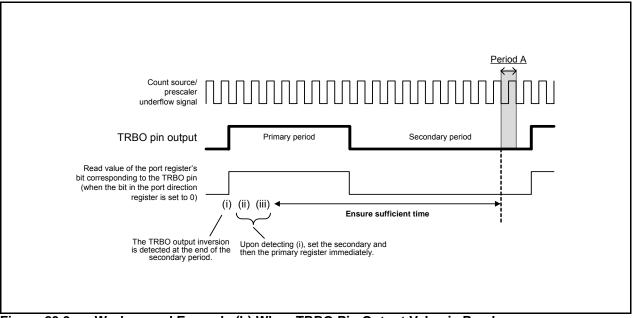



Figure 23.3 Workaround Example (b) When TRBO Pin Output Value is Read

(3) To stop the timer counting in the primary period, use the TSTOP bit in the TRBCR register. In this case, registers TRBPRE and TRBPR are initialized and their values are set to the values after reset.

# 23.6.2.3 Programmable one-shot generation mode

The following two workarounds should be performed in programmable one-shot generation mode.

- (1) To write to registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), note the following points:
- When the TRBPRE register is written continuously during count operation (TCSTF bit is set to 1), allow three or more cycles of the count source for each write interval.
- When the TRBPR register is written continuously during count operation (TCSTF bit is set to 1), allow three or more cycles of the prescaler underflow for each write interval.
- (2) Do not set both the TRBPRE and TRBPR registers to 00h.

#### 23.6.2.4 Programmable wait one-shot generation mode

The following three workarounds should be performed in programmable wait one-shot generation mode.

- (1) To write to registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), note the following points:
- When the TRBPRE register is written continuously, allow three or more cycles of the count source for each write interval.
- When the TRBPR register is written continuously, allow three or more cycles of the prescaler underflow for each write interval.
- (2) Do not set both the TRBPRE and TRBPR registers to 00h.
- (3) Set registers TRBSC and TRBPR using the following procedure.
  - (a) To use " $\overline{INT0}$  pin one-shot trigger enabled" as the count start condition Set the TRBSC register and then the TRBPR register. At this time, after writing to the TRBPR register, allow an interval of 0.5 or more cycles of the count source before trigger input from the  $\overline{INT0}$  pin.
  - (b) To use "writing 1 to TOSST bit" as the start condition
    - Set the TRBSC register, the TRBPR register, and then TOSST bit. At this time, after writing to the TRBPR register, allow an interval of 0.5 or more cycles of the count source before writing to the TOSST bit.

# 23.6.3 Notes on Timer RE (for R8C/2H Group only)

## 23.6.3.1 Starting and Stopping Count

Timer RE has the TSTART bit for instructing the count to start or stop, and the TCSTF bit, which indicates count start or stop. Bits TSTART and TCSTF are in the TRECR1 register.

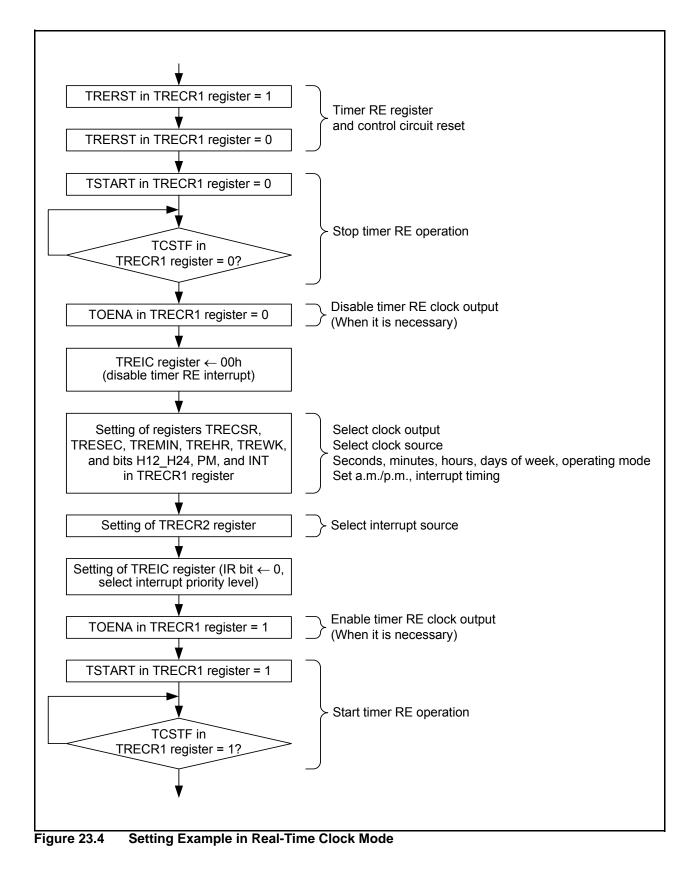
Timer RE starts counting and the TCSTF bit is set to 1 (count starts) when the TSTART bit is set to 1 (count starts). It takes up to 2 cycles of the count source until the TCSTF bit is set to 1 after setting the TSTART bit to 1. During this time, do not access registers associated with timer  $RE^{(1)}$  other than the TCSTF bit.

Also, timer RE stops counting when setting the TSTART bit to 0 (count stops) and the TCSTF bit is set to 0 (count stops). It takes the time for up to 2 cycles of the count source until the TCSTF bit is set to 0 after setting the TSTART bit to 0. During this time, do not access registers associated with timer RE other than the TCSTF bit.

NOTE:

1. Registers associated with timer RE: TRESEC, TREMIN, TREHR, TREWK, TRECR1, TRECR2, TRECSR, and TREOPR.

# 23.6.3.2 Register Setting


Write to the following registers or bits when timer RE is stopped.

- Registers TRESEC, TREMIN, TREHR, TREWK, and TRECR2
- Bits H12\_H24, PM, and INT in TRECR1 register
- Bits RCS0 to RCS3 in TRECSR register

Timer RE is stopped when bits TSTART and TCSTF in the TRECR1 register are set to 0 (timer RE stopped).

Also, set all above-mentioned registers and bits (immediately before timer RE count starts) before setting the TRECR2 register.

Figure 23.4 shows a Setting Example in Real-Time Clock Mode.



# 23.6.3.3 Time Reading Procedure of Real-Time Clock Mode

In real-time clock mode, read registers TRESEC, TREMIN, TREHR, and TREWK when time data is updated and read the PM bit in the TRECR1 register when the BSY bit is set to 0 (not while data is updated). Also, when reading several registers, an incorrect time will be read if data is updated before another register is read after reading any register.

In order to prevent this, use the reading procedure shown below.

• Using an interrupt

Read necessary contents of registers TRESEC, TREMIN, TREHR, and TREWK and the PM bit in the TRECR1 register in the timer RE interrupt routine.

• Monitoring with a program 1

Monitor the IR bit in the TREIC register with a program and read necessary contents of registers TRESEC, TREMIN, TREHR, and TREWK and the PM bit in the TRECR1 register after the IR bit in the TREIC register is set to 1 (timer RE interrupt request generated).

• Monitoring with a program 2

- (1) Monitor the BSY bit.
- (2) Monitor until the BSY bit is set to 0 after the BSY bit is set to 1 (approximately 62.5 ms while the BSY bit is set to 1).
- (3) Read necessary contents of registers TRESEC, TREMIN, TREHR, and TREWK and the PM bit in the TRECR1 register after the BSY bit is set to 0.

• Using read results if they are the same value twice

- (1) Read necessary contents of registers TRESEC, TREMIN, TREHR, and TREWK and the PM bit in the TRECR1 register.
- (2) Read the same register as (1) and compare the contents.
- (3) Recognize as the correct value if the contents match. If the contents do not match, repeat until the read contents match with the previous contents.

Also, when reading several registers, read them as continuously as possible.

## 23.6.4 Notes on Timer RF

• Access registers TRF, TRFM0, and TRFM1 in 16-bit units.

Example of reading timer RF:

MOV.W 0290H,R0 ; Read out timer RF

• In input capture mode, a capture interrupt request is generated by inputting an edge selected by bits TRFC03 and TRFC04 in the TRFCR0 register even when the TSTART bit in the TRFCR0 register is set to 0 (count stops).

#### 23.7 Notes on Serial Interface

• When reading data from the UiRB (i = 0 or 2 (for the R8C/2H Group only)) register either in the clock synchronous serial I/O mode or in the clock asynchronous serial I/O mode. Ensure the data is read in 16-bit units. When the high-order byte of the UiRB register is read, bits PER and FER in the UiRB register and the RI bit in the UiC1 register are set to 0.

To check receive errors, read the UiRB register and then use the read data.

Example (when reading receive buffer register): MOV.W 00A6H,R0 ; Read the U0RB register

• When writing data to the UiTB register in the clock asynchronous serial I/O mode with 9-bit transfer data length, write data to the high-order byte first then the low-order byte, in 8-bit units.

Example (when reading transmit buffer register):

| MOV.B | #XXH,00A3H | ; Write the high-order byte of U0TB register |
|-------|------------|----------------------------------------------|
| MOV.B | #XXH,00A2H | ; Write the low-order byte of U0TB register  |

# 23.8 Notes on Hardware LIN

For the time-out processing of the header and response fields, use another timer to measure the duration of time with a Synch Break detection interrupt as the starting point.

## 23.9 Notes on Flash Memory

#### 23.9.1 CPU Rewrite Mode

#### 23.9.1.1 Operating Speed

Before entering CPU rewrite mode (EW0 mode), select 5 MHz or below for the CPU clock using the CM06 bit in the CM0 register and bits CM16 to CM17 in the CM1 register.

# 23.9.1.2 Prohibited Instructions

The following instructions cannot be used in EW0 mode because they reference data in the flash memory: UND, INTO, and BRK.

# 23.9.1.3 Non-Maskable Interrupts

#### • EW0 Mode

Once a watchdog timer, voltage monitor1, voltage monitor 2, comparator 1, or comparator 2 interrupt request is acknowledged, auto-erasure or auto-programming is forcibly stopped immediately and the flash memory is reset. Interrupt handling starts after a fixed period and the flash memory restarts.

As the block during auto-erasure or the address during auto-programming is forcibly stopped, the normal value may not be readable. Execute auto-erasure again and ensure it completes normally.

The watchdog timer does not stop during command operation, so that interrupt requests may be generated. Initialize the watchdog timer regularly.

Do not use the address match interrupt while a command is being executed because the vector of the address match interrupt is allocated in ROM.

Do not use a non-maskable interrupt while block 0 is being automatically erased because the fixed vector is allocated in block 0.

# 23.9.1.4 How to Access

Write 0 before writing 1 when setting Bits FMR01, FMR02 in the FMR0 register, or FMR11 bit in the FMR1 register to 1. Do not generate an interrupt between writing 0 and 1.

# 23.9.1.5 Rewriting User ROM Area

In EW0 Mode, if the supply voltage drops while rewriting any block in which a rewrite control program is stored, it may not be possible to rewrite the flash memory because the rewrite control program cannot be rewritten correctly. In this case, use standard serial I/O mode.

# 23.9.1.6 Program

Do not write additions to the already programmed address.

#### 23.9.1.7 Program and Erase Voltage for Flash Memory

To perform programming and erasure, use VCC = 2.7 V to 5.5 V as the supply voltage. Do not perform programming and erasure at less than 2.7 V.

# 23.10 Notes on Noise

# 23.10.1 Inserting a Bypass Capacitor between VCC and VSS Pins as a Countermeasure against Noise and Latch-up

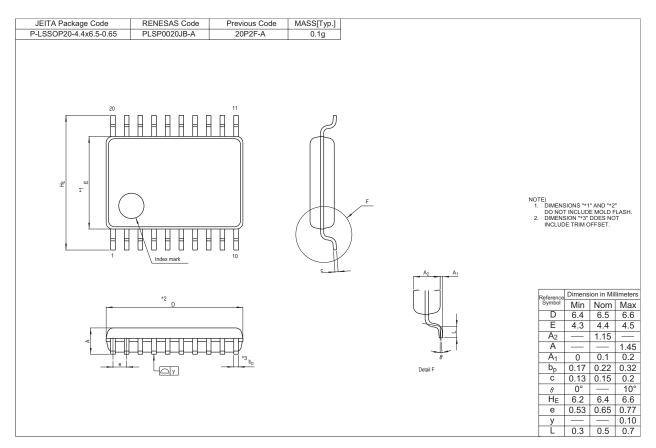
Connect a bypass capacitor (at least  $0.1 \ \mu\text{F}$ ) using the shortest and thickest write possible.

#### 23.10.2 Countermeasures against Noise Error of Port Control Registers

During rigorous noise testing or the like, external noise (mainly power supply system noise) can exceed the capacity of the MCU's internal noise control circuitry. In such cases the contents of the port related registers may be changed.

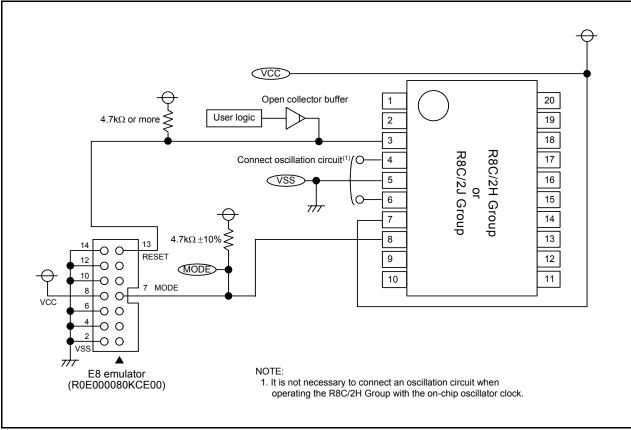
As a firmware countermeasure, it is recommended that the port registers, port direction registers, and pull-up control registers be reset periodically. However, examine the control processing fully before introducing the reset routine as conflicts may be created between the reset routine and interrupt routines.

# 24. Notes for On-Chip Debugger


When using the on-chip debugger to develop and debug programs for the R8C/2H Group and R/2J Group, take note of the following:

- (1) Some of the user flash memory and RAM areas are used by the on-ship debugger. These areas cannot be accessed by the user.
  - Refer to the on-chip debugger manual for which areas are used.
- (2) Do not set the address match interrupt (registers AIER, RMAD0, and RMAD1 and fixed vector tables) in a user system.
- (3) Do not use the BRK instruction in a user system.
- (4) Debugging is available under the condition of supply voltage VCC = 2.7 to 5.5 V. Debugging with the on-chip debugger under less than 2.7 V is not allowed.

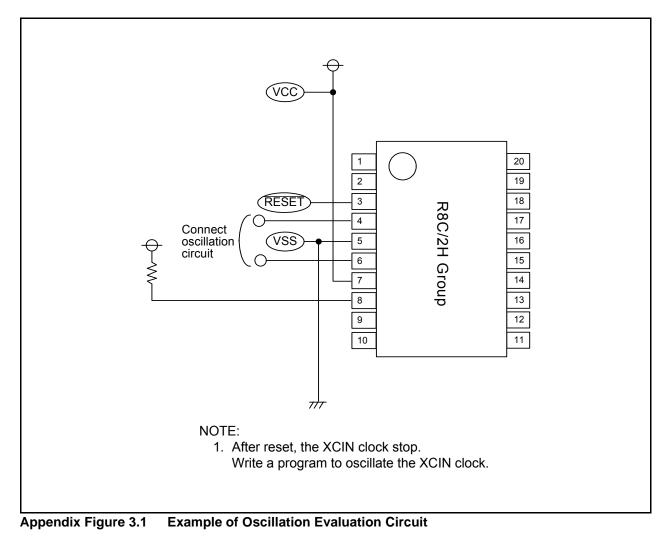
Connecting and using the on-chip debugger has some special restrictions. Refer to the on-chip debugger manual for details.


# Appendix 1. Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Technology website.



# Appendix 2. Connection Examples with On-Chip Debugging Emulator


Appendix Figure 2.1 shows a Connection Example with E8 Emulator (R0E000080KCE00).



Appendix Figure 2.1 Connection Example with E8 Emulator (R0E000080KCE00)

# Appendix 3. Example of Oscillation Evaluation Circuit

Appendix Figure 3.1 shows an Example of Oscillation Evaluation Circuit.



# Index

| [A]<br>AIER                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------|
| ALCMR 59                                                                                                             |
| [ B ]<br>BGRCR                                                                                                       |
| [C]<br>CAPIC 123<br>CM0 96, 97<br>CM1 98, 99<br>CMP0IC 123<br>CMP1IC 123<br>CPSRF 102<br>CSPR 151                    |
| [F]       FMR0       262         FMR1       265         FMR4       266         FRA4       102         FRA6       102 |
| [ H ]<br>HRA0                                                                                                        |
| [1]<br>INTOIC                                                                                                        |
| [ K ]<br>KIEN                                                                                                        |
| [L]<br>LINCR                                                                                                         |
| [ O ]<br>OCD                                                                                                         |
| [P]<br>PDi (i = 1, 3, 4, or 6)                                                                                       |
| PUR0 82                                                                                                              |

| PUR1                                      | 82             |
|-------------------------------------------|----------------|
| [ R ]<br>RMAD0<br>RMAD1                   |                |
| [ S ]<br>SORIC<br>SOTIC<br>S2RIC<br>S2TIC | . 123<br>. 123 |
| [T]<br>TRA                                | 160            |
| TRACR                                     |                |
| TRAIC                                     |                |
| TRAIOC                                    |                |
| TRAMR                                     |                |
| TRAPRE                                    |                |
| TRBCR                                     |                |
| TRBIC                                     |                |
|                                           |                |
| TRBIOC 176, 178, 182, 185                 | ,              |
| TRBMR                                     |                |
| TRBOCR                                    |                |
| TRBPR                                     |                |
| TRBPRE                                    |                |
| TRBSC                                     |                |
| TRECR1                                    | , -            |
| TRECR2                                    | , -            |
| TRECSR                                    | ,              |
| TREHR                                     |                |
| TREIC                                     |                |
| TREMIN                                    |                |
| TREOPR                                    |                |
| TRESEC                                    | ,              |
| TREWK                                     |                |
| TRF                                       |                |
| TRFCR0                                    |                |
| TRFCR1                                    |                |
| TRFCR2                                    |                |
| TRFIC                                     |                |
| TRFM0                                     | . 215          |

#### [U]

| U0BRG | 229<br>230<br>228<br>229<br>229<br>229<br>228<br>229<br>230<br>228<br>230 |
|-------|---------------------------------------------------------------------------|
| [V]   |                                                                           |

| VCA1 |  |
|------|--|
| VCA2 |  |
| VCAB |  |

| VCAC    |        |
|---------|--------|
| VCMP1IC | 123    |
| VCMP2IC | 123    |
| VW0C    | 43     |
| VW1C    |        |
| VW2C    | 45, 58 |
|         |        |
| [ W ]   |        |
| WDC     | 150    |
|         |        |
| WDTR    |        |
| WDTS    | 149    |
|         |        |

| <b>REVISION HISTORY</b> | R8C/2H Group, R8C/2J Group Hardware Manual |
|-------------------------|--------------------------------------------|
|-------------------------|--------------------------------------------|

|      | - /          |                      | Description                                                                                                                                    |  |  |
|------|--------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Rev. | Date         | Page                 | Summary                                                                                                                                        |  |  |
| 0.01 | Apr 06, 2007 | _                    | First Edition issued                                                                                                                           |  |  |
| 0.10 | Jul 20, 2007 | _                    | Descriptions about "R8C/2J" added                                                                                                              |  |  |
|      |              | -                    | "RENESAS TECHNICAL UPDATE" reflected:<br>TN-16C-A164A/E, TN-16C-A167A/E                                                                        |  |  |
|      |              | _                    | Register/bit symbols revised:<br>"CM1POR" → "LCM1POR", "CM2POR" → "LCM2POR",<br>"ACMR" → "ALCMR"                                               |  |  |
|      |              | 2                    | Table 1.1: Clock; "Real-time clock (timer RE)" added                                                                                           |  |  |
|      |              | 20, 43               | Table 4.2, Figure 6.6: 0038h After reset;<br>"0000X010b" → "1000X010b", "0100X011b" → "1100X011b"                                              |  |  |
|      |              | 32                   | Figure 5.3 revised                                                                                                                             |  |  |
|      |              | 33, 139,<br>147, 252 | Figure 5.4, Figure 15.2, Figure 16.6, Figure 20.2:<br>OFS Register; NOTE1 revised                                                              |  |  |
|      |              | 69                   | Table 8.3, Table 8.4: NOTE1 revised                                                                                                            |  |  |
|      |              | 74                   | Figure 8.5, Figure 8.6: revised                                                                                                                |  |  |
|      |              | 78                   | Figure 8.11 revised                                                                                                                            |  |  |
|      |              | 157                  | Figure 17.5 "Both bits register are set to 0 (During count)." $\rightarrow$ "Both bits register are set to 1 (During count)."                  |  |  |
|      |              | 175                  | Figure 17.17 "Both bits register are set to 0 (During count)." $\rightarrow$ "Both bits register are set to 1 (During count)."                 |  |  |
|      |              | 186                  | NOTE: "TRBIOC" added                                                                                                                           |  |  |
|      |              | 240                  | Figure 19.6 revised                                                                                                                            |  |  |
|      |              | 241                  | Figure 19.7: SFDCT flag in the LINST register;<br>"Set bythe B1CLR bit in the LINST register" →<br>"Set bythe B0CLR bit in the LINST register" |  |  |
|      |              | 243                  | Figure 19.9 revised                                                                                                                            |  |  |
|      |              | 250                  | Figure 20.1 revised                                                                                                                            |  |  |
|      |              | 286                  | Figure 21.2 NOTE4 deleted                                                                                                                      |  |  |
| 0.20 | Nov 12, 2007 | 2                    | Table 1.1 I/O Ports: "• Output-only: 1" added<br>"• CMOS I/O ports: 16" → "• CMOS I/O ports: 15"                                               |  |  |
|      |              | 6                    | Figure 1.3 revised                                                                                                                             |  |  |
|      |              | 8                    | Figure 1.5 revised                                                                                                                             |  |  |
|      |              | 9                    | Table 1.5 Pin Number: 4, 6, 16 revised                                                                                                         |  |  |
|      |              | 12                   | Table 1.7 I/O port: "P4_3 to P4_5" $\rightarrow$ "P4_3, P4_5"<br>Timer RE, Output port added                                                   |  |  |
|      |              | 19                   | Table 4.1 0006h "01001000b" → "01011000b"                                                                                                      |  |  |
|      |              | 23                   | Table 4.5 0118h to 011Dh: After reset revised<br>011Fh "Timer RE Real-Time Clock Precision Adjust Register"<br>added                           |  |  |
|      |              | 52                   | Figure 6.13 revised                                                                                                                            |  |  |

REVISION HISTORY R8C/2H Group, R8C/2J Group Hardware Manual

|                   | 5.4  |                  | Description                                                                                                                                                                               |  |  |
|-------------------|------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Rev.              | Date | Page             | Summary                                                                                                                                                                                   |  |  |
| 0.20 Nov 12, 2007 |      | 68               | <ul> <li>8. "There are 16 input/output oscillation circuit is not used." →</li> <li>"There are 15 input/output used as an output port.</li> <li>Table 8.1 revised, NOTE3 added</li> </ul> |  |  |
|                   |      | 72               | Figure 8.3 revised                                                                                                                                                                        |  |  |
|                   |      | 74               | Figure 8.5 NOTE2 "To use port P4_4 as an input port." added                                                                                                                               |  |  |
|                   |      | 78               | Figure 8.11 Pull-Up Control Register 1 (R8C/2H Group): b1 revised                                                                                                                         |  |  |
|                   |      | 83               | Table 8.16 NOTE2 added<br>Table 8.17 revised                                                                                                                                              |  |  |
|                   |      | 84               | Table 8.21 revised                                                                                                                                                                        |  |  |
|                   |      | 86               | 8.6 added                                                                                                                                                                                 |  |  |
|                   |      | 89               | Table 11.1 Oscillator status after reset: XCIN Clock Oscillation Circuit "Stop" $\rightarrow$ "Oscillate"                                                                                 |  |  |
|                   |      | 92               | Figure 11.3 revised                                                                                                                                                                       |  |  |
|                   |      | 102              | 11.2 "During and after reset, the XCIN clock stops." → "During and after<br>reset, the XCIN clock oscillates."                                                                            |  |  |
|                   |      | 154              | Figure 17.1 "TSTART" $\rightarrow$ "TCSTF"                                                                                                                                                |  |  |
|                   |      | 192              | Figure 17.26 revised                                                                                                                                                                      |  |  |
|                   |      | 193              | Table 17.11 revised                                                                                                                                                                       |  |  |
|                   |      | 194              | Figure 17.27, Figure 17.28 After Reset "00h" $\rightarrow$ "Undefined"                                                                                                                    |  |  |
|                   |      | 195              | Figure 17.29 After Reset "00h" $\rightarrow$ "X0XXXXXb"<br>Figure 17.30 After Reset "00h" $\rightarrow$ "X0000XXXb"                                                                       |  |  |
|                   |      | 196              | Figure 17.31 After Reset "00h" $\rightarrow$ "XXX0X0X0b"                                                                                                                                  |  |  |
|                   |      | 197              | Figure 17.33 After Reset "00h" $\rightarrow$ "00XXXXXXb"                                                                                                                                  |  |  |
|                   |      | 198              | Figure 17.34 revised<br>Figure 17.35 added                                                                                                                                                |  |  |
|                   |      | 200              | Figure 17.37 revised                                                                                                                                                                      |  |  |
|                   |      | 201              | Table 17.13 revised                                                                                                                                                                       |  |  |
|                   |      | 202              | Figure 17.38, Figure 17.39 After Reset "00h" $\rightarrow$ "Undefined"                                                                                                                    |  |  |
|                   |      | 203              | Figure 17.40 revised<br>Figure 17.41 After Reset "00h" → "00XXXXXXb"                                                                                                                      |  |  |
|                   |      | 204              | Figure 17.42 revised                                                                                                                                                                      |  |  |
|                   |      | 205              | Figure 17.43 revised                                                                                                                                                                      |  |  |
|                   |      | 206              | 17.3.3.1 NOTE1 "TREOPR" added                                                                                                                                                             |  |  |
|                   |      | 207              | Figure 17.44 revised                                                                                                                                                                      |  |  |
|                   |      | 213              | Figure 17.50 NOTE4 added                                                                                                                                                                  |  |  |
|                   |      | 247              | Figure 19.9 revised<br>Table 22.2 NOTE2 revised<br>Table 22.31 NOTE2 revised                                                                                                              |  |  |
|                   |      | 283              |                                                                                                                                                                                           |  |  |
|                   |      | 300              |                                                                                                                                                                                           |  |  |
|                   |      | 306, 310,<br>314 | Table 22.42, Table 22.47, Table 22.52 revised                                                                                                                                             |  |  |

REVISION HISTORY R8C/2H Group, R8C/2J Group Hardware Manual

|      |              |              | Description                                                                                                             |  |  |
|------|--------------|--------------|-------------------------------------------------------------------------------------------------------------------------|--|--|
| Rev. | Date         | Page Summary |                                                                                                                         |  |  |
| 0.20 | Nov 12, 2007 | 330          | Figure 23.4 revised                                                                                                     |  |  |
| 1.00 | Mar 28, 2008 | All pages    | "Under development" deleted<br>Table 1.1, Table 1.2 revised                                                             |  |  |
|      |              | 2, 3         |                                                                                                                         |  |  |
|      |              | 4, 5         | Table 1.3, Table 1.4; "(D): Under development" deleted                                                                  |  |  |
|      |              | 17, 18       | Figure 3.1, Figure 3.2; "Expanded area" deleted                                                                         |  |  |
|      |              | 19           | Table 4.1 "002Eh" "002Fh" revised                                                                                       |  |  |
|      |              | 20           | Table 4.2 "003Eh" "003Fh" revised                                                                                       |  |  |
|      |              | 31           | Figure 5.1 NOTE1 added                                                                                                  |  |  |
|      |              | 32           | Table 5.2 revised                                                                                                       |  |  |
|      |              | 45, 58       | Figure 6.8, Figure 7.5; "7. The VW2C7 1." $\rightarrow$ "7. The VW2C7 0."                                               |  |  |
|      |              | 55           | Figure 7.2 added                                                                                                        |  |  |
|      |              | 60, 61       | Figure 7.9, Figure 7.10 added                                                                                           |  |  |
|      |              | 70, 71       | 7.6, Figure 7.16, Figure 7.17 added                                                                                     |  |  |
|      |              | 89           | Table 8.23 NOTE4 revised<br>Figure 8.12 NOTE2 revised                                                                   |  |  |
|      |              | 93           | Table 11.2 revised                                                                                                      |  |  |
|      |              | 97           | Figure 11.4; "01001000b" $\rightarrow$ "01011000b", b4 revised, NOTE3 added                                             |  |  |
|      |              | 99           | Figure 11.6 b4 revised                                                                                                  |  |  |
|      |              | 107, 109     | 11.3.1, 11.4.1.1, 11.4.1.2; "(for R8C/2H Group only)" added                                                             |  |  |
|      |              | 110          | 11.4.2 "(for R8C/2H Group only)" added<br>Table 11.5; Timer RA interrupt: CM02 = 1 "NOTE1" added                        |  |  |
|      |              | 117          | 12, Figure 12.1; "BGRCR, and BGRTRM" added                                                                              |  |  |
|      |              | 157          | Table 17.1 Timer RF "Capture interrupt" added                                                                           |  |  |
|      |              | 174          | Figure 17.12 "TSTRAT" $\rightarrow$ "TSTART"                                                                            |  |  |
|      |              | 181          | Table 17.8 " $P3_1 (P1_3) " \rightarrow " P1_3 "$                                                                       |  |  |
|      |              | 184          | Table 17.9 "TRBP pin function" $\rightarrow$ "TRBO pin function"                                                        |  |  |
|      |              | 248          | Figure 19.6 "Three to five" $\rightarrow$ "One to two"                                                                  |  |  |
|      |              | 251          | Figure 19.9 revised                                                                                                     |  |  |
|      |              | 257          | Table 20.1 "Suspend" deleted, "Blocks 0 and 1" $\rightarrow$ "Block 0"                                                  |  |  |
|      |              | 261          | 20.4 "The flash module (EW0 mode)." deleted<br>Table 20.3 " to erase-suspend" " to program-suspend" deleted             |  |  |
|      |              | 263          | • FMR00 Bit "(including suspend periods)" deleted                                                                       |  |  |
|      |              | 264          | Table 20.4 "FRM0 Register" → "FMR0 Register"                                                                            |  |  |
|      |              | 266          | Figure 20.5 revised<br>• FMR40 Bit, • FMR41 Bit, • FMR42 Bit; deleted<br>• FMR43 Bit, • FMR44 Bit, • FMR46 Bit; revised |  |  |
|      |              | 269          | Figure 20.8 revised                                                                                                     |  |  |
|      |              | 271          | • Program Command; revised<br>Old Figure 20.11 deleted                                                                  |  |  |

| <b>REVISION HISTORY</b> | R8C/2H Group, R8C/2J Group Hardware Manual |
|-------------------------|--------------------------------------------|
|-------------------------|--------------------------------------------|

| Rev. | Date         | Description |                                                                                                          |  |
|------|--------------|-------------|----------------------------------------------------------------------------------------------------------|--|
| Rev. | Dale         | Page        | Summary                                                                                                  |  |
| 1.00 | Mar 28, 2008 | 272         | • Block Erase; revised<br>Old Figure 20.13, Old 20.4.3.2, Old Figure 20.14, Old Figure 20.15;<br>deleted |  |
|      |              | 275         | Table 20.6 revised                                                                                       |  |
|      |              | 277         | Old 20.7.1.7, Old 20.7.1.8 deleted                                                                       |  |
|      |              | 278         | 21.2.3 "(for R8C/2H Group only)" added                                                                   |  |
|      |              | 283         | Table 22.3 revised<br>Old Figure 22.2 deleted                                                            |  |
|      |              | 286         | Table 22.8, Table 22.11 revised<br>Table 22.9 revised, NOTE3 added                                       |  |
|      |              | 288         | Table 22.13 revised                                                                                      |  |
|      | 2            |             | Table 22.19 revised                                                                                      |  |
|      |              | 296         | Table 22.25 revised                                                                                      |  |
|      |              | 300         | Table 22.32 revised<br>Old Figure 22.17 deleted                                                          |  |
|      |              | 303         | Table 22.37, Table 22.40 revised<br>Table 22.38 revised, NOTE3 added                                     |  |
|      |              | 305         | Table 22.42 revised                                                                                      |  |
|      |              | 309         | Table 22.47 revised                                                                                      |  |
|      |              | 313         | Table 22.52 revised                                                                                      |  |
|      |              | 334         | Old 23.9.1.7, Old 23.9.1.8 deleted                                                                       |  |
|      |              |             |                                                                                                          |  |

R8C/2H Group, R8C/2J Group Hardware Manual

| Publication Date: |  |   | Apr 06, 2007<br>Mar 28, 2008    |
|-------------------|--|---|---------------------------------|
| Published by:     |  | • | c Planning Div.<br>nology Corp. |

 $\ensuremath{\mathbb{C}}$  2008. Renesas Technology Corp., All rights reserved. Printed in Japan

# R8C/2H Group, R8C/2J Group Hardware Manual



Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for 16-bit Microcontrollers - MCU category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

MB90F036APMC-GSE1 MB90F342CASPMC-GSE1 MB90F345CESPMC-GE1 MB90F349CAPFR-GSE1 MB90F428GCPFR-GSE1 MB90F462APFM-GE1 MB90F462APMC-G-SNE1 MB90F497GPF-GE1 MB90F546GSPFR-GE1 MB90F947APFR-GS-SPE1 MB96F346RSBPMC-GS-N2E2 MB96F683RBPMC-GSAE1 R5F11BGEAFB#30 DF3026XBL25V S912ZVFP64F1VLL R4F24268NVRFQV R5F107DEGSP#X0 R5F11B7EANA#U0 R5F21172DSP#U0 M30622F8PGP#U3C MB90092PF-G-BNDE1 MB90F335APMC1-G-SPE1 MB90F342CASPFR-GS-N2E1 MB90F345CAPFR-GSE1 MB90F543GPF-GE1 MB90F546GSPF-GE1 MB90F568PMCR-GE1 MB90F594APFR-GE1 MB90F882ASPMC-GE1 MB96F346RSAPQCR-GS-N2E2 MB96F387RSBPMC-GSE2 MB96F387RSBPMC-GS-N2E2 MB96F395RSAPMC-GSE2 MB96F623RBPMC1-GSE1 MB96F646RBPMC-GSE1 XE167F96F66LACFXUMA1 MB96F696RBPMC-GSAE1 MB96F018RBPMC-GSE1 MB90F962SPMCR-GE1 MB90F867ASPFR-GE1 MB90F543GPF-G-FLE1 MB90F345CESPF-GE1 M30290FCHP#U3A DF2239FA20IV HD64F3672FPV R5F104AEASP#V0 R5F100BCANA#U0 R5F100BFANA#U0 S9S12H256J2VFVER R5F100ACASP#V0