3.3 V ECL Differential Clock D Flip-Flop

Description

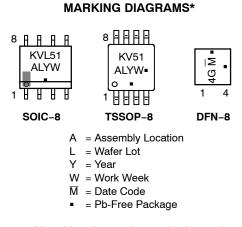
The MC100LVEL51 is a differential clock D flip-flop with reset. The device is functionally equivalent to the EL51 device, but operates from a 3.3 V supply. With propagation delays and output transition times essentially equal to the EL51, the LVEL51 is ideally suited for those applications which require the ultimate in AC performance at 3.3 V V_{CC}.

The reset input is an asynchronous, level triggered signal. Data enters the master portion of the flip-flop when the clock is LOW and is transferred to the slave, and thus the outputs, upon a positive transition of the clock. The differential clock inputs of the LVEL51 allow the device to be used as a negative edge triggered flip-flop.

The differential input employs clamp circuitry to maintain stability under open input conditions. When left open, the CLK input will be pulled down to V_{EE} and the $\overline{\text{CLK}}$ input will be biased at $V_{CC}/2$.

Features

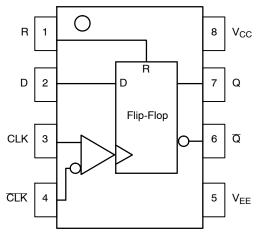
- 475 ps Propagation Delay
- 2.8 GHz Toggle Frequency
- ESD Protection: > 4 kV Human Body Model, > 200 V Machine Model
- The 100 Series Contains Temperature Compensation
- PECL Mode Operating Range: $V_{CC} = 3.0 \text{ V}$ to 3.8 V with $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = -3.0 V to -3.8 V
- Internal Input Pulldown Resistors
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level
 - ◆ Level 1 for SOIC-8 NB
 - ◆ Level 3 for TSSOP-8
 - ◆ Level 1 for DFN-8
 - For Additional Information, see Application Note <u>AND8003/D</u>
- Flammability Rating: UL 94 V-0 @ 0.125 in, Oxygen Index: 28 to 34
- Transistor Count = 114 devices
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

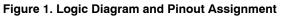

ON Semiconductor[®]

www.onsemi.com

CASE 948R

D SUFFIX CASE 751




(Note: Microdot may be in either location) *For additional marking information, refer to Application Note <u>AND8002/D</u>.

ORDERING INFORMATION

Device	Package	Shipping [†]
MC100LVEL51DG	SOIC-8 NB (Pb-Free)	98 Units/Tube
MC100LVEL51DR2G	SOIC-8 NB (Pb-Free)	2500/Tape & Reel
MC100LVEL51DTG	TSSOP-8 (Pb-Free)	100 Units/Tube
MC100LVEL51DTR2G	TSSOP-8 (Pb-Free)	2500/Tape & Reel
MC100LVEL51MNR4G	DFN–8 (Pb-Free)	1000/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

Table 1. PIN DESCRIPTION

PIN	FUNCTION
CLK, CLK Q, Q D R V _{CC} V _{EE} EP	ECL Differential Clock Input ECL Differential Output ECL D Input ECL Reset Input Positive Suppyy Negative Supply (DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Elec- trically connect to the most negative supply (GND) or leave unconnected, floating open.

Table 2. TRUTH TABLE

D	R	CLK	Q
ЧНХ	L L H	Z Z X	ΓΗΓ

Z = LOW to HIGH Transition

X = Don't Care

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8 to 0	V
V_{EE}	NECL Mode Power Supply	$V_{CC} = 0 V$		–8 to 0	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$	6 to 0 –6 to 0	V
I _{out}	Output Current	Continuous Surge		50 100	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-8 NB	190 130	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-8 NB	41 to 44 \pm 5%	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-8	185 140	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-8	41 to 44 \pm 5%	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	DFN-8	129 84	°C/W
T _{sol}	Wave Solder (Pb-Free)	< 2 to 3 sec @ 260°C		265	°C
θ_{JC}	Thermal Resistance (Junction-to-Case)	(Note 1)	DFN-8	35 to 40	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. JEDEC standard multilayer board – 2S2P (2 signal, 2 power)

			–40°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		30	35		30	35		32	37	mA
V _{OH}	Output HIGH Voltage (Note 2)	2215	2295	2420	2275	2345	2420	2275	2345	2420	mV
V _{OL}	Output LOW Voltage (Note 2)	1470	1605	1745	1490	1595	1680	1490	1595	1680	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	2135		2420	2135		2420	2135		2420	mV
V _{IL}	Input LOW Voltage (Single-Ended)	1490		1825	1490		1825	1490		1825	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 3) $V_{PP} < 500 \text{ mV}$ $V_{PP} \ge 500 \text{ mV}$	1.2 1.4		3.0 3.0	1.1 1.3		3.0 3.0	1.1 1.3		3.0 3.0	V
I _{IH}	Input HIGH Current			150			150			150	μA
Ι _{ΙL}	Input LOW Current Others CLK	0.5 -600			0.5 -600			0.5 -600			μΑ

Table 4. LVPECL DC CHARACTERISTICS (V_{CC} = 3.3 V; V_{EF} = 0.0 V (Note 1))

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary ± 0.3 V.

2. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

V_I + CMR min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

Table 5. LVNECL DC CHARACTERISTICS (V_{CC} = 0.0 V; V_{EE} = -3.3 V (Note 1))

			–40°C		25°C		85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		30	35		30	35		32	37	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V _{OL}	Output LOW Voltage (Note 2)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1165		-880	-1165		-880	-1165		-880	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 3) $V_{PP} < 500 \text{ mV}$ $V_{PP} \ge 500 \text{ mV}$			-0.3 -0.3	-2.2 -2.0		-0.3 -0.3	-2.2 -2.0		-0.3 -0.3	V
I _{IH}	Input HIGH Current			150			150			150	μA
I _{IL}	Input LOW Current Others CLK				0.5 600			0.5 600			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary ± 0.3 V.

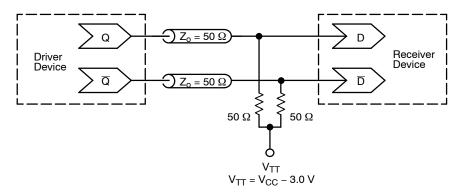
2. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V. 3. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin and 1 V.

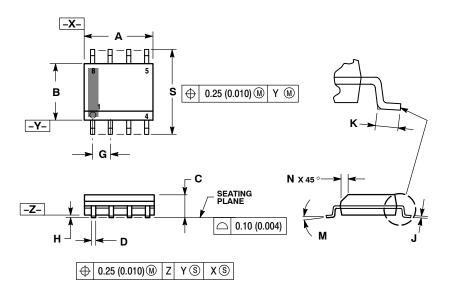
			-40°C	25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency	2.7			2.8			2.9			GHz
t _{PLH} t _{PHL}	Propagation Delay to Output CLK R		465 455	510 540	340 350	475 465	520 550	370 390	530 510	550 590	ps
t _S	Setup Time	150	0		150	0		150	0		ps
t _H	Hold Time	200	100		200	100		200	100		ps
t _{RR}	Reset Recovery	350	200		350	200		350	200		ps
t _{PW}	/ Minimum Pulse CLK Width Reset				400 500			400 500			ps
t _{JITTER}	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
V _{PP}	Input Swing (Note 2)	150		1000	150		1000	150		1000	mV
t _r t _f	Output Rise/Fall Times Q (20% – 80%)			320	120		320	120		320	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. V_{EE} can vary ± 0.3 V.

2. V_{PP} (min) is minimum input swing for which AC parameters are guaranteed.

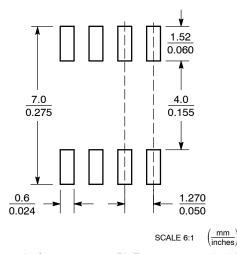



Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices.)

Resource Reference of Application Notes

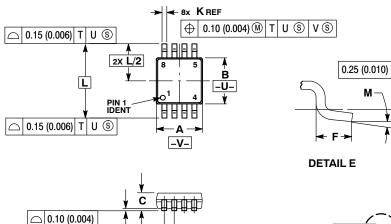
AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

PACKAGE DIMENSIONS


SOIC-8 NB CASE 751-07 **ISSUE AK**

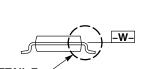
- NOTES: 1. DIMENSIONING AND TOLERANCING PER
- 2
- З.
- DIMENSIONING AND TOLERANGING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 4.
- 5. DIMENSION D DOES NOT INCLUDE DAMBAR DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.
- 6.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	7 BSC	0.050 BSC		
н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
Κ	0.40	1.27	0.016	0.050	
М	0 °	8 °	0 °	8 °	
Ν	0.25	0.50	0.010	0.020	
s	5.80	6.20	0.228	0.244	


SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, <u>SOLDERRM/D</u>.

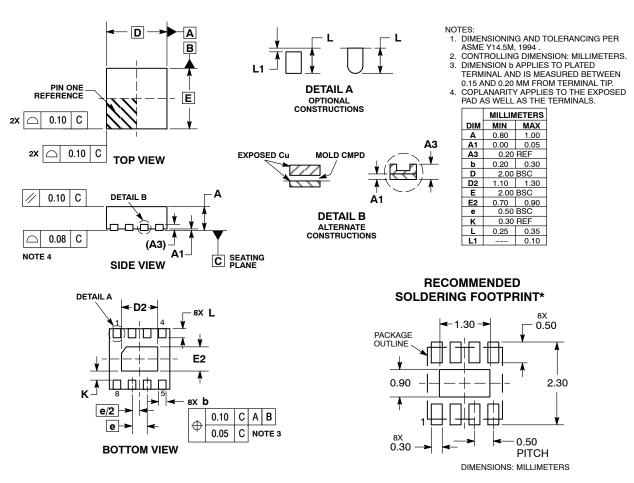
PACKAGE DIMENSIONS


TSSOP-8 CASE 948R-02 **ISSUE A**

G

-T- SEATING PLANE

D



- NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES							
DIM	MIN	MAX	MIN	MAX						
Α	2.90	3.10	0.114	0.122						
В	2.90	3.10	0.114	0.122						
С	0.80	1.10	0.031	0.043						
D	0.05	0.15	0.002	0.006						
F	0.40	0.70	0.016	0.028						
G	0.65	BSC	0.026 BSC							
K	0.25	0.40	0.010	0.016						
L	4.90	4.90 BSC		BSC						
Μ	0 °	6 °	0°	6 °						

PACKAGE DIMENSIONS

DFN8 2x2, 0.5P CASE 506AA ISSUE F

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, <u>SOLDERRM/D</u>.

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor and its officers, employees, subsidiaries, and distributors harmed for implantation in the human body. Should Buyer purchase or use ON Semiconducts has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distr

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Description 421 28 200 2010

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Flip Flops category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

5962-8955201EA MC74HC11ADTG MC10EP29MNG MC74HC11ADTR2G NLV14013BDTR2G NLV14027BDG NLX1G74MUTCG 703557B 746431H 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA M38510/06102BFA M38510/06101B2A NLV74HC74ADR2G TC4013BP(N,F) NLV14013BDG NLV74AC32DR2G NLV74AC74DR2G MC74HC73ADG CY74FCT16374CTPACT MC74HC11ADR2G 74LVT74D,118 74VHCT9273FT(BJ) MM74HC374WM 74ALVCH162374PAG TC7WZ74FK,LJ(CT CD54HCT273F HMC853LC3TR HMC723LC3CTR MM74HCT574MTCX MM74HCT273WM SN74LVC74APW SN74LVC74AD MC74HC73ADTR2G MC74HC11ADG SN74ALVTH16374GR M74HCT273B1R M74HC377RM13TR M74HC374RM13TR M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74AUP1G74DC,125 74VHC374FT(BJ) 74VHC9273FT(BJ) NLV14013BCPG