5 V ECL 4-Bit Parallel/Serial Converter

Description

The MC10E446 is an integrated 4-bit parallel to serial data converter. The device is designed to operate for NRZ data rates of up to 1.3 Gb/s. The chip generates a divide by 4 and a divide by 8 clock for both 4-bit conversion and a two chip 8-bit conversion function. The conversion sequence was chosen to convert the parallel data into a serial stream from bit D0 to D3. A serial input is provided to cascade two E446 devices for 8 bit conversion applications. Note that the serial output data clocks off of the negative input clock transition.

The SYNC input will asynchronously reset the internal clock circuitry. This pin allows the user to reset the internal clock conversion unit and thus select the start of the conversion process.

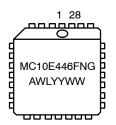
The MODE input is used to select the conversion mode of the device. With the MODE input LOW, or open, the device will function as a 4-bit converter. When the mode input is driven HIGH the internal load clock will change on every eighth clock cycle thus allowing for an 8-bit conversion scheme using two E446's. When cascaded in an 8-bit conversion scheme the devices will not operate at the 1.3 Gb/s data rate of a single device. Refer to the applications section of this data sheet for more information on cascading the E446.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a $0.01~\mu F$ capacitor and limit current sourcing or sinking to 0.5~mA. When not used, V_{BB} should be left open.

The 100 Series contains temperature compensation.

Features

- On Chip Clock ÷4 and ÷8
- 1.5 Gb/s Typical Data Rate Capability
- Differential Clock and Serial Inputs
- V_{BB} Output for Single-ended Input Applications
- Asynchronous Data Synchronization
- Mode Select to Expand to 8 Bits
- PECL Mode Operating Range:
 - $V_{CC} = 4.2 \text{ V}$ to 5.7 V with $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range:
 - $V_{CC} = 0 \text{ V}$ with $V_{EE} = -4.2 \text{ V}$ to -5.7 V
- Internal Input 50 kΩ Pulldown Resistors
- ESD Protection:
 - ♦ Human Body Model; > 2 kV
 - ♦ Machine Model; > 100 V
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test

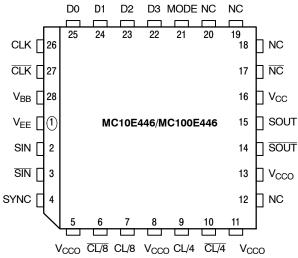

ON Semiconductor®

www.onsemi.com

PLCC-28 FN SUFFIX CASE 776-02

MARKING DIAGRAM*

A = Assembly Location


WL = Wafer Lot
 YY = Year
 WW = Work Week
 G = Pb-Free Package

*For additional marking information, refer to Application Note <u>AND8002/D</u>.

ORDERING INFORMATION

Device	Package	Shipping
MC10E446FNG	PLCC-28 (Pb-Free)	37 Units/Tube

- Flammability Rating:
 - ◆ UL 94 V-0 @ 0.125 in, Oxygen Index: 28 to 34
- Transistor Count = 525 devices
- Moisture Sensitivity Level: 3 (Pb-Free)
 - For Additional Information, see Application Note AND8003/D
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

 * All V_{CC} and V_{CCO} pins are tied together on the die.

Warning: All V_{CC} , V_{CCO} , and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. Pinout: PLCC-28 (Top View)

Table 1. PIN DESCRIPTION

PIN	FUNCTION
SIN D0 - D3 SOUT, SOUT CLK, CLK CL/4, CL/4 CL/8, CL/8 MODE SYNC VBB VCC, VCCO VEE NC	ECL Differential Serial Data Input ECL Parallel Data Inputs ECL Differential Serial Data Output ECL Differential Clock Inputs ECL Differential ÷4 Clock Output ECL Differential ÷8 Clock Output Conversion Mode 4-Bit/8-Bit ECL Conversion Synchronizing Input Reference Voltage Output Positive Supply Negative Supply No Connect

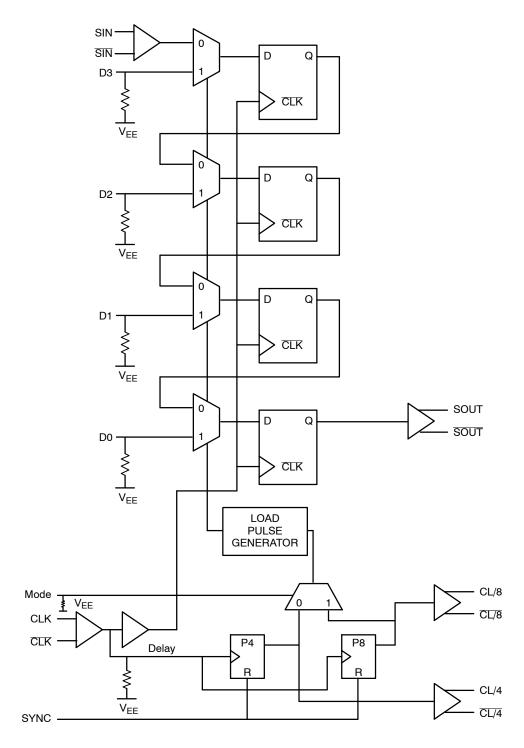


Figure 2. Logic Diagram

Table 2. FUNCTION TABLES

Mode	Conversion
L	4-Bit
H	8-Bit

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{c} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$	6 -6	V
I _{out}	Output Current	Continuous Surge		50 100	mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
T _A	Operating Temperature Range			0 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	PLCC-28	63.5 43.5	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	Standard Board	PLCC-28	22 to 26	°C/W
T _{sol}	Wave Solder (Pb-Free)			265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 4. 10E SERIES PECL DC CHARACTERISTICS (V_{CCx} = 5.0 V; V_{EE} = 0.0 V (Note 1))

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		126	151		126	151		126	151	mA
V _{OH}	Output HIGH Voltage (Note 2)	3980	4070	4160	4020	4105	4190	4090	4185	4280	mV
VOH _{SOUT}	Output HIGH Voltage SOUT/SOUT	3980		4210	4020		4240	4090		4330	mV
V _{OL}	Output LOW Voltage (Note 2)	3050	3210	3370	3050	3210	3370	3050	3227	3405	mV
V _{IH}	Input HIGH Voltage	3830	3995	4160	3870	4030	4190	3940	4110	4280	mV
V_{IL}	Input LOW Voltage	3050	3285	3520	3050	3285	3520	3050	3302	3555	mV
V_{BB}	Output Voltage Reference	3.62		3.74	3.65		3.75	3.69		3.81	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	0.5	0.3		0.5	0.25		0.3	0.2		μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary -0.46~V / +0.06~V.
- 2. Outputs are terminated through a 50 Ω resistor to V_{CC} 2.0 V.

Table 5. 10E SERIES NECL DC CHARACTERISTICS ($V_{CCx} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 1))

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		126	151		126	151		126	151	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1020	-930	-840	-980	-895	-810	-910	-815	-720	mV
VOH _{SOUT}	Output HIGH Voltage SOUT/SOUT	-1020		-790	-980		-760	-910		-670	mV
V _{OL}	Output LOW Voltage (Note 2)	-1950	-1790	-1630	-1950	-1790	-1630	-1950	-1773	-1595	mV
V _{IH}	Input HIGH Voltage	-1170	-1005	-840	-1130	-970	-810	-1060	-890	-720	mV
V_{IL}	Input LOW Voltage	-1950	-1715	-1480	-1950	-1715	-1480	-1950	-1698	-1445	mV
V_{BB}	Output Voltage Reference	-1.38		-1.27	-1.35		-1.25	-1.31		-1.19	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	0.5	0.3		0.5	0.065		0.3	0.2		μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary -0.46~V / +0.06~V.
- 2. Outputs are terminated through a 50 Ω resistor to V_{CC} 2.0 V.

Table 6. 100E SERIES PECL DC CHARACTERISTICS (V_{CCx} = 5.0 V; V_{EE} = 0.0 V (Note 1))

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		126	151		126	151		145	174	mA
V _{OH}	Output HIGH Voltage (Note 2)	3975	4050	4120	3975	4050	4120	3975	4050	4120	mV
VOH _{SOUT}	Output HIGH Voltage SOUT/SOUT	3975		4170	3975		4170	3975		4170	mV
V _{OL}	Output LOW Voltage (Note 2)	3190	3295	3380	3190	3255	3380	3190	3260	3380	mV
V _{IH}	Input HIGH Voltage	3835	3975	4120	3835	3975	4120	3835	3975	4120	mV
V _{IL}	Input LOW Voltage	3190	3355	3525	3190	3355	3525	3190	3355	3525	mV
V_{BB}	Output Voltage Reference	3.62		3.73	3.62		3.74	3.62		3.74	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	0.5	0.3		0.5	0.25		0.5	0.2		μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary -0.46~V / +0.8~V.
- 2. Outputs are terminated through a 50 Ω resistor to V_{CC} 2.0 V.

Table 7. 100E SERIES NECL DC CHARACTERISTICS ($V_{CCx} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 1))

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		126	151		126	151		145	174	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1025	-950	-880	-1025	-950	-880	-1025	-950	-880	mV
VOH _{SOUT}	Output HIGH Voltage SOUT/SOUT	-1025		-830	-1025		-830	-1025		-830	mV
V _{OL}	Output LOW Voltage (Note 2)	-1810	-1705	-1620	-1810	-1745	-1620	-1810	-1740	-1620	mV
V _{IH}	Input HIGH Voltage	-1165	-1025	-880	-1165	-1025	-880	-1165	-1025	-880	mV
V _{IL}	Input LOW Voltage	-1810	-1645	-1475	-1810	-1645	-1475	-1810	-1645	-1475	mV
V _{BB}	Output Voltage Reference	-1.38		-1.27	-1.38		-1.26	-1.38		-1.26	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	0.5	0.3		0.5	0.25		0.5	0.2		μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Input and output parameters vary 1:1 with V $_{CC}$. V $_{EE}$ can vary –0.46 V / +0.8 V. 2. Outputs are terminated through a 50 Ω resistor to V $_{CC}$ 2.0 V.

Table 8. AC CHARACTERISTICS ($V_{CCx} = 5.0 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ or $V_{CCx} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 1))

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
F _{MAX}	Max Conversion Frequency	1.3	1.6		1.3	1.6		1.3	1.6		Gb/s NRZ
t _{PLH} t _{PHL}	Propagation Delay to Output CLK to SOUT (Note 2) CLK to CL/4 CLK to CL/8 SYNC to CL/4, CL/8	1020 650 800 650	1200 850 1050 850	1480 1050 1300 1100	1020 650 800 650	1200 850 1050 850	1480 1050 1300 1100	1020 650 800 650	1200 850 1050 850	1480 1050 1300 1100	ps
t _s	Setup Time (Note 3) SIN, Dn	-200	-450		-200	-450		-200	-450		ps
t _h	Hold Time (Note 3) SIN, Dn	900	650		900	650		900	650		ps
t _{RR}	Reset Recovery Time SYNC	500	300		500	300		500	300		ps
t _{PW}	Min Pulse Width CLK, MR	300			300			300			ps
t _{JITTER}	Random Clock Jitter (RMS)		< 1			< 1			< 1		ps
V_{PP}	Input Voltage Swing (Differential Configuration)	150		1000	150		1000	150		1000	mV
t _r t _f	Rise/Fall Times (20% - 80%) SOUT Other	100 200	225 425	350 650	100 200	225 425	350 650	100 200	225 425	350 650	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 10 Series: V_{EE} can vary -0.46 V / +0.06 V. 100 Series: V_{EE} can vary -0.46 V / +0.8 V.
- 2. Propagation delays measured from negative going clock edge.
- 3. Relative to negative clock edge.

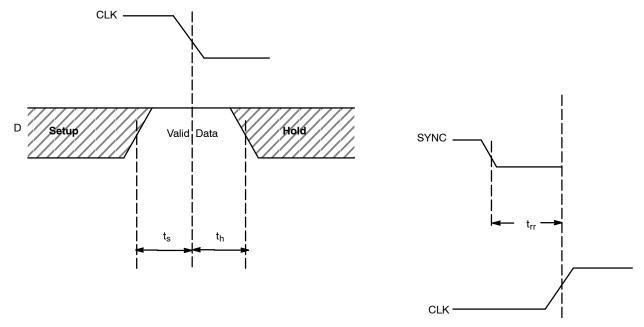
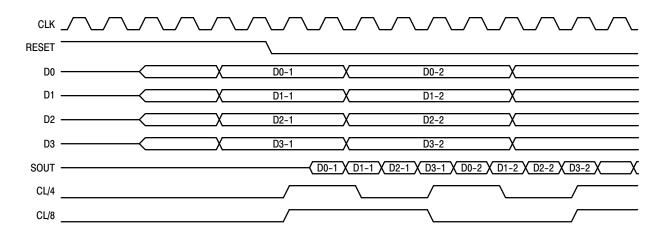
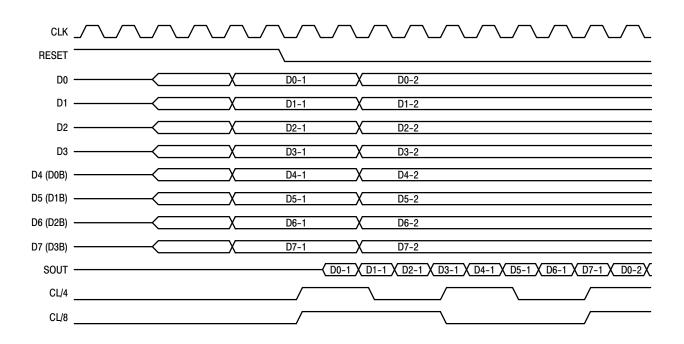




Figure 3.

Timing Diagram A. 4:1 Parallel to Serial Conversion

Timing Diagram B. 8:1 Parallel to Serial Conversion

Figure 4. Timing Diagrams

Applications Information

The MC10E446 is an integrated 4:1 parallel to serial converter. The chip is designed to work with the E445 device to provide both transmission and receiving of a high speed serial data path. The E446 can convert 4 bits of data into a 1.3 Gb/s NRZ data stream. The device features a SYNC input which allows the user to reset the internal clock circuitry and restart the conversion sequence (see timing diagram A).

The E446 features a differential serial input and internal divide by 8 circuitry to facilitate the cascading of two devices to build a 8:1 multiplexer. Figure 1 illustrates the architecture for a 8:1 multiplexer using two E446's; the timing diagram for this configuration can be found on the following page. Notice the serial outputs (SOUT) of the higher order converter feed the serial inputs of the the lower order device. This feed through of the serial inputs bounds the upper end of the frequency of operation. The clock to serial output propagation delay plus the setup time of the serial input pins must fit into a single clock period for the cascade architecture to function properly. Using the worst case values for these two parameters from the data sheet, TPD CLK to SOUT = 1480 ps and tS for SIN = -200 ps, yields a minimum period of 1280 ps or a clock frequency of 780 MHz.

The clock frequency is somewhat lower than that of a single converter, to increase this frequency some games can be played with the clock input of the higher order E446. By

delaying the clock feeding E446A relative to the clock of E446B the frequency of operation can be increased.

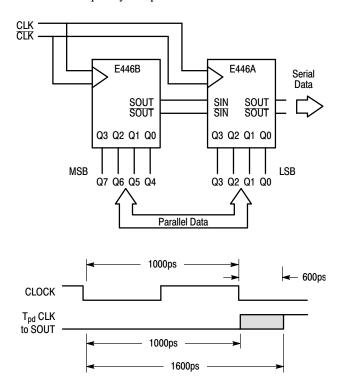


Figure 5. Cascaded 8:1 Converter Architecture

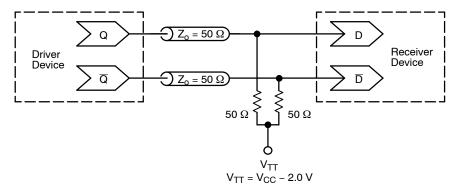


Figure 6. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices.)

Resource Reference of Application Notes

AN1405/D - ECL Clock Distribution Techniques

AN1406/D - Designing with PECL (ECL at +5.0 V)

AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit

AN1504/D - Metastability and the ECLinPS Family

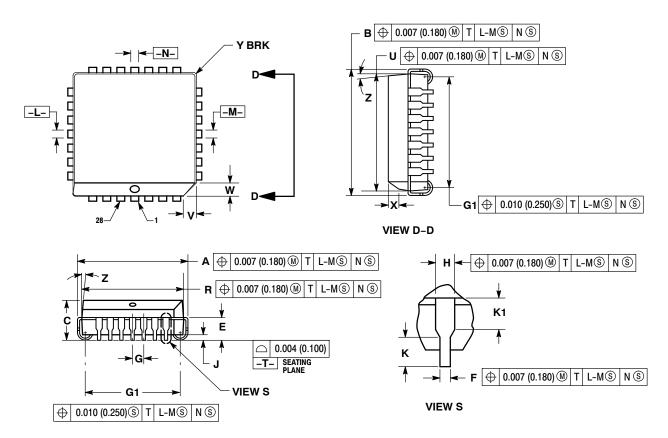
AN1568/D - Interfacing Between LVDS and ECL

AN1672/D - The ECL Translator Guide

AND8001/D - Odd Number Counters Design

AND8002/D - Marking and Date Codes

AND8020/D - Termination of ECL Logic Devices


AND8066/D - Interfacing with ECLinPS

AND8090/D - AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

28 LEAD PLLC

CASE 776-02 **ISSUE F**

NOTES:

- NOTES:

 1. DATUMS -L-, -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.

 2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE.

 3. DIMENSIONS R AND U DO NOT INCLUDE MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.

 4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 5. CONTROLLING DIMENSION: INCH.

 6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE
- PLASTIC BODY.

 7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

	INC	HES	MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
Α	0.485	0.495	12.32	12.57		
В	0.485	0.495	12.32	12.57		
c	0.165	0.180	4.20	4.57		
Е	0.090	0.110	2.29	2.79		
F	0.013	0.021	0.33	0.53		
G	0.050	BSC	1.27	BSC		
H	0.026	0.032	0.66	0.81		
7	0.020		0.51			
K	0.025		0.64			
R	0.450	0.456	11.43	11.58		
J	0.450	0.456	11.43	11.58		
٧	0.042	0.048	1.07	1.21		
W	0.042	0.048	1.07	1.21		
X	0.042	0.056	1.07	1.42		
Υ		0.020		0.50		
Z	2°	10°	2 °	10°		
G1	0.410	0.430	10.42	10.92		
K1	0.040		1.02			
_						

ECLinPS is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Counter Shift Registers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

5962-9172201M2A MC74HC597ADG MC100EP142MNG MC100EP016AMNG 5962-9172201MFA MC74HC164BDR2G

TC74HC165AP(F) 74AHC164T14-13 MC74LV594ADR2G NLV14094BDTR2G NLV74HC595ADTG MC74HC165AMNTWG

TPIC6C595PWG4 74VHC164MTCX CD74HC195M96 CD4073BM96 CD4053BM96 MM74HC595MTCX 74HCT164T14-13

74HCT164S14-13 74HC4094D-Q100J NLV14014BFELG NLV74HC165ADR2G NLV74HC589ADTR2G NPIC6C595D-Q100,11

NPIC6C595PW,118 NPIC6C596ADJ NPIC6C596APW-Q100J NPIC6C596D-Q100,11 BU4094BCF-E2 BU4094BCFV-E2 74HC164D14

74HC164T14-13 TPIC6C596PWRG4 STPIC6D595MTR STP08CP05MTR CD74HC123E 74HC164D.653 74HC165D.653