MC10H103

Quad 2-Input OR Gate

Description

The MC 10 H 103 is a quad 2 -input OR gate. The MC10H103 provides one gate with OR/NOR outputs. This MECL $10 \mathrm{H}^{\mathrm{TM}}$ part is a functional/pinout duplication of the standard MECL $10 \mathrm{~K}^{\text {TM }}$ family part, with 100% improvement in propagation delay, and no increases in power-supply current.

Features

- Propagation Delay, 1.0 ns Typical
- Power Dissipation $25 \mathrm{~mW} /$ Gate (same as MECL 10K)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K Compatible
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

$\mathrm{V}_{\mathrm{CC} 1}=\operatorname{Pin} 1$
$\mathrm{~V}_{\mathrm{CC} 2}=\operatorname{Pin} 16$
$\mathrm{~V}_{\mathrm{EE}}=\operatorname{Pin} 8$

Figure 1. Logic Diagram

Pin assignment is for Dual-in-Line Package.
Figure 2. Pin Assignment

MARKING DIAGRAMS*

PDIP-16

PLLC-20

$$
\begin{array}{ll}
\text { A } & =\text { Assembly Location } \\
\text { WL, L } & =\text { Wafer Lot } \\
\text { YY, Y } & =\text { Year } \\
\text { WW, W } & =\text { Work Week } \\
\text { G } & =\text { Pb-Free Package }
\end{array}
$$

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

Device	Package	Shipping
MC10H103FNG	PLLC-20 (Pb-Free)	46 Units / Tube
MC10H103PG	PDIP-16 (Pb-Free)	25 Units / Tube

MC10H103

Table 1. MAXIMUM RATINGS

Symbol	Characteristic	Rating	Unit
V_{EE}	Power Supply $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	-8.0 to 0	Vdc
V_{I}	Input Voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	0 to V_{EE}	V
$\mathrm{I}_{\text {out }}$	Output Current Continuous Surge	100	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	0 to +75	
$\mathrm{~T}_{\mathrm{stg}}$	Storage Temperature Range Plastic Ceramic	-55 to +150	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 2. ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%\right)$ (Note 1)

Symbol	Characteristic	0°		25°		75°		Unit
		Min	Max	Min	Max	Min	Max	
I_{E}	Power Supply Current	-	29	-	26	-	29	mA
$\mathrm{l}_{\text {inH }}$	Input Current High	-	425	-	265	-	265	$\mu \mathrm{A}$
1 inL	Input Current Low	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$
V_{OH}	High Output Voltage	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
$\mathrm{V}_{\text {OL }}$	Low Output Voltage	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
V_{IH}	High Input Voltage	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
V_{IL}	Low Input Voltage	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

1. Each MECL 10 H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Outputs are terminated through a 50Ω resistor to -2.0 V .

Table 3. AC CHARACTERISTICS

	Characteristic	$0{ }^{\circ}$		25°		75°		Unit
Symbol		Min	Max	Min	Max	Min	Max	
t_{pd}	Propagation Delay	0.4	1.3	0.4	1.3	0.45	1.45	ns
t_{r}	Rise Time	0.5	1.7	0.5	1.8	0.5	1.9	ns
t_{f}	Fall Time	0.5	1.7	0.5	1.8	0.5	1.9	ns

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

MC10H103

PACKAGE DIMENSIONS

NOTES:

1. DIMENSIONS AND TOLERANCING PER ANSI Y14.5M, 1982.
2. DIMENSIONS IN INCHES
3. DATUMS - L-, -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.
4. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE
5. DIMENSIONS R AND U DO NOT INCLUDE MOLD FLASH ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.
6. DIMENSIONS IN THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300)
DIMENSIONS R AND U ARE DETERMINED AT THE DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY
EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE
BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY
MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO

	INCHES		MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
A	0.385	0.395	9.78	10.03		
B	0.385	0.395	9.78	10.03		
C	0.165	0.180	4.20	4.57		
E	0.090	0.110	2.29	2.79		
F	0.013	0.021	0.33	0.53		
G	0.050		BSC	1.27		BSC
H	0.026	0.032	0.66	0.81		
J	0.020	---	0.51	---		
K	0.025	---	0.64	---		
R	0.350	0.356	8.89	9.04		
U	0.350	0.356	8.89	9.04		
V	0.042	0.048	1.07	1.21		
W	0.042	0.048	1.07	1.21		
\mathbf{X}	0.042	0.056	1.07	1.42		
Y	---	0.020	---	0.50		
\mathbf{Z}	2°	10°	2°	10°		
G1	0.310	0.330	7.88	8.38		
K1	0.040	---	1.02	---		

MC10H103

PACKAGE DIMENSIONS

PDIP-16
P SUFFIX
CASE 648-08
ISSUE V

NOTES

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES.
2. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACKAGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3.
3. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH.
4. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C.
5. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.
6. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY.
7. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE CORNERS).

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	----	0.210	---	5.33
A1	0.015	----	0.38	---
A2	0.115	0.195	2.92	4.95
b	0.014	0.022	0.35	0.56
b2	0.060 TYP	1.52 TYP		
C	0.008	0.014	0.20	0.36
D	0.735	0.775	18.67	19.69
D1	0.005	---	0.13	---
E	0.300	0.325	7.62	8.26
E1	0.240	0.280	6.10	7.11
e	0.100	BSC	2.54 BSC	
eB	----	0.430	---	10.92
L	0.115	0.150	2.92	3.81
M	----	10°	---	10°

STYLE 1:
PIN 1. CATHODE
2. CATHODE
3. CATHODE
4. CATHODE

CATHODE
CATHODE
CATHODE
CATHODE
CATHODE
ANODE
ANODE
ANODE
ANODE
ANODE
ANODE
5. ANODE
6. ANODE

STYLE 2 .
PIN 1. COMMON DRAIN COMMON DRAIN 3. COMMON DRAIN 4. COMMON DRAIN 5. COMMON DRAIN 6. COMMON DRAIN 7. COMMON DRAIN 7. COMMON DRAIN
8. COMMON DRAIN 8. COMM
9. GATE 9. GATE 10. SOURC
11. GATE
2. SOURCE
3. GATE
14. SOURC
14. SOURC
16. SOURCE

MECL is trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.
ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Logic Gates category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
5962-8769901BCA 74HC85N NL17SG08P5T5G NL17SG32DFT2G NLU1G32AMUTCG NLV7SZ58DFT2G NLVHC1G08DFT1G NLVVHC1G14DTT1G NLX2G08DMUTCG NLX2G08MUTCG MC74HCT20ADR2G 091992B 091993X 093560G 634701C 634921A NL17SG32P5T5G NL17SG86DFT2G NLU1G32CMUTCG NLV14001UBDR2G NLVVHC1G132DTT1G NLVVHC1G86DTT1G NLX1G11AMUTCG NLX1G97MUTCG 746427X 74AUP1G17FW5-7 74LS38 74LVC1G08Z-7 74LVC32ADTR2G 74LVC1G125FW4-7 74LVC08ADTR2G MC74HCT20ADTR2G NLU1G08CMX1TCG NLV14093BDTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G NLV17SZ126DFT2G NLV27WZ17DFT2G NLV74HC02ADR2G NLV74HC08ADR2G NLVVHC1GT32DFT1G 74HC32S14-13 74LS133 74LVC1G32Z-7 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 M38510/06202BFA NLV74HC08ADTR2G NLV74HC14ADR2G

