LV5725JA

Bi-CMOS LSI Step-down Switching Regulator

150

°C

Overview

The LV5725JA is a step-down voltage switching regulator.

Functions

- Wide input dynamic range: 4.5V to 50V.
- Built-in pulse-by-pulse OCP circuit: detection is on resistance of an external MOS.
- Over current protection: HICCUP mode.
- Load-independent soft start circuit
- Synchronous operation by external signal.
- External voltage is usable when output voltage is high.

Specifications

Maximum junction temperature

Absolute Maximum Ratings at Ta = 25°C

Parameter Conditions Symbol Ratings Unit v Supply voltage 55 VIN max VIN, SW, OUT, PGOOD 55 v HDRV, CBOOT 61 V Allowable pin voltage LDRV 6.0 v Between CBOOT to SW v 6.0 Between CBOOT to HDRV EN, ILIM V_{IN}+0.3 v Between VIN to ILIM 1.0 v VDD 6.0 v SS, FB, COMP, RT, SYNC V_{DD}+0.3 v Pd max W Allowable Power dissipation Mounted on a specified board. 1.45 Operating temperature -40 to +85 °C Topr Storage temperature Tstg -55 to +150 °C Parameter Symbol Conditions Ratings Unit

Specified board : 58.0mm × 78.0mm × 1.6mm, fiberglass epoxy printed board.

Tj max

Caution 1) Absolute maximum ratings represent the value which cannot be exceeded for any length of time.

Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current,

high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- Current mode type.
- - Thermal shutdown.
 - ON/OFF pin
 - · Power good pin

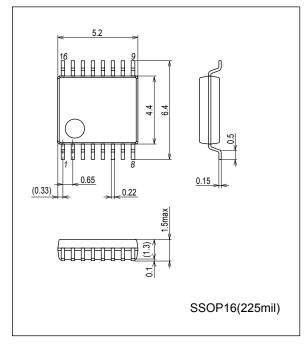
LV5725JA

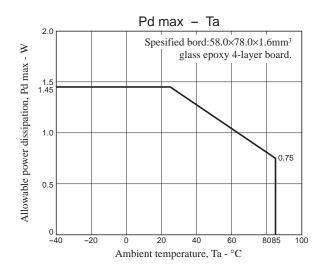
Recommended Operating Range at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range	VIN		4.5 to 50	V
Error amplifier input voltage	V _{FB}		0 to 1.6	V
Oscillatory frequency	FOSC		50 to 500	kHz

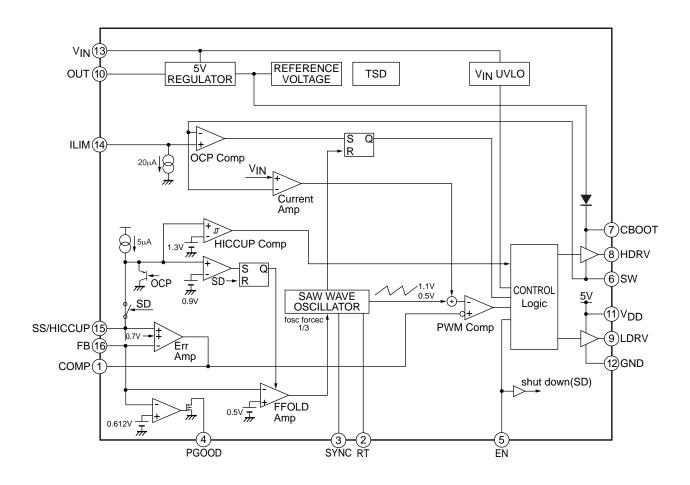
Electrical Characteristics at $Ta = 25^{\circ}C$, $V_{IN} = 12V$

Parameter	Symbol	Conditions	Ratings			Unit
	Cymbol	Conditione	min	typ	max	01m
Reference voltage block			·			
Internal reference voltage	Vref	Including offset of E/A	0.698	0.708	0.718	V
5V power supply	V _{DD}	I _{OUT} = 0 to 5mA	4.7	5.2	5.7	V
Triangular waveform oscillator block						
Oscillation frequency	FOSC	RT= 56kΩ	317	365	412	kHz
Frequency variation	FOSC DV	V _{IN} = 4.5 to 50V		1		%
Fold back detection voltage	VOSC FB	After power is supplied to SS, voltage is detected FB.		0.5		V
Fold back oscillation frequency	FOSC FB	RT= 56kΩ, V _{FB} = 0V	100	130	160	kHz
ON/OFF circuit block						
IC start-up voltage	V_{EN} on		-	2.5	3.0	V
Hysteresis of startup voltage	V _{EN} hys		0.3	0.6	-	V
Soft start circuit block						
Soft start source current	I _{SS} SC	EN > 3.0V	4	5	6	μA
Soft start sink current	I _{SS} SK	EN < 1V, V _{DD} = 5V		2		mA
Soft start end voltage	V _{SS} END		0.7	0.9	1.1	V
UVLO circuit block						
UVLO voltage	V _{UVLO}		3.7	4.0	4.3	V
Hysteresis of UVLO	V _{UVLO} H			0.3		V
Error amplifier						
Input bias current	IEA IN				100	nA
Error amplifier gain	G _{EA}		1000	1400	1800	μΑ/\
Range of common-mode input voltage	V _{EA R}	V _{IN} = 4.5 to 50V	0		1.6	V
Output sink current	IEA OSK	FB = 1.0V		-100		μA
Output source current	IEA OSC	FB = 0V		100		μA
Current detection amplifier gain	GISNS			2.4		
Over current limiter circuit block						
Reference current	ILIM		-10%	20	+10%	μA
Over current detection comparator offset voltage	V _{LIM_OFS}		-5		+5	mV
Range of over current detection	V _{LIM_CM}		V _{IN} -0.45		V _{IN}	V
comparator common mode input	_					
PWM comparator	1		· · ·			
Input threshold voltage	Vt max	Duty cycle = D _{MAX} , SW = V _{IN}	1.15	1.25	1.35	V
	Vt0	Duty cycle = 0%, SW = V_{IN}	0.5	0.6	0.7	V
Maximum ON duty	D _{MAX}		92			%

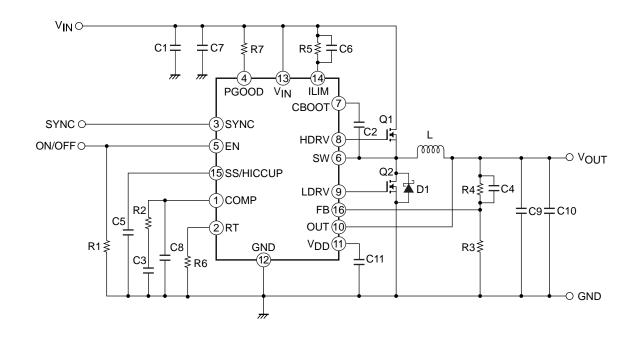

Continued on next page.

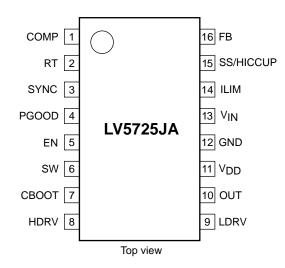

Continued from preceding page.

	Symbol	Conditions	Ratings			
Parameter			min	typ	max	Unit
Power good						
Power good "L" sink current	IPGL	PGOOD = 5V		5		mA
Power good "H" sink current	I _{PG} H	PGOOD = 5V			1	μΑ
Power good voltage	PG _{thresh}	When FB voltage rises		0.612		V
Hysteresis of power good	PG _{hys}			12		mV
Output block	• -	·				
High side output ON resistance (upper)	R _{ONH} _HIGH	CBOOT – HDRV = -0.1V		12		Ω
High side output ON resistance (lower)	R _{ONL} _HIGH	HDRV – SW = +0.1V		3.3		Ω
Low side output ON resistance (upper)	R _{ONH} LOW	$V_{DD} - LDRV = -0.1V$		7.9		Ω
Low side output ON resistance (lower)	R _{ONL} LOW	LDRV – GND = +0.1V		3.8		Ω
High side output ON current (upper)	I _{ONH_} HIGH	CBOOT – HDRV = -4.5V	160			mA
High side output ON current (lower)	I _{ONL_} HIGH	HDRV – SW = +4.5V	330			mA
Low side output ON current (upper)	I _{ONH_} LOW	V _{DD} – LDRV = -5.2V	190			mA
Low side output ON current (lower)	I _{ONL_} LOW	LDRV – GND = +5.2V	250			mA
Entire device	•	•				
Standby current	ICCS	EN < 1V			1	μA
Average current consumption	ICCA	EN > 3.0V		2.5		mA


Package Dimensions

unit : mm (typ) 3178B




Block Diagram

Sample application circuit

Pin Assignment

Pin Function

Pin No.	Pin name	Description
1	COMP	Error amplifier output pin. Make sure to connect a phase compensation network between COMP and GND.
2	RT	Oscillating frequency setting pin. Make sure to connect a resistor between this pin and GND.
3	SYNC	External synchronous signal input pin.
4	PGOOD	Power good pin.
5	EN	ON/OFF pin.
6	SW	This pin is connected to switching node. Connect the source of Nch MOSFET to this pin.
7	СВООТ	Bootstrap capacitor connected pin. This pin is used as gate driving power supply for external Nch MOSFET. Make sure to connect a capacitor between CBOOT and SW.
8	HDRV	External upper MOSFET gate driving pin.
9	LDRV	External lower MOSFET gate driving pin.
10	OUT	Internal regulator power supply pin. This pin is connected to VOUT.
11	V _{DD}	Power supply pin for gate drive of the external lower MOS-FET.
12	GND	Ground pin. GND pin voltage is the reference for each reference voltage.
13	VIN	Power supply pin. This pin is monitored by UVLO function. When the voltage of this pin becomes higher than 4.3V by UVLO function, the IC starts up and mode shifts to soft start operation.
14	ILIM	Reference current pin for current detection. The inlet current of approx. 20µA flows into this pin. Connect a resistor externally between this pin and VIN and when the voltage supplied to SW pin is lower than the pin voltage of this resistor, the upper Nch MOSFET is turned off by current limiter comparator. This operation is reset at every PWM pulse.
15	SS/HICCUP	Capacitor connection pin for soft start. This pin enables to charge the soft start capacitor by 5µA. (approx) When this pin turns approx. 0.9V, soft start period ends and frequency fold back function is activated.
16	FB	Error amplifier reverse input pin. Converter operates to set this pin to 0.708V. The output voltage divided by the external resistance is applied to this pin. After soft start, frequency fold back function operates when the voltage of this pin becomes 0.5V or lower. And oscillating frequency decreases together with FB voltage.

I/O pin equivalent circuit chart

Pin No.	Pin No.	Equivalent Circuit		
1	СОМР	$V_{DD} (1) $ $Z k \Omega$ $COMP (1) $ $U = 1$ $U $		
2	RT	VDD (1) $10k\Omega$ RT (2) 500Ω 500Ω FT GND (2)		
3	SYNC	VDD (1) SYNC (3) SYNC (3) GND (12)		
4	PGOOD	V _{DD} (1) PGOOD (4) ↓ 1kΩ ↓ 1kΩ ↓ 1kΩ		
5	EN	VDD (1) FN (5) $(462k\Omega 365k\Omega + 650k\Omega + $		
6	SW	CBOOT \overline{O} V_{IN} \overline{O}		

Continued on next page.

Continued from preceding page.

Pin No.	Pin No.	Equivalent Circuit
7	CBOOT	$V_{DD} (1) \longrightarrow W_{DC}$ $CBOOT (7) \longrightarrow W_{IN} (13) \longrightarrow W_{IN} ($
8	LDRV	CBOOT (7 HDRV (8) SW (6) GND (2)
9	HDRV	
10	OUT	
11	V _{DD}	
12, 13	GND, V _{IN}	
14	ILIM	VIN (13 CRUE CRUE CRUE CRUE CRUE CRUE CRUE CRUE

Continued on next page.

Continued from preceding page.

Pin No.	Pin No.	Equivalent Circuit
15	SS/HICCUP	VDD (1) SSS/HICCUP (5) GND (2) VDD (1) (1) (1) (2) (3) (3) (4) (5) (4) (5) (5) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7
16	FB	V _{DD} (1) FB (6) GND (2) VDD (1) FB (6) FB (6) FB (6) FB (6) FB (7) FB (7)

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized usplication, Buyer shall indeminify and hold SCILLC was negligent regarding the design or manufacture of the part. SCILLC sis an Equal Opportunity/Affirmative Action Employeer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Voltage Regulators - Switching Regulators category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

LX7186A 622616F 632259F FAN53610AUC33X MP2148GQD-33-P MP2374DS-LF-Z EN6310QA NCP81108MNTXG NCP81109BMNTXG L79M05TL-E FAN48610BUC45X R3 LV5710GP-TE-L-H 430464BB 455605G AZ7500BMTR-E1 MIC23156-0YML-T5 MIC4930YFL-T5 MP8763GLE-P KE177614 418569H 455596X 511087D 030908C 063375FB 067501FB 099508GB EP5358LUA NCP81102MNTXG 715715H FAN48611UC53X FAN53611AUC12X MAX809TTR MAX77596ETBC+T MAX77596ETBB+T MAX16905AUE/V+ NCP6332CMTAATBG NCV890203MWTXG LX7176A MP2162AGQH-Z MAX17544ATP+T MCP1623T-IMC MCP1642B-18IMC MCP1642BT-30I/MS MCP1642D-50IMC MCP1642D-50IMS MCP1642D-ADJIMC MC34063LBBGEVB MCP1252T-33X50IMS MCP1259-EMF