LV5725JA

Bi-CMOS LSI

Step-down Switching
ON Semiconductor ${ }^{\text {® }}$
http://onsemi.com Regulator

Overview

The LV5725JA is a step-down voltage switching regulator.

Functions

- Wide input dynamic range: 4.5 V to 50 V . - Current mode type
- Built-in pulse-by-pulse OCP circuit: detection is on resistance of an external MOS.
- Over current protection: HICCUP mode.
- Thermal shutdown.
- Load-independent soft start circuit
- Synchronous operation by external signal.
- External voltage is usable when output voltage is high.
- ON/OFF pin
- Power good pin

Specifications
Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter		Symbol	Conditions	Ratings	Unit
Supply voltage		VIN \max		55	V
	$V_{\text {IN }}$, SW, OUT, PGOOD			55	V
	HDRV, CBOOT			61	V
	LDRV			6.0	V
	Between CBOOT to SW Between CBOOT to HDRV			6.0	V
	EN, ILIM			$\mathrm{V}_{1 \mathrm{~N}}+0.3$	V
	Between V IN to ILIM			1.0	V
	$V_{\text {DD }}$			6.0	V
	SS, FB, COMP,RT, SYNC			$\mathrm{V}_{\mathrm{DD}}+0.3$	V
Allowable Power dissipation		Pd max	Mounted on a specified board. *	1.45	W
Operating temperature		Topr		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature		Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$
Parameter		Symbol	Conditions	Ratings	Unit
Maximum junction temperature		Tj max		150	${ }^{\circ} \mathrm{C}$

* Specified board : $58.0 \mathrm{~mm} \times 78.0 \mathrm{~mm} \times 1.6 \mathrm{~mm}$, fiberglass epoxy printed board.

Caution 1) Absolute maximum ratings represent the value which cannot be exceeded for any length of time.
Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Recommended Operating Range at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range	V_{IN}		4.5 to 50	V
Error amplifier input voltage	V_{FB}		0 to 1.6	V
Oscillatory frequency	$\mathrm{F}_{\mathrm{OSC}}$		50 to 500	kHz

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=12 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Reference voltage block						
Internal reference voltage	Vref	Including offset of E/A	0.698	0.708	0.718	V
5 V power supply	VDD	IOUT $=0$ to 5 mA	4.7	5.2	5.7	V
Triangular waveform oscillator block						
Oscillation frequency	Fosc	$\mathrm{RT}=56 \mathrm{k} \Omega$	317	365	412	kHz
Frequency variation	FosC DV	$\mathrm{V}_{\text {IN }}=4.5$ to 50 V		1		\%
Fold back detection voltage	$V_{\text {OSC }}$ FB	After power is supplied to SS , voltage is detected FB.		0.5		V
Fold back oscillation frequency	FOSC FB	$\mathrm{RT}=56 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$	100	130	160	kHz
ON/OFF circuit block						
IC start-up voltage	$\mathrm{V}_{\text {EN }}$ on		-	2.5	3.0	V
Hysteresis of startup voltage	$V_{E N}$ hys		0.3	0.6	-	V
Soft start circuit block						
Soft start source current	ISS SC	$\mathrm{EN}>3.0 \mathrm{~V}$	4	5	6	$\mu \mathrm{A}$
Soft start sink current	ISS SK	$\mathrm{EN}<1 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$		2		mA
Soft start end voltage	$\mathrm{V}_{\text {SS }} \mathrm{END}$		0.7	0.9	1.1	V
UVLO circuit block						
UVLO voltage	VUVLO		3.7	4.0	4.3	V
Hysteresis of UVLO	VUVLO H			0.3		V
Error amplifier						
Input bias current	${ }^{\text {I EA AN }}$				100	nA
Error amplifier gain	GEA		1000	1400	1800	$\mu \mathrm{A} / \mathrm{V}$
Range of common-mode input voltage	VEAR	$\mathrm{V}_{\text {IN }}=4.5$ to 50 V	0		1.6	V
Output sink current	IEA OSK	$\mathrm{FB}=1.0 \mathrm{~V}$		-100		$\mu \mathrm{A}$
Output source current	IEA OSC	$\mathrm{FB}=0 \mathrm{~V}$		100		$\mu \mathrm{A}$
Current detection amplifier gain	GISNS			2.4		
Over current limiter circuit block						
Reference current	ILIM		-10\%	20	+10\%	$\mu \mathrm{A}$
Over current detection comparator offset voltage	VLIM_OFS		-5		+5	mV
Range of over current detection comparator common mode input	VLIM_CM		$\mathrm{V}_{1 \mathrm{~N}} \mathrm{-} 0.45$		V_{IN}	V
PWM comparator						
Input threshold voltage	Vt max	Duty cycle $=\mathrm{D}_{\text {MAX }}, \mathrm{SW}=\mathrm{V}_{\text {IN }}$	1.15	1.25	1.35	V
	Vt0	Duty cycle $=0 \%$, $\mathrm{SW}=\mathrm{V}_{\text {IN }}$	0.5	0.6	0.7	V
Maximum ON duty	$\mathrm{D}_{\text {MAX }}$		92			\%

Continued from preceding page.

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Power good						
Power good "L" sink current	${ }^{\text {IPGL }}$	PGOOD $=5 \mathrm{~V}$		5		mA
Power good "H" sink current	${ }^{\text {P PGH }}$	PGOOD $=5 \mathrm{~V}$			1	$\mu \mathrm{A}$
Power good voltage	$P G_{\text {thresh }}$	When FB voltage rises		0.612		V
Hysteresis of power good	$P G_{\text {hys }}$			12		mV
Output block						
High side output ON resistance (upper)	RONH_HIGH	CBOOT $-\mathrm{HDRV}=-0.1 \mathrm{~V}$		12		Ω
High side output ON resistance (lower)	RONL_HIGH	HDRV - SW = +0.1V		3.3		Ω
Low side output ON resistance (upper)	RONH_LOW	$\mathrm{V}_{\text {DD }}-\mathrm{LDRV}=-0.1 \mathrm{~V}$		7.9		Ω
Low side output ON resistance (lower)	RONL_LOW	LDRV - GND $=+0.1 \mathrm{~V}$		3.8		Ω
High side output ON current (upper)	${ }^{\text {IONH_HIGH }}$	CBOOT $-\mathrm{HDRV}=-4.5 \mathrm{~V}$	160			mA
High side output ON current (lower)	IONL_HIGH	HDRV $-\mathrm{SW}=+4.5 \mathrm{~V}$	330			mA
Low side output ON current (upper)	IONH_LOW	$\mathrm{V}_{\mathrm{DD}}-\mathrm{LDRV}=-5.2 \mathrm{~V}$	190			mA
Low side output ON current (lower)	IONL_LOW	LDRV - GND $=+5.2 \mathrm{~V}$	250			mA
Entire device						
Standby current	$\mathrm{I}_{\text {CCS }}$	$\mathrm{EN}<1 \mathrm{~V}$			1	$\mu \mathrm{A}$
Average current consumption	ICCA	EN > 3.0V		2.5		mA

Package Dimensions

unit : mm (typ)
3178B

Block Diagram

Sample application circuit

Pin Assignment

$\begin{array}{r} \text { COMP } 1 \\ \text { RT } 2 \end{array}$	LV5725JA	
		16) FB
		15 SS/HICCUP
SYNC 3		14 ІІм
PGOOD 4		13 V IN
En 5		12 GND
sw 6		$11 \mathrm{~V}_{\mathrm{DD}}$
своот 7		10 Out
HDRV 8		9 LDRV

Pin Function

Pin No.	Pin name	
1	COMP	Error amplifier output pin. Make sure to connect a phase compensation network between COMP and GND.
2	RT	Oscillating frequency setting pin. Make sure to connect a resistor between this pin and GND.
3	SYNC	External synchronous signal input pin.
4	PGOOD	Power good pin.
5	EN	ON/OFF pin.
6	SW	This pin is connected to switching node. Connect the source of Nch MOSFET to this pin.
7	CBOOT	Bootstrap capacitor connected pin. This pin is used as gate driving power supply for external Nch MOSFET. Make sure to connect a capacitor between CBOOT and SW.
8	HDRV	External upper MOSFET gate driving pin.
9	LDRV	External lower MOSFET gate driving pin.
10	OUT	Internal regulator power supply pin. This pin is connected to VOUT.
12	VDD	Power supply pin for gate drive of the external lower MOS-FET.
13	VIN	Ground pin. GND pin voltage is the reference for each reference voltage.
14	ILIM	Power supply pin. This pin is monitored by UVLO function. When the voltage of this pin becomes higher than 4.3V by UVLO function, the IC starts up and mode shifts to soft start operation.
15	SS/HICCUP	Reference current pin for current detection. The inlet current of approx. 20 between this pin and VIN and when the voltage supplied to SW pin is lower than the pin voltage of this resistor, the upper Nch MOSFET is turned off by current limiter comparator. This operation is reset at every PWM pulse.
16	FB	Capacitor connection pin for soft start. This pin enables to charge the soft start capacitor by 5 5A. (approx) When this pin turns approx. 0.9V, soft start period ends and frequency fold back function is activated.
12	Error amplifier reverse input pin. Converter operates to set this pin to 0.708V. The output voltage divided by the external resistance is applied to this pin. After soft start, frequency fold back function operates when the voltage of this pin becomes $0.5 V ~ o r ~ l o w e r . ~ A n d ~ o s c i l l a t i n g ~ f r e q u e n c y ~ d e c r e a s e s ~ t o g e t h e r ~ w i t h ~ F B ~ v o l t a g e . ~$	

I/O pin equivalent circuit chart
Pin No.

Continued on next page.

LV5725JA
Continued from preceding page.

Pin No.	Pin No.	Equivalent Circuit
7	CBOOT	
8	LDRV	
9	HDRV	
10	OUT	
11	V_{DD}	
12, 13	GND, VIN	
14	ILIM	

Continued on next page.

Continued from preceding page.

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Voltage Regulators - Switching Regulators category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
LX7186A 622616F 632259F FAN53610AUC33X MP2148GQD-33-P MP2374DS-LF-Z EN6310QA NCP81108MNTXG NCP81109BMNTXG L79M05TL-E FAN48610BUC45X R3 LV5710GP-TE-L-H 430464BB 455605G AZ7500BMTR-E1 MIC23156-0YML-T5 MIC4930YFL-T5 MP8763GLE-P KE177614 418569H 455596X 511087D 030908C 063375FB 067501FB 099508GB EP5358LUA NCP81102MNTXG 715715H FAN48611UC53X FAN53611AUC12X MAX809TTR MAX77596ETBC+T $\underline{\text { MAX77596ETBB+T MAX16905AUE/V }+~ N C P 6332 C M T A A T B G ~ N C V 890203 M W T X G ~ L X 7176 A ~ M P 2162 A G Q H-Z ~ M A X 17544 A T P+T ~}$ MCP1623T-IMC MCP1642B-18IMC MCP1642BT-30I/MS MCP1642D-50IMC MCP1642D-50IMS MCP1642D-ADJIMC
MC34063LBBGEVB MCP1252T-33X50IMS MCP1259-EMF

