Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note: Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.

Renesas Technology Corp. Customer Support Dept. April 1, 2003

Description

The M16C/62M group of single-chip microcomputers are built using the high-performance silicon gate CMOS process using a M16C/60 Series CPU core and are packaged in a 100-pin plastic molded QFP. These single-chip microcomputers operate using sophisticated instructions featuring a high level of instruction efficiency. With 1M bytes of address space, low voltage (2.2V to 3.6V), they are capable of executing instructions at high speed. They also feature a built-in multiplier and DMAC, making them ideal for controlling office, communications, industrial equipment, and other high-speed processing applications.

The M16C/62M group includes a wide range of products with different internal memory types and sizes and various package types.

Features

Memory capacity	ROM (See Figure 1.1.4. ROM Expansion)
	RAM 10K to 20K bytes
 Shortest instruction execution time 	100ns (f(XIN)=10MHz, Vcc=2.7V to 3.6V)
	142.9ns (f(XIN)=7MHz, Vcc=2.2V to 3.6V with software one-wait)
Supply voltage	2.7V to 3.6V (f(XIN)=10MHz, without software wait)
	2.4V to 2.7V (f(XIN)=7MHz, without software wait)
	2.2V to 2.4V (f(XIN)=7MHz with software one-wait)
Low power consumption	28.5mW (VCC = 3V, f(XIN)=10MHz, without software wait)
• Interrupts	25 internal and 8 external interrupt sources, 4 software
	interrupt sources; 7 levels (including key input interrupt)
Multifunction 16-bit timer	5 output timers + 6 input timers
• Serial I/O	5 channels
	(3 for UART or clock synchronous, 2 for clock synchronous)
• DMAC	2 channels (trigger: 24 sources)
A-D converter	10 bits X 8 channels (Expandable up to 10 channels)
D-A converter	8 bits X 2 channels
CRC calculation circuit	1 circuit
Watchdog timer	1 line
Programmable I/O	87 lines
• Input port	1 line (P85 shared with $\overline{\text{NMI}}$ pin)
Memory expansion	Available (to a maximum of 1M bytes)
Chip select output	4 lines
Clock generating circuit	2 built-in clock generation circuits
	(built-in feedback resistor, and external ceramic or quartz oscillator)

Applications

Audio, cameras, office equipment, communications equipment, portable equipment

Pin Configuration

Figures 1.1.1 and 1.1.2 show the pin configurations (top view).

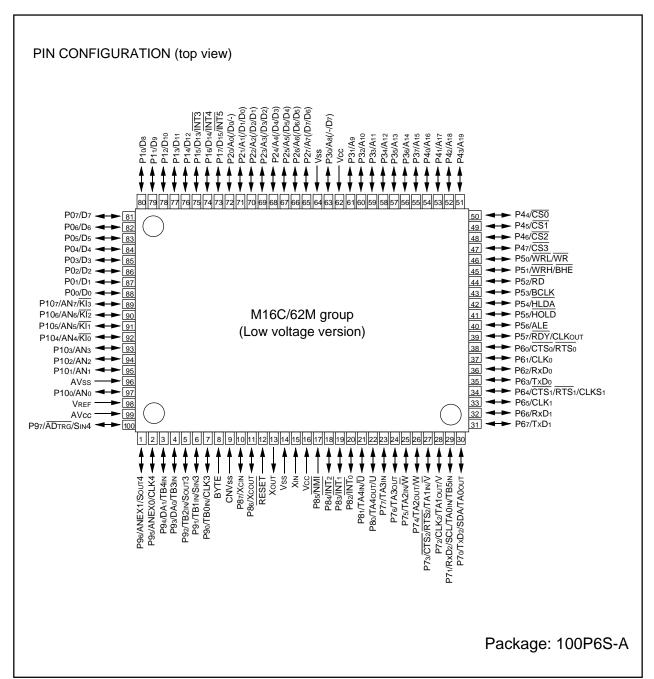


Figure 1.1.1. Pin configuration (top view)

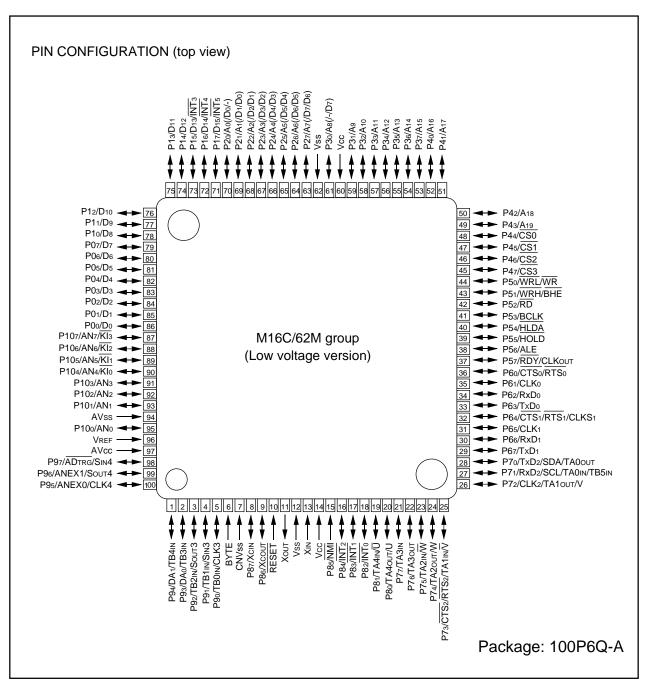


Figure 1.1.2. Pin configuration (top view)

Block Diagram

Figure 1.1.3 is a block diagram of the M16C/62M group.

Figure 1.1.3. Block diagram of M16C/62M group

Performance Outline

Table 1.1.1 is a performance outline of M16C/62M group.

Table 1.1.1. Performance outline of M16C/62M group

	Item	Performance		
Number of ba	sic instructions	91 instructions		
Shortest instru	uction execution time	100ns(f(XIN)=10MHz, VCC=2.7V to 3.6V)		
		142.9ns (f(XIN)=7MHz, VCC=2.2V to 3.6V with software one-wait)		
Memory	ROM	(See the figure 1.1.4. ROM Expansion)		
capacity	RAM	10K to 20K bytes		
I/O port	P0 to P10 (except P85)	8 bits x 10, 7 bits x 1		
Input port	P85	1 bit x 1		
Multifunction	TA0, TA1, TA2, TA3, TA4	16 bits x 5		
timer	TB0, TB1, TB2, TB3, TB4, TB5	16 bits x 6		
Serial I/O	UART0, UART1, UART2	(UART or clock synchronous) x 3		
	SI/O3, SI/O4	(Clock synchronous) x 2		
A-D converter		10 bits x (8 + 2) channels		
D-A converter		8 bits x 2		
DMAC		2 channels (trigger: 24 sources)		
CRC calculati	on circuit	CRC-CCITT		
Watchdog tim	er	15 bits x 1 (with prescaler)		
Interrupt		25 internal and 8 external sources, 4 software sources, 7 levels		
Clock generat	ing circuit	2 built-in clock generation circuits		
		(built-in feedback resistor, and external ceramic or quartz oscillator)		
Supply voltage	e	2.7V to 3.6V (f(XIN)=10MHz, without software wait)		
		2.4V to 2.7V (f(XIN)=7MHz, without software wait)		
		2.2V to 2.4V (f(XIN)=7MHz with software one-wait)		
Power consur	nption	28.5mW (f(XIN) =10MHz, Vcc=3V without software wait)		
I/O	I/O withstand voltage	3V		
characteristics	Output current	1mA		
Memory expa	nsion	Available (to a maximum of 1M bytes)		
Device config	uration	CMOS high performance silicon gate		
Package		100-pin plastic mold QFP		

Mitsubishi plans to release the following products in the M16C/62M group:

- (1) Support for mask ROM version and Flash memory version
- (2) ROM capacity
- (3) Package

100P6S-A : Plastic molded QFP (mask ROM and flash memory versions)100P6Q-A : Plastic molded QFP (mask ROM and flash memory versions)

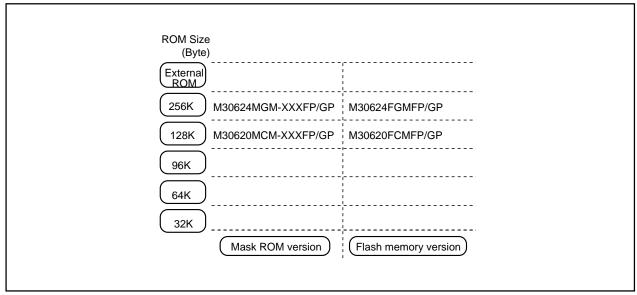


Figure 1.1.4. ROM expansion

The M16C/62M group products currently supported are listed in Table 1.1.2.

Table 1.1.2. M16C/62M group

June, 2001

Type No	ROM capacity	RAM capacity	Package type	Remarks
M30620MCM-XXXFP	4001/ 5. 44	40161	100P6S-A	
M30620MCM-XXXGP	128K byte	10K byte	100P6Q-A	
M30624MGM-XXXFP	256K byto	20K byto	100P6S-A	mask ROM version
M30624MGM-XXXGP	256K byte	20K byte	100P6Q-A	
M30620FCMFP	400161-1-	40141	100P6S-A	
M30620FCMGP	128K byte	10K byte	100P6Q-A	Floor moreon.
M30624FGMFP	0-0161	00161	100P6S-A	Flash memory 3V version
M30624FGMGP	256K byte	20K byte	100P6Q-A	3. 13.3.3.1

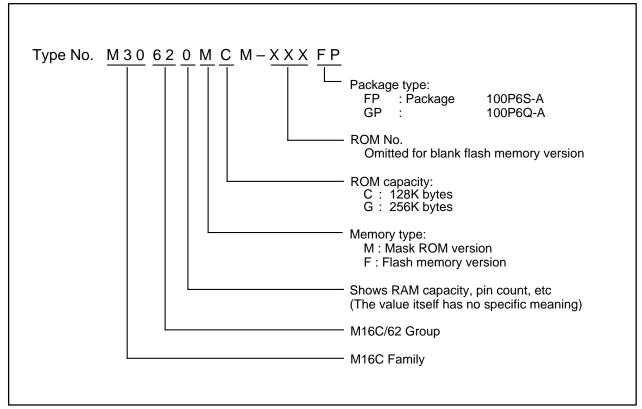


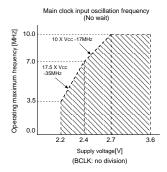
Figure 1.1.5. Type No., memory size, and package

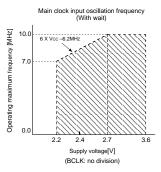
Table 1.26.1. Absolute maximum ratings

Symbol		Parameter	Condition	Rated value	Unit
Vcc	Supply voltage		Vcc=AVcc	- 0.3 to 4.6	V
AVcc	Analog sup	pply voltage	Vcc=AVcc	- 0.3 to 4.6	V
Vı	Input voltage	RESET, CNVss, BYTE, P00 to P07, P10 to P17, P20 to P27, P30 to P37,P40 to P47, P50 to P57, P60 to P67, P72 to P77, P80 to P87, P90 to P97, P100 to P107, VREF, XIN		- 0.3 to Vcc + 0.3	V
		P70, P71		- 0.3 to 4.6	V
Vo	Output voltage	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P72 to P77, P80 to P84, P86, P87, P90 to P97, P100 to P107, XOUT		- 0.3 to Vcc + 0.3	V
		P70, P71		- 0.3 to 4.6	V
Pd	Power diss	ipation	Topr=25 °C	300	mW
Topr	Operating ambient temperature			- 20 to 85 / -40 to 85 (Note)	°C
Tstg	Storage ter	mperature		- 65 to 150	°C

Note: Specify a product of -40°C to 85°C to use it.

Table 1.26.2. Recommended operating conditions (referenced to VCC = 2.2V to 3.6V at Topr = -20° C to 85° C / -40° C to 85° C (Note 3) unless otherwise specified)


Cremb al		Doromotor			Standard		1 1 = 14	
Symbol			Paramete	er Er	Min.	Тур.	Max.	Unit
Vcc	Supply volta	ge				3.0	3.6	V
AVcc	Analog supp	oly volta	/ voltage			Vcc		V
Vss	Supply volta	ige				0		V
AVss	Analog supp	oly volta	ge			0		V
Vih	HIGH input voltage	P72 to	P37, P40 to P47, P50 to P P77, P80 to P87, P90 to P ESET, CNVss, BYTE		0.8Vcc		Vcc	V
		P70, P	7 1		0.8Vcc		4.6	V
		P0o to	P07, P10 to P17, P20 to P	27, P30 (during single-chip mode)	0.8Vcc		Vcc	V
			P07, P10 to P17, P20 to Pout function during memory e	27, P30 xpansion and microprocessor modes)	0.5Vcc		Vcc	V
VIL	LOW input voltage	P70 <u>to</u>	P37, P40 to P47, P50 to P <u>P77, P</u> 80 to P87, P90 to P SET, CNVss, BYTE	*	0		0.2Vcc	V
		P0 ₀ to	P07, P10 to P17, P20 to P	27, P30 (during single-chip mode)	0		0.2Vcc	V
			P07, P10 to P17, P20 to P2 out function during memory e	27, P30 xpansion and microprocessor modes)	0		0.16Vcc	V
I _{OH (peak)}	HIGH peak or current	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P72 to P77, P80 to P84, P86, P87, P90 to P97, P100 to P107				- 10.0	mA	
I _{OH (avg)}	HIGH average current					- 5.0	mA	
I _{OL (peak)}	LOW peak ou current	ıtput	P00 to P07, P10 to P17, P40 to P47, P50 to P57, P80 to P84, P86, P87, P9	P60 to P67, P70 to P77,			10.0	mA
I _{OL (avg)}	LOW average output current		P00 to P07, P10 to P17, P40 to P47, P50 to P57, P80 to P84, P86, P87, P9	P60 to P67, P70 to P77,			5.0	mA
				Vcc=2.7V to 3.6V	0		10	MHz
f (XIN)			No wait	Vcc=2.4V to 2.7V	0		10 X Vcc - 17	MHz
•	Main clock input oscillation			Vcc=2.2V to 2.4V	0		17.5 X Vcc - 35	MHz
	frequency			Vcc=2.7V to 3.6V	0		10	MHz
	with wait Vcc=2.2V to 2.7V		Vcc=2.2V to 2.7V	0		6 X Vcc - 6.2	MHz	
f (Xcin)	Subclock os	cillation	frequency			32.768	50	kHz


Note 1: The mean output current is the mean value within 100ms.

Note 2: The total IoL (peak) for ports P0, P1, P2, P86, P87, P9, and P10 must be 80mA max. The total IoH (peak) for ports P0, P1, P2, P86, P87, P9, and P10 must be 80mA max. The total IoL (peak) for ports P3, P4, P5, P6, P7, and P80 to P84 must be 80mA max. The total IOH (peak) for ports P3, P4, P5, P6, P72 to P77, and P80 to P84 must be 80mA max.

Note 3: Specify a product of -40°C to 85°C to use it.

Note 4: Relationship between main clock oscillation frequency and supply voltage.

Flash memory version program voltage and read
operation voltage characteristics

Flash program voltage	Flash read operation voltage
Vcc=2.7V to 3.6V	Vcc=2.4V to 3.6V
Vcc=2.7V to 3.4V	Vcc=2.2V to 2.4V

Note 5: Execute case without wait, program / erase of flash memory by Vcc=2.7V to 3.6V and f(BCLK) ≤ 6.25 MHz. Execute case with wait, program / erase of flash memory by Vcc=2.7V to 3.6V and f(BCLK) ≤ 10.0 MHz.

Table 1.26.3. Electrical characteristics (referenced to VCC = 2.7V to 3.6V, VSS = 0V at Topr = $-20^{\circ}C$ to $85^{\circ}C$ / $-40^{\circ}C$ to $85^{\circ}C$ (Note 1), f(XIN) = 10MHZ without wait unless otherwise specified)

Symbol		Pa	rameter		Measuring	g condition	Min	Standa		Unit
	LUCIL	P00 to P07. P	10 to P17, P20 to P2	7. P30 to P37.			IVIII	Тур.	Max.	
Vон	HIGH output voltage	P40 to P47, P	50 to P57, P60 to P6 86,P87, P90 to P97, I	7, P72 to P77,	Іон=–1mA		2.5			V
	HIGH output	Vour		HIGHPOWER	Iон=-0.1mA		2.5			v
Vон	voltage	Хоит		LOWPOWER	Іон=–50μΑ		2.5			V V
VOIT	HIGH output voltage	Хсоит		HIGHPOWER	With no load applied			3.0		V
	voltage		5. 5 5.	LOWPOWER	With no load applied			1.6		
VoL	LOW output voltage	P40 to P47, P	10 to P17, P20 to P2 50 to P57, P60 to P6 86,P87, P90 to P97, I	7, P70 to P77,	IoL=1mA				0.5	V
	LOW output	Хоит		HIGHPOWER	IoL=0.1mA				0.5	V
Vol	voltage			LOWPOWER	IoL=50μA				0.5	<u> </u>
VOL	LOW output voltage	Хсоит		HIGHPOWER LOWPOWER	With no load applied With no load applied			0		V
VT+-VT-	Hysteresis	INTo to INTs, SDA, CLKo to	TAOIN to TA4IN, TBC NMI, ADTRG, CTSo to CLK4, TA2OUT to TA Do to RxD2, SIN3, SIN	to CTS 2, SCL, A4оuт,			0.2		0.8	V
VT+-VT-	Hysteresis	RESET					0.2		1.8	V
Іін	HIGH input current	P40 to P47, P P80 to P87, P	10 to P17, P20 to P2 50 to P57, P60 to P6 90 to P97, P100 to P CNVss, BYTE	7, P70 to P77,	VI=3V				4.0	μА
lıL	LOW input current	P40 to P47, P P80 to P87, P	10 to P17, P20 to P2 50 to P57, P60 to P6 90 to P97, P100 to P CNVss, BYTE	7, P70 to P77,	Vi=0V				-4.0	μА
RPULLUP	Pull-up resistance	P40 to P47, P	10 to P17, P20 to P2 50 to P57, P60 to P6 86,P87, P90 to P97, I	7, P72 to P77,	Vi=0V		20	75	330	kΩ
Rfxin	Feedback resist	ance XIN						3.0		МΩ
Rfxcin	Feedback resist	ance Xcin						10.0		МΩ
VRAM	RAM retention v	roltage			When clock is stopp	ed	2.0			V
			In single-chip mode		Mask ROM version	f(X _{IN})=10MHz Square wave, no division		9.5	21.25	mA
			are open and other	pins are vss	Flash memory 3V version	f(XIN)=10MHz Square wave, no division		12.0	21.25	mA
					Mask ROM version, flash memory 3V version	f(XCIN)=32kHz Square wave		45.0		μA
					Flash memory 3V version program	f(XIN)=10MHz Square wave, division by 2		14.0		mA
Icc	Power supply of	current			Flash memory 3V version erase	f(XIN)=10MHz Square wave, division by 2		17.0		mA
					Mask ROM version, flash memory 3V version	f(XCIN)=32kHz When a WAIT instruction is executed. Oscillation capacity High (Note 2)		2.8		μА
						f(XCIN)=32kHz When a WAIT instruction is executed. Oscillation capacity Low (Note 2)		0.9		μА
						When clock is stopped Topr=25°C			1.0	
						When clock is stopped Topr=85°C			20.0	μA

Note 1: Specify a product of -40°C to 85°C to use it.

Note 2: With one timer operated using fc32.

Table 1.26.4. A-D conversion characteristics (referenced to VCC = AVCC = VREF = 2.4V to 3.6V, Vss = AVss = 0V, at Topr = -20° C to 85° C (-40° C to 85° C (Note 2), f(XIN)=10MHz unless otherwise specified)

0		Danamatan	NA	S	11.2		
Symbol		Parameter	Measuring condition	Min.	Тур.	Max	Unit
_	Resolution		VREF =VCC			10	Bits
_	Absolute accuracy	Sample & hold function not available (8 bit)	VREF =VCC=3V, fAD=fAD/2			±2	LSB
RLADDER	Ladder resistance		VREF =VCC	10		40	kΩ
tconv	Conversion time(8bit)			9.8			μs
VREF	Reference voltage			2.4		Vcc	V
VIA	Analog input	voltage		0		VREF	V

Note 1: Connect AVcc pin to Vcc pin and apply the same electric potential.

Note 2: Specify a product of -40°C to 85°C to use it.

Table 1.26.5. D-A conversion characteristics (referenced to Vcc = 2.4V to 3.6V, Vss = AVss = 0V, VREF=3V, at Topr = -20°C to 85°C (-40°C to 85°C (Note 2), f(XIN)=10MHz unless otherwise specified)

0	Danamatan	Management and distance	S	1.1		
Symbol	Parameter	Measuring condition	Min.	Тур.	Max	Unit
_	Resolution				8	Bits
_	Absolute accuracy				1.0	%
tsu	Setup time				3	μs
Ro	Output resistance		4	10	20	kΩ
IVREF	Reference power supply input current	(Note1)			1.0	mA

Note 1: This applies when using one D-A converter, with the D-A register for the unused D-A converter set to "0016".

The A-D converter's ladder resistance is not included.

Also, when D-A register contents are not "0016", the current IVREF always flows even though Vref may have been set to be "unconnected" by the A-D control register.

Note 2: Specify a product of -40°C to 85°C to use it.

Table 1.26.6. Flash memory version electrical characteristics (referenced to Vcc = 2.7V to 3.6V, at Topr = 0°C to 60°C unless otherwise specified)

Parameter		Standard				
		Тур.	Typ. Max			
Page program time		6	120	ms		
Block erase time		50	600	ms		
Erase all unlocked blocks time		50 X n (Note)	600 X n (Note)	ms		
Lock bit program time		6	120	ms		

Note: n denotes the number of block erases.

Table 1.26.7. Flash memory version program voltage and read operation voltage characteristics (Topr = 0°C to 60°C)

Flash program voltage	Flash read operation voltage
Vcc=2.7V to 3.6V	Vcc=2.4V to 3.6V
Vcc=2.7V to 3.4V	Vcc=2.2V to 2.4V

Timing requirements

(referenced to VCC = 3V, VSS = 0V, at Topr = -20° C to 85°C / -40° C to 85°C (*) unless otherwise specified) * : Specify a product of -40°C to 85°C to use it.

Table 1.26.8. External clock input

	O vil vil		Standard	
Symbol	Parameter	Min.	Max.	Unit
tc	External clock input cycle time	100		ns
tw(H)	External clock input HIGH pulse width	40		ns
tw(L)	External clock input LOW pulse width	40		ns
tr	External clock rise time		18	ns
tf	External clock fall time		18	ns

Table 1.26.9. Memory expansion and microprocessor modes

		Standard		l lmit
Symbol	Parameter	Min.	Max.	Unit
tac1(RD-DB)	Data input access time (no wait)		(Note)	ns
tac2(RD-DB)	Data input access time (with wait)		(Note)	ns
tac3(RD-DB)	Data input access time (when accessing multiplex bus area)		(Note)	ns
tsu(DB-RD)	Data input setup time	80		ns
tsu(RDY-BCLK)	RDY input setup time	60		ns
tsu(HOLD-BCLK)	HOLD input setup time	80		ns
th(RD-DB)	Data input hold time	0		ns
th(BCLK -RDY)	RDY input hold time	0		ns
th(BCLK-HOLD)	HOLD input hold time	0		ns
td(BCLK-HLDA)	HLDA output delay time		100	ns

Note: Calculated according to the BCLK frequency as follows:

$$tac1(RD - DB) = \frac{10^9}{f(BCLK) \times 2} - 90$$
 [ns]

$$tac2(RD - DB) = \frac{3 \times 10^{9}}{f(BCLK) \times 2} - 90$$
 [ns]

$$tac3(RD - DB) = \frac{3 \times 10^9}{f(BCLK) \times 2} - 90$$
 [ns]

Timing requirements

(referenced to VCC = 3V, VSS = 0V, at Topr = - 20°C to 85°C / - 40°C to 85°C (*) unless otherwise specified)

*: Specify a product of -40°C to 85°C to use it.

Table 1.26.10. Timer A input (counter input in event counter mode)

Symbol	Parameter	Stan	dard	Unit
Symbol	Oyniboi i alametei	Min.	Max.	
tc(TA)	TAil input cycle time	150		ns
tw(TAH)	TAilN input HIGH pulse width	60		ns
tw(TAL)	TAin input LOW pulse width	60		ns

Table 1.26.11. Timer A input (gating input in timer mode)

C: make al	Davasastas	Star		Linit	
Symbol	Parameter	Min.	Max.	Unit	
tc(TA)	TAil input cycle time	600		ns	
tw(TAH)	TAilN input HIGH pulse width	300		ns	
tw(TAL)	TAil input LOW pulse width	300		ns	

Table 1.26.12. Timer A input (external trigger input in one-shot timer mode)

Symbol	Parameter	Standard	Unit	
Symbol	Symbol	Min.	Max.	Unit
tc(TA)	TAil input cycle time	300		ns
tw(TAH)	TAim input HIGH pulse width	150		ns
tw(TAL)	TAin input LOW pulse width	150		ns

Table 1.26.13. Timer A input (external trigger input in pulse width modulation mode)

Coursells all	Dozomatov	Stan	dard	Unit
Symbol	Parameter	Min.	Max.	Unit
tw(TAH)	TAin input HIGH pulse width	150		ns
tw(TAL)	TAiın input LOW pulse width	150		ns

Table 1.26.14. Timer A input (up/down input in event counter mode)

0	Demonstra	Standard	l lait	
Symbol	Parameter	Min.	Max.	Unit
tc(UP)	TAiout input cycle time	3000		ns
tw(UPH)	TAiout input HIGH pulse width	1500		ns
tw(UPL)	TAiout input LOW pulse width	1500		ns
tsu(UP-TIN)	TAiout input setup time	600		ns
th(TIN-UP)	TAiout input hold time	600		ns

Timing requirements

(referenced to VCC = 3V, VSS = 0V, at $Topr = -20^{\circ}C$ to $85^{\circ}C$ / $-40^{\circ}C$ to $85^{\circ}C$ (*) unless otherwise specified)

* : Specify a product of -40°C to 85°C to use it.

Table 1.26.15. Timer B input (counter input in event counter mode)

		Stan	dard	
Symbol	Parameter	Min.	Max.	Unit
tc(TB)	TBiin input cycle time (counted on one edge)	150		ns
tw(TBH)	TBin input HIGH pulse width (counted on one edge)	60		ns
tw(TBL)	TBin input LOW pulse width (counted on one edge)	60		ns
tc(TB)	TBin input cycle time (counted on both edges)	300		ns
tw(TBH)	TBin input HIGH pulse width (counted on both edges)	160		ns
tw(TBL)	TBin input LOW pulse width (counted on both edges)	160		ns

Table 1.26.16. Timer B input (pulse period measurement mode)

	Parameter	Star	dard	Unit
Symbol	r aldilletel	Min. Max.	Offic	
tc(TB)	TBin input cycle time	600		ns
tw(TBH)	TBin input HIGH pulse width	300		ns
tw(TBL)	TBin input LOW pulse width	300		ns

Table 1.26.17. Timer B input (pulse width measurement mode)

	Parameter	Stan		Unit
Symbol	i alametei	Min.	Max.	Offic
tc(TB)	TBiin input cycle time	600		ns
tw(TBH)	TBin input HIGH pulse width	300		ns
tw(TBL)	TBin input LOW pulse width	300		ns

Table 1.26.18. A-D trigger input

Symbol	Parameter	Stan	Max.	Unit
Cyrrisor	raiametei	Min.	Max.	Offic
tc(AD)	ADTRG input cycle time (trigger able minimum)	1500		ns
tw(ADL)	ADTRG input LOW pulse width	200		ns

Table 1.26.19. Serial I/O

Symbol	Parameter	Standard	Unit	
	Falameter	Min.	Max.	Offic
tc(CK)	CLKi input cycle time	300		ns
tw(CKH)	CLKi input HIGH pulse width	150		ns
tw(CKL)	CLKi input LOW pulse width	150		ns
td(C-Q)	TxDi output delay time		160	ns
th(C-Q)	TxDi hold time	0		ns
tsu(D-C)	RxDi input setup time	50		ns
th(C-D)	RxDi input hold time	90		ns

Table 1.26.20. External interrupt INTi inputs

Symbol Parameter	Decementar		Standard		
	Farameter	Min.	Max.	Unit	
tw(INH)	INTi input HIGH pulse width	380		ns	
tw(INL)	INTi input LOW pulse width	380		ns	

Switching characteristics (referenced to Vcc = 3V, Vss = 0V at Topr = - 20°C to 85°C / - 40°C to 85°C (Note 3), CM15 = "1" unless otherwise specified)

Table 1.26.21. Memory expansion and microprocessor modes (with no wait)

0	Number Deservator		Standard		
Symbol	Parameter	arameter Measuring condition		Max.	Unit
td(BCLK-AD)	Address output delay time			60	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		4		ns
th(RD-AD)	Address output hold time (RD standard)		0		ns
th(WR-AD)	Address output hold time (WR standard)		0		ns
td(BCLK-CS)	Chip select output delay time			60	ns
th(BCLK-CS)	Chip select output hold time (BCLK standard)		4		ns
td(BCLK-ALE)	ALE signal output delay time	Figure 1.26.1		60	ns
th(BCLK-ALE)	ALE signal output hold time	1 igule 1.20.1	- 4		ns
td(BCLK-RD)	RD signal output delay time			60	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			60	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (BCLK standard)			80	ns
th(BCLK-DB)	Data output hold time (BCLK standard)		4		ns
td(DB-WR)	Data output delay time (WR standard)		(Note1)		ns
th(WR-DB)	Data output hold time (WR standard)(Note2)		0		ns

Note 1: Calculated according to the BCLK frequency as follows:

$$td(DB - WR) = \frac{10^9}{f(BCLK) \times 2} - 80$$
 [ns]

Note 2: This is standard value shows the timing when the output is off, and doesn't show hold time of data bus.

> Hold time of data bus is different by capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in

$$t = -CR \times In (1 - VoL / Vcc)$$

by a circuit of the right figure.

For example, when VoL = 0.2Vcc, C = 30pF, R = $1k\Omega$, hold time of output "L" level is

$$t = -30pF X 1k\Omega X In (1 - 0.2Vcc / Vcc)$$

= 6.7ns.

Note 3: Specify a product of -40°C to 85°C to use it.

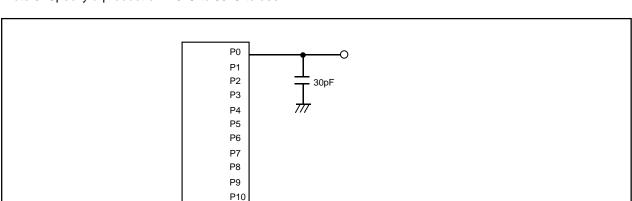
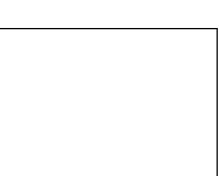



Figure 1.26.1. Port P0 to P10 measurement circuit

DBi

Switching characteristics (referenced to Vcc = 3V, Vss = 0V at $Topr = -20^{\circ}C$ to $85^{\circ}C$ / $-40^{\circ}C$ to $85^{\circ}C$ (Note 3), CM15 = "1" unless otherwise specified)

Table 1.26.22. Memory expansion and microprocessor modes (when accessing external memory area with wait)

0	Description	Macauring condition	Stan			
Symbol	Parameter Measuring condition		Min.	Max.	Unit	
td(BCLK-AD)	Address output delay time			60	ns	
th(BCLK-AD)	Address output hold time (BCLK standard)		4		ns	
th(RD-AD)	Address output hold time (RD standard)		0		ns	
th(WR-AD)	Address output hold time (WR standard)		0		ns	
td(BCLK-CS)	Chip select output delay time			60	ns	
th(BCLK-CS)	Chip select output hold time (BCLK standard)		4		ns	
td(BCLK-ALE)	ALE signal output delay time			60	ns	
th(BCLK-ALE)	ALE signal output hold time	Figure 1.31.1	- 4		ns	
td(BCLK-RD)	RD signal output delay time			60	ns	
th(BCLK-RD)	RD signal output hold time		0		ns	
td(BCLK-WR)	WR signal output delay time			60	ns	
th(BCLK-WR)	WR signal output hold time		0		ns	
td(BCLK-DB)	Data output delay time (BCLK standard)			80	ns	
th(BCLK-DB)	Data output hold time (BCLK standard)		4		ns	
td(DB-WR)	Data output delay time (WR standard)		(Note1)		ns	
th(WR-DB)	Data output hold time (WR standard)(Note2)		0		ns	

Note 1: Calculated according to the BCLK frequency as follows:

$$td(DB - WR) = \frac{10^9}{f(BCLK)} - 80$$
 [ns]

Note 2: This is standard value shows the timing when the output is off, and doesn't show hold time of data bus.

Hold time of data bus is different by capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in

$$t = -CR \times In (1 - VoL / Vcc)$$

by a circuit of the right figure.

For example, when VoL = 0.2Vcc, C = 30pF, R = 1k Ω , hold time of output "L" level is

$$t = -30pF X 1k\Omega X In (1 - 0.2Vcc / Vcc)$$

= 6.7ns.

Note 3: Specify a product of -40°C to 85°C to use it.

Switching characteristics (referenced to Vcc = 3V, Vss = 0V at $Topr = -20^{\circ}C$ to $85^{\circ}C$ / $-40^{\circ}C$ to $85^{\circ}C$ (Note 2), CM15 = "1" unless otherwise specified)

Table 1.26.23. Memory expansion and microprocessor modes
(when accessing external memory area with wait, and select multiplexed bus)

	5	Manager and distant	Stan	dard	Unit
Symbol	Parameter	Measuring condition	Min.	Max.	
td(BCLK-AD)	Address output delay time			60	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		4		ns
th(RD-AD)	Address output hold time (RD standard)		(Note 1)		ns
th(WR-AD)	Address output hold time (WR standard)		(Note 1)		ns
td(BCLK-CS)	Chip select output delay time			60	ns
th(BCLK-CS)	Chip select output hold time (BCLK standard)		4		ns
th(RD-CS)	Chip select output hold time (RD standard)		(Note 1)		ns
th(WR-CS)	Chip select output hold time (WR standard)		(Note 1)		ns
td(BCLK-RD)	RD signal output delay time			60	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time	Figure 1.26.1		60	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (BCLK standard)			80	ns
th(BCLK-DB)	Data output hold time (BCLK standard)		4		ns
td(DB-WR)	Data output delay time (WR standard)		(Note 1)		ns
th(WR-DB)	Data output hold time (WR standard)		(Note 1)		ns
td(BCLK-ALE)	ALE signal output delay time (BCLK standard)			60	ns
th(BCLK-ALE)	ALE signal output hold time (BCLK standard)		-4		ns
td(AD-ALE)	ALE signal output delay time (Address standard)		(Note 1)		ns
t h(ALE-AD)	ALE signal output hold time(Address standard)		40		ns
td(AD-RD)	Post-address RD signal output delay time		0		ns
td(AD-WR)	Post-address WR signal output delay time		0		ns
tdZ(RD-AD)	Address output floating start time			8	ns

Note 1: Calculated according to the BCLK frequency as follows:

$$th(RD - AD) = \frac{10^{9}}{f(BCLK) \times 2}$$
 [ns]
$$th(WR - AD) = \frac{10^{9}}{f(BCLK) \times 2}$$
 [ns]
$$th(RD - CS) = \frac{10^{9}}{f(BCLK) \times 2}$$
 [ns]
$$th(WR - CS) = \frac{10^{9}}{f(BCLK) \times 2}$$
 [ns]
$$td(DB - WR) = \frac{10^{9} \times 3}{f(BCLK) \times 2} - 80$$
 [ns]
$$th(WR - DB) = \frac{10^{9}}{f(BCLK) \times 2}$$
 [ns]
$$td(AD - ALE) = \frac{10^{9}}{f(BCLK) \times 2} - 45$$
 [ns]

Note 2: Specify a product of -40°C to 85°C to use it.

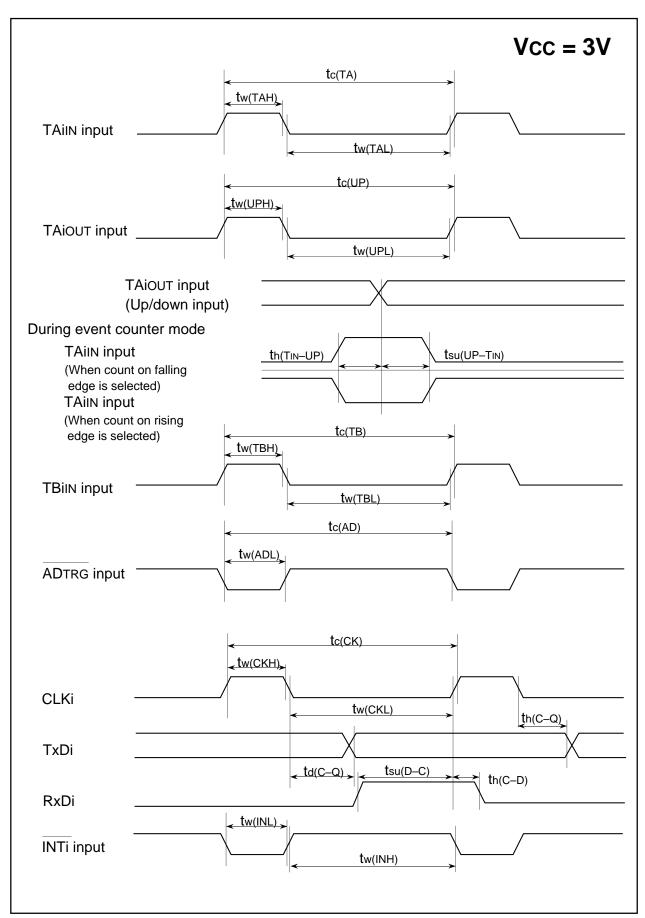


Figure 1.26.2. Vcc=3V timing diagram (1)

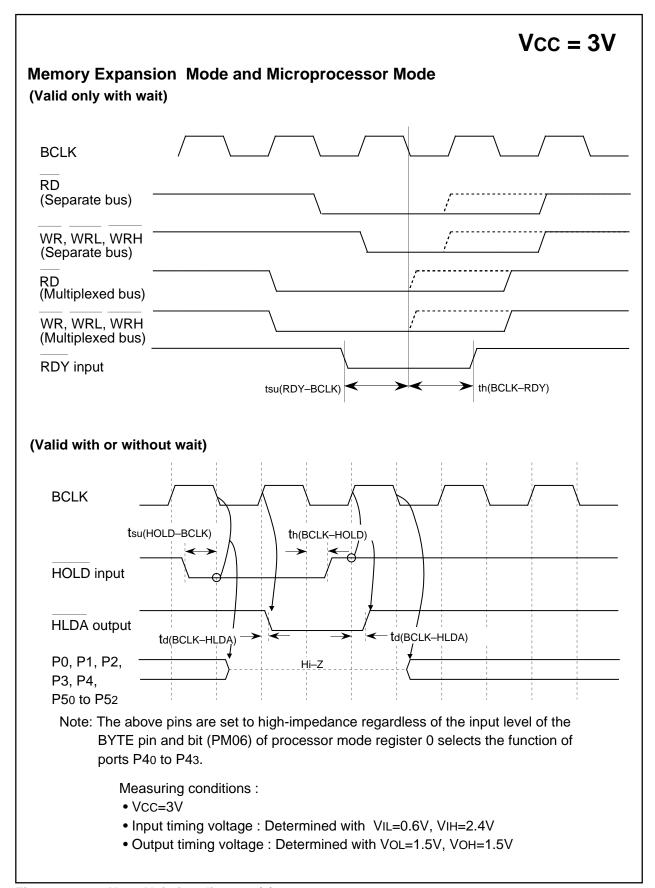


Figure 1.26.3. Vcc=3V timing diagram (2)

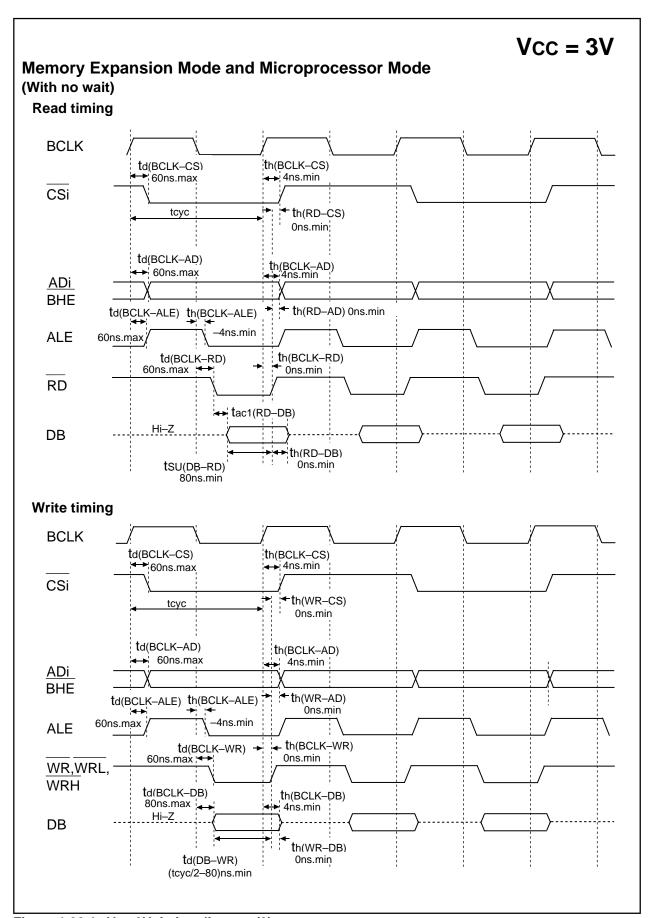


Figure 1.26.4. Vcc=3V timing diagram (3)

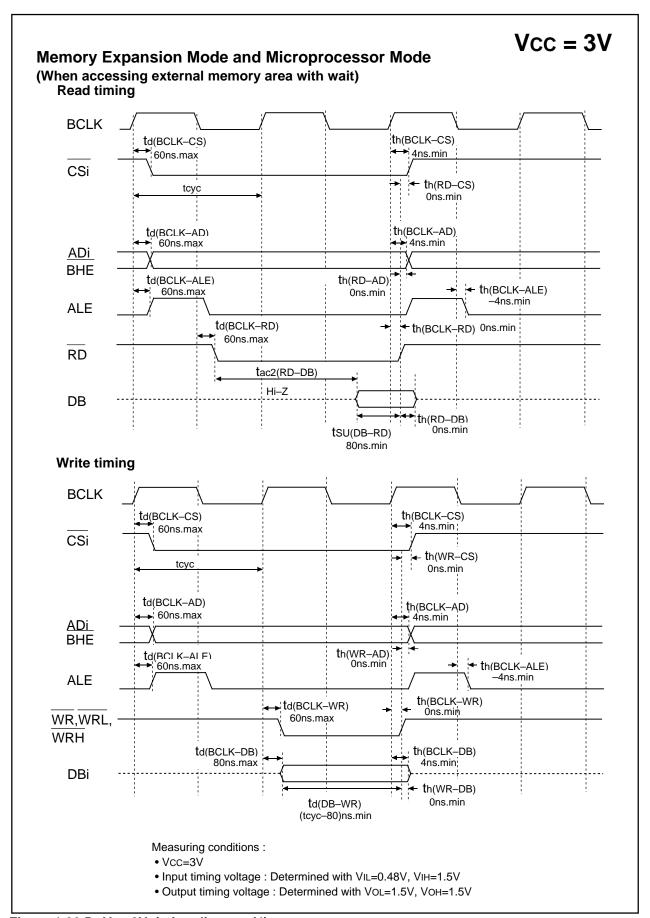


Figure 1.26.5. Vcc=3V timing diagram (4)

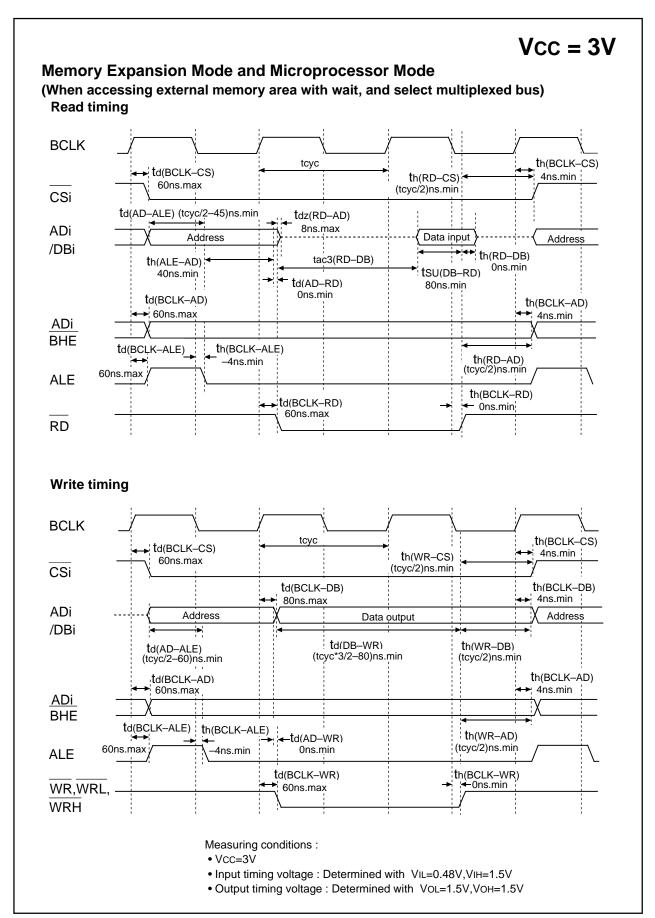


Figure 1.26.6. Vcc=3V timing diagram (5)

GZZ-SH13-95B<02A0>

MITSUBISHI ELECTRIC-CHIP 16-BIT MICROCOMPUTER M30620MCM-XXXFP/GP MASK ROM CONFIRMATION FORM

Mask ROM number	
Mask NOW Humber	

	Date :	
	Section head	Supervisor
<u>i</u>	signature	signature
Receipt		
Şe		
_		

Note: Please complete all items marked * .

		Company	TEL		Φ	Ф	Submitted by	Supervisor
*	Customer	name	()	ance	atur		
**	Odotomor	Date issued	Date :		nssı	sign		

*1. Check sheet

Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that there is any discrepancy between the contents of these mask files and the ROM data to be burned into products we produce. Check thoroughly the contents of the mask files you give in.

Prepare 3.5 inches 2HD (IBM format) floppy disks. And store only one mask file in a floppy disk.

Microcomputer type No. :	□M30620MCM-XXXFP	∐M30620MCM-XXXGP
File code :		(hex)
Mask file name :		.MSK (alpha-numeric 8-digit)

**2. Mark specification

The mark specification differs according to the type of package. After entering the mark specification on the separate mark specification sheet (for each package), attach that sheet to this masking check sheet for submission to Mitsubishi.

For the M30620MCM-XXXFP, submit the 100P6S mark specification sheet. For the M30620MCM-XXXGP, submit the 100P6Q mark specification sheet.

***3.** Usage Conditions

For our reference when of testing our products, please reply to the following questions about the usage of the products you ordered.

(1) Which kind of XIN-XOUT osci	llation	circuit is used?	
Ceramic resonator		Quartz-crystal osci	lator
External clock input		Other ()
What frequency do not use?	•		
f(XIN) =	MHz		

GZZ-SH13-95B<02A0>

Mask ROM number

MITSUBISHI ELECTRIC-CHIP 16-BIT MICROCOMPUTER M30620MCM-XXXFP/GP MASK ROM CONFIRMATION FORM

(2) Which kind of XCIN-XCOUT oscillation circuit is used?
Ceramic resonator Quartz-crystal oscillator
External clock input Other ()
What frequency do not use?
f(XCIN) = kHz
(3) Which operation mode do you use?
☐ Single-chip mode ☐ Memory expansion mode
☐ Microprocessor mode
(4) Which operating supply voltage do you use?
(Circle the operating voltage range of use)
2.2 2.4 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8
(5) Which operating ambient temperature do you use?
(Circle the operating temperature range of use)
-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90
(6) Do you use I ² C (Inter IC) bus function?
☐ Not use ☐ Use
(7) Do you use IE (Inter Equipment) bus function?
☐ Not use ☐ Use
Thank you cooperation.
Special item (Indicate none if there is not specified item)

GZZ-SH13-48B<98A1>

MITSUBISHI ELECTRIC-CHIP 16-BIT MICROCOMPUTER M30624MGM-XXXFP/GP MASK ROM CONFIRMATION FORM

Mask ROM number	
-----------------	--

	Date :	
þţ	Section head signature	Supervisor signature
Receipt		

Note: Please complete all items marked * .

		Company		TEL		a)	Ф	Submitted by	Supervisor
*	Customer	name		()	ance	atur		
<i>A</i> V	Oustomer	Date issued	Date :			Issn	sign		

*1. Check sheet

Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that there is any discrepancy between the contents of these mask files and the ROM data to be burned into products we produce. Check thoroughly the contents of the mask files you give in.

Prepare 3.5 inches 2HD (IBM format) floppy disks. And store only one mask file in a floppy disk.

_	∐M30624MGM-XXXGP
	(hex)
	.MSK (alpha-numeric 8-digit)

**2. Mark specification

The mark specification differs according to the type of package. After entering the mark specification on the separate mark specification sheet (for each package), attach that sheet to this masking check sheet for submission to Mitsubishi.

For the M30624MGM-XXXFP, submit the 100P6S mark specification sheet. For the M30624MGM-XXXGP, submit the 100P6Q mark specification sheet.

***3.** Usage Conditions

For our reference when of testing our products, please reply to the following questions about the usage of the products you ordered.

(1) Which kind of XIN-XOUT oscillation	circuit is used?	
Ceramic resonator	Quartz-crystal oscilla	tor
External clock input	Other ()
What frequency do not use?		
f(XIN) = MHz		

GZZ-SH13-48B<98A1>

Mask ROM number

MITSUBISHI ELECTRIC-CHIP 16-BIT MICROCOMPUTER M30624MGM-XXXFP/GP MASK ROM CONFIRMATION FORM

(2) Which kind of XCIN-XCOUT oscillation	on circuit is used?
Ceramic resonator	Quartz-crystal oscillator
External clock input	Other (
What frequency do not use?	
f(XCIN) = kHz	
(3) Which operation mode do you use	?
Single-chip mode	☐ Memory expansion mode
☐ Microprocessor mode	
(4) Which operating supply voltage do	you use?
(Circle the operating voltage range	e of use)
2.2 2.4 2.6 2.7 2.8 2.9	
(5) Which operating ambient temperat	ure do vou use?
(Circle the operating temperature r	•
-50 -40 -30 -20 -10 0	10 20 30 40 50 60 70 80 90
	(°C)
(6) Do you use I ² C (Inter IC) bus funct	
☐ Not use	Use
(7) Do you use IE (Inter Equipment) bu	us function?
☐ Not use	Use
Thank you cooperation.	
*4. Special item (Indicate none if there is n	ot specified item)

Differences between M16C/62M (Low voltage version) and M30624FGLFP/GP

Item	M16C/62M (Low voltage version)	M30624FGLFP/GP
Memory area	1 Mbyte fixed	Memory expansion 1.2 Mbytes mode 4 Mbytes mode
Serial I/O	No CTS/RTS separate function	CTS/RTS separate function
IIC bus mode	Analog or digital delay is selected as SDA delay	Only analog delay is selected as SDA delay
Memory version	Mask ROM version Flash memory version	Flash memory version only
Standard serial I/O mode (Flash memory version)	Clock synchronized Clock asynchronized	Clock synchronized only

Version		Contents for change	Revision date
REV. B1	Page 8-17 All symbols of	f Ta are revised to Topr.	01.6.22
	vision history	M16C/62M Group data sheet	

-Keep safety first in your circuit designs!-

• Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection
 of the Mitsubishi semiconductor product best suited to the customer's application;
 they do not convey any license under any intellectual property rights, or any other
 rights, belonging to Mitsubishi Electric Corporation or a third party.
- Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com).
- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semicon ductor product distributor for further details on these materials or the products con tained therein.

MITSUBISHI SEMICONDUCTORS M16C/62M Group (Low voltage version) Data Sheet REV.B1

June First Edition 2001

Edition by

Committee of editing of Mitsubishi Semiconductor

Published by Mitsubishi Electric Corp., Kitaitami Works

This book, or parts thereof, may not be reproduced in any form without permission of Mitsubishi Electric Corporation.
©2001 MITSUBISHI ELECTRIC CORPORATION

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Microprocessors - MPU category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

MC68302EH20C MC7457RX1000LC MC7457RX1267LC MC7457VG1267LC A2C00010998 A A2C52004004 R5F117BCGNA#20 R5F52106BDLA#U0 R5S72690W266BG#U0 ADJ3400IAA5DOE MPC8245TVV266D MPC8245TZU300D MPC8260ACVVMHBB MPC8323ECVRAFDCA MPC8323VRADDCA MPC8536ECVJAVLA BOXNUC5PGYH0AJ 20-668-0024 P1010NSN5DFB P2010NSN2MHC P2020NXE2HHC P5020NSE7QMB P5020NSE7TNB P5020NSE7VNB LS1020ASN7KQB LS1020AXN7HNB LS1020AXN7KQB A2C00010729 A A2C00039344 T1022NSE7MQB T1022NXN7PQB T1023NSE7MQA T1024NXE7PQA T1042NSE7MQB T1042NSN7MQB T1042NXN7WQB T2080NSE8TTB T2080NSN8PTB T2080NXE8TTB T2081NXN8TTB R5F101AFASP#V0 MC68302CEH20C TS68040MF33A MPC8260ACVVMIBB MPC8280CZUUPEA MPC8313ECVRAFFC MPC8313ECVRAGDC MPC8313EVRADDC MPC8313EVRADDC