INVENTRONICS

EUC-075SxxxDV(SV)

Features

- High Efficiency (Up to 90\%)
- Active Power Factor Correction (0.99 Typical)
- Constant Current Output
- Dimming Function
- Lightning Protection
- All-Around Protection: OVP, SCP, OTP
- Waterproof (IP67)

C \in TUV CB

- SELV

Description

The EUC-075SxxxDV(SV) Series operate from a $90 \sim 305$ Vac input range. They are designed to be highly efficient and highly reliable. Features include dimming control, over voltage protection, short circuit protection and over temperature protection.

Models

Output Current	Input Voltage Range(1)	Output Voltage Range	Max. Output Power	Typical Efficiency (2)	Power Factor 120Vac	220Vac	Model Number (3)
350 mA	$90 \sim 305 \mathrm{Vac}$	$107 \sim 214 \mathrm{Vdc}$	75 W	90%	0.99	0.96	EUC-075S035DV(SV)
450 mA	$90 \sim 305 \mathrm{Vac}$	$83 \sim 166 \mathrm{Vdc}$	75 W	90%	0.99	0.96	EUC-075S045DV(SV)
700 mA	$90 \sim 305 \mathrm{Vac}$	$54 \sim 108 \mathrm{Vdc}$	75 W	90%	0.99	0.96	EUC-075S070DV(SV)(4)
1050 mA	$90 \sim 305 \mathrm{Vac}$	$36 \sim 72 \mathrm{Vdc}$	75 W	89%	0.99	0.96	EUC-075S105DV(SV)(4)
1400 mA	$90 \sim 305 \mathrm{Vac}$	$27 \sim 54 \mathrm{Vdc}$	75 W	89%	0.99	0.96	EUC-075S140DV(SV)(4)
2100 mA	$90 \sim 305 \mathrm{Vac}$	$18 \sim 36 \mathrm{Vdc}$	75 W	88%	0.99	0.96	EUC-075S210DV(SV)(4)
2800 mA	$90 \sim 305 \mathrm{Vac}$	$13 \sim 27 \mathrm{Vdc}$	75 W	88%	0.99	0.96	EUC-075S280DV(SV)(4)
3750 mA	$90 \sim 305 \mathrm{Vac}$	$10 \sim 20 \mathrm{Vdc}$	75 W	87%	0.99	0.96	EUC-075S375DV(SV)(4)
5000 mA	$90 \sim 305 \mathrm{Vac}$	$7 \sim 15 \mathrm{Vdc}$	75 W	86%	0.99	0.96	EUC-075S500DV(SV)(4)

Notes: (1) Certified input Voltage range100-240Vac
(2) Measured at full load and 220 Vac input
(3) A suffix -xxxx may be added to denote variations or modifications to the base product, where x can be any alphanumeric character or blank
(4) SELV

Input Specifications

Parameter	Min.	Typ.	Max.	Notes
Input Voltage	90 V	-	305 V	
Input Frequency	47 Hz	-	63 Hz	
Leakage Current	-	-	0.75 mA	At 277 Vac 60 Hz input

INVENTRONICS

EUC-075SxxxDV(SV)

Input Specifications (Continued)

Parameter	Min.	Typ.	Max.	Notes
Input AC Current	-	-	0.9 A	Measured at full load and 100 Vac input.
	-	-	0.42 A	Measured at full load and 220 Vac input.
Inrush Current	-	-	60 A	At 220 Vac input, $25^{\circ} \mathrm{C}$ cold start, duration=1 ms, 10\%lpk-10\%lpk.
Inrush Current (1^{2} t)	-	-	$1 \mathrm{~A}^{2} \mathrm{~s}$	
Power Factor	0.9	-	-	At 100Vac-277Vac,100\%load
THD	-	-	20\%	

Output Specifications

Parameter	Min.	Typ.	Max.	Notes
Output Current Range	-5\%	-	5\%	
Ripple and Noise (pk-pk)	-	-	$5 \% \mathrm{~V}_{\circ}$	Measured by 20 MHz bandwidth oscilloscope and the output paralleled a 0.1 uF ceramic capacitor and a 10 uF electrolytic capacitor. Vo is the maximum output voltage.
No Load Output Voltage $\begin{aligned} & \mathrm{Io}=350 \mathrm{~mA} \\ & \mathrm{Io}=450 \mathrm{~mA} \\ & \mathrm{Io}=700 \mathrm{~mA} \\ & \mathrm{Io}=1050 \mathrm{~mA} \\ & \mathrm{lo}=1400 \mathrm{~mA} \\ & \mathrm{Io}=2100 \mathrm{~mA} \\ & \mathrm{Io}=2800 \mathrm{~mA} \\ & \mathrm{Io}=3750 \mathrm{~mA} \\ & \mathrm{Io}=5000 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 224 \mathrm{~V} \\ & 172 \mathrm{~V} \\ & 112 \mathrm{~V} \\ & 76 \mathrm{~V} \\ & 58 \mathrm{~V} \\ & 40 \mathrm{~V} \\ & 34 \mathrm{~V} \\ & 25 \mathrm{~V} \\ & 19 \mathrm{~V} \end{aligned}$		
Line Regulation	-	-	$\pm 1 \%$	
Load Regulation	-	-	$\pm 3 \%$	
	-	0.8 s	1.2 s	Measured at 120 Vac input.
	-	0.4 s	0.6 s	Measured at 220 Vac input.
Temperature coefficient	-	-	$0.06 \% /{ }^{\circ} \mathrm{C}$	Case temperature $=0^{\circ} \mathrm{C} \sim$ Tc max

Note: All specifications are typical at $25^{\circ} \mathrm{C}$ unless otherwise stated.

Protection Functions

Parameter	Min.	Typ.	Max.	Notes
Over Temperature Protection-Tc	-	$100{ }^{\circ} \mathrm{C}$	-	Latch mode. The power supply shall return to normal operation only after the power is turn-on again.
Short Circuit Protection	No damage shall occur when any output operating in a short circuit condition. The power supply shall be self-recovery when the fault condition is removed.			

INVENTRONIGS

EUC-075SxxxDV(SV)
General Specifications

Parameter	Min.	Typ.	Max.	Notes
Efficiency $\begin{aligned} & \mathrm{lo}=350 \mathrm{~mA} \\ & \mathrm{lo}=450 \mathrm{~mA} \\ & \mathrm{lo}=700 \mathrm{~mA} \\ & \mathrm{Io}=1050 \mathrm{~mA} \\ & \mathrm{lo}=1400 \mathrm{~mA} \\ & \mathrm{lo}=2100 \mathrm{~mA} \\ & \mathrm{lo}=2800 \mathrm{~mA} \\ & \mathrm{lo}=3750 \mathrm{~mA} \\ & \mathrm{lo}=5000 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 86 \% \\ & 86 \% \\ & 86 \% \\ & 85 \% \\ & 85 \% \\ & 84 \% \\ & 84 \% \\ & 83 \% \\ & 82 \% \\ & \hline \end{aligned}$	88\% 88\% 88\% 87\% 87\% 86\% 86\% 85\% 84\%		Measured at full load, 120 Vac input, $25^{\circ} \mathrm{C}$ ambient temperature, after the unit is thermally stabilized. It will be lower about 2\%, if measured immediately after startup.
Efficiency $\begin{aligned} & \mathrm{Io}=350 \mathrm{~mA} \\ & \mathrm{lo}=450 \mathrm{~mA} \\ & \mathrm{lo}=700 \mathrm{~mA} \\ & \mathrm{Io}=1050 \mathrm{~mA} \\ & \mathrm{lo}=1400 \mathrm{~mA} \\ & \mathrm{lo}=2100 \mathrm{~mA} \\ & \mathrm{Io}=2800 \mathrm{~mA} \\ & \mathrm{Io}=3750 \mathrm{~mA} \\ & \mathrm{lo}=5000 \mathrm{~mA} \end{aligned}$	88\% 88\% 88\% 87\% 87\% 86\% 86\% 85\% 84\%	90\% 90\% 90\% 89\% 89\% 88\% 88\% 87\% 86\%		Measured at full load, 220 Vac input, $25^{\circ} \mathrm{C}$ ambient temperature, after the unit is thermally stabilized. It will be lower about 2\%, if measured immediately after startup.
MTBF	-	$\begin{gathered} \hline 259,000 \\ \text { hours } \end{gathered}$	-	Measured at 120 Vac input, 80% Load and $25^{\circ} \mathrm{C}$ ambient temperature (MIL-HDBK-217F)
Life Time	-	$\begin{gathered} \text { 107,000 } \\ \text { hours } \end{gathered}$	-	Measured at 120Vac input, 80\%Load; Case temperature $=60^{\circ} \mathrm{C}$ @ Tc point. See life time vs. Tc curve for the details
Case Temperature	-	-	$90^{\circ} \mathrm{C}$	
Dimensions Inches $(\mathrm{L} \times \mathrm{W} \times \mathrm{H})$ Millimeters $(\mathrm{L} \times \mathrm{W} \times \mathrm{H})$	$\begin{aligned} & 5.91 \times 2.66 \times 1.44 \\ & 150 \times 67.5 \times 36.5 \\ & \hline \end{aligned}$			
Net Weight	-	750 g	-	

Note: All specifications are typical at $25^{\circ} \mathrm{C}$ unless otherwise stated.

Environmental Specifications

Parameter	Min.	Typ.	Max.	Notes
Operating Temperature	$-40^{\circ} \mathrm{C}$	-	$+70^{\circ} \mathrm{C}$	Humidity: $10 \% \mathrm{RH}$ to $100 \% \mathrm{RH}$ See Derating Curve for more details
Storage Temperature	$-40^{\circ} \mathrm{C}$	-	$+85^{\circ} \mathrm{C}$	Humidity: $5 \% \mathrm{RH}$ to $100 \% \mathrm{RH}$

Safety \& EMC Compliance

Safety Category	
CE	EN61347-1, EN61347-2-13
EMI Standards	
EN 55015	Conducted emission Test \& Radiated emission Test
EN 61000-3-2	Harmonic current emissions
EN 61000-3-3	Voltage fluctuations \& flicker

INVENTRONIGS

EUC-075SxxxDV(SV)
Safety \& EMC Compliance (Continued)

EMS Standards	Notes
EN 61000-4-2	Electrostatic Discharge (ESD): 8 kV air discharge, 4 kV contact discharge
EN 61000-4-3	Radio-Frequency Electromagnetic Field Susceptibility Test-RS
EN 61000-4-4	Electrical Fast Transient / Burst-EFT
EN 61000-4-5	Surge Immunity Test: AC Power Line: line to line 4 kV, line to earth 6 kV
EN 61000-4-6	Conducted Radio Frequency Disturbances Test-CS
EN 61000-4-8	Power Frequency Magnetic Field Test
EN 61000-4-11	Voltage Dips
EN 61547	Electromagnetic Immunity Requirements Applies to Lighting Equipment
ENERGY STAR	
Standards	Transient Protection, power supply shall comply with Class A operation. The line transient shall consist of seven strikes of a 100 kHz ring wave, 2.5 kV level, for both common mode and differential mode.
ANSI/IEEE C62.41-1991	

Derating Curve

Derating Curve

Life Time vs. Case Temperature Curve
Life Time vs. Case Temperature

INVENTRONICS

EUC-075SxxxDV(SV)

Efficiency vs Load

EUC-075S070DV(SV)
Efficiency vs. Output Voltage

EUC-075S140DV(SV)
Efficiency vs. Output Voltage

EUC-075S045DV(SV)
Efficiency vs. Output Voltage

EUC-075S105DV(SV)
Efficiency vs. Output Voltage

EUC-075S210DV(SV)
Efficiency vs. Output Voltage

INVENTRONICS

EUC-075SxxxDV(SV)

EUC-075S375DV(SV)

Efficiency vs. Output Voltage

EUC-075S500DV(SV) Efficiency vs. Output Voltage

Power Factor Characteristics

PF vs. Output Voltage

INVENTRONICS

EUC-075SxxxDV(SV)

Total Harmonic Distortion

Dimming Control (On secondary side)

The function has two versions. One is with internal pull-up resistor, the output is full load when the dimming leads are floated. Another is with internal pull-down resistor, the output is 10% full load when the dimming leads are floated.

1. With pull-up resistor (Default, without suffix):

Parameter	Min.	Typ.	Max.	Notes
10V output voltage	9.8 V	10 V	10.2 V	
10V output source current	0 mA	-	10 mA	
Absolute maximum voltage on the 1~10V input pin	-2 V	-	12 V	
Source current on 1~10V input pin	0 mA	-	0.5 mA	
Value of Rin (the resistor inside the LED driver which locate between the 1-10V input and 10V output pin)	19.8 K	20 K	20.2 K	

	10 V OUTPUT (YLW)
$\xi R i n$	1-10V INPUT (PUR)
EUC-075SxxxDV	GND (GRN) - 1-10Vdc

Implementation 1: DC input

INVENTRONIGS

Implementation 2: External resistor

Notes:

1. If the dimming function is not used, please let the dimming leads floated.
2. Io is actual output current and Ir is rated current without dimming control.
3. For the driver to operate properly, the load voltage must be maintained above the minimum voltage threshold (approx. 50\% of the max. output voltage for any given model).
4. If the output voltage is maintained above 50% of the maximum output voltage, the dimming control may be operated over the entire $1-10 \mathrm{~V}$ range with output current varying from 100% down to practically 10%.
5. The dimming signal is allowed to be less than 1 V , however, when it for $0-1 \mathrm{~V}$, the output current can maintain about 10% Ir. When it for $8.5-10 \mathrm{~V}$, the output current can maintain about $100 \% \mathrm{Ir}$.
6. Do not connect the GND of dimming to the output; otherwise, the LED driver can not work normally.
7. With pull-down resistor: (The model number has a suffix -0040)

Implementation 1: DC input

INVENTRONICS

Implementation 2: External resistor

Implementation 3: External resistor and 1-10V DC Input

Notes:

1. If the dimming function is not used, please short 10 V output pin (yellow) and 1-10 input pin (purple).
2. Io is actual output current and Ir is rated current without dimming control.
3. For the driver to operate properly, the load voltage must be maintained above the minimum voltage threshold (approx. 50\% of the max. output voltage for any given model).
4. If the output voltage is maintained above 50% of the maximum output voltage, the dimming control may be operated over the entire 1-10V range with output current varying from 100\% down to practically 10%.
5. The dimming signal is allowed to be less than 1 V , however, when it for $0-1 \mathrm{~V}$, the output current can maintain about $10 \% \mathrm{Ir}$. When it for $8.5-10 \mathrm{~V}$, the output current can maintain about $100 \% \mathrm{lr}$.
6. Do not connect the GND of dimming to the output; otherwise, the LED driver can not work normally.

INVENTRONICS

EUC-075SxxxDV(SV)

Mechanical Outline

EUC-075SxxxDV

EUC-075SxxxSV

RoHS Compliance

Our products comply with the European Directive 2011/65/EC, calling for the elimination of lead and other hazardous substances from electronic products.

INVENTRONICS

EUC-075SxxxDV(SV)
Revision History

Change Date	Rev.	Description of Change		
		Item	From	To
2010-03-03	A	Add notes of UL1310 Class 2 for all models. (3) (4) (5)		
		Change efficiency for all models		
		Change MTBF	498,000 hours	450,000 hours
		Add Leakage Current in Input Specifications	1	/
		Add Derating Curve	1	/
		Modify the tin-plated wire length tolerance in Mechanical Outline	± 0.5	± 2
		Add one note in Dimming Control	/	7. Do not connect the GND of dimming to the output; otherwise, the LED driver can not work normally.
2010-05-25	B	Add one item in the notes of Ripple and Noise (pk-pk)	/	Vo is the maximum output voltage.
		Delete Output Overshoot / Undershoot	Max. 10\%	l
2010-05-31	C	Add star rank for recommended models	1	ふ: Popular model.
		Standardize the tolerance in Mechanical Outline	1	1
2010-07-30	D	Add Energy Star Standard	/	Comply With ANSI/IEEE C62.41, Class A Operation
2010-08-10	F	Change Turn-on Delay Time 120 Vac input	$\begin{array}{lc} \hline \text { Typ. } & \text { Max. } \\ 0.5 \mathrm{~S} & 0.8 \mathrm{~S} \end{array}$	$\begin{array}{ll} \hline \text { Typ. } & \text { Max. } \\ 0.8 \mathrm{~S} & 1.2 \mathrm{~S} \end{array}$
2010-10-22	G	Update the part of dimming control	1	/
2010-11-12	H	Change efficiency of 5000 mA 110 Vac 220 Vac	$\begin{array}{ll} \hline \text { Min. } & \text { Typ. } \\ 84 \%, & 86 \% \\ 86 \%, & 88 \% \\ \hline \end{array}$	Min. Typ. 82%, 84% 84%, 86%
		Add another dimming version with pull-down resistor	/	/
2011-01-14	1	Change popular models	/	/
2012-06-10	J	Life time curve	/	Added
		EN61000-4-5	line to line 2 kV , line to earth 4 kV	line to line 4 kV , line to earth 6 kV
		Efficiency of some models	/	1\% or 2\% lower
2012-7-5	k	Inrush Current	50 A	60 A
2012-7-17	L	Max Case Temperature	/	Updated
2012-10-10	M	Min PF, Max THD	/	Added
		Temperature coefficient	/	Added
		MTBF, Life time Typical Value	/	Added
		Life Time Curve	/	Updated
		Operating Temperature	$-35^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$
		Derating Curve	/	Updated

INVENTRONIGS

EUC-075SxxxDV(SV)

2013-05-23	N	Product photo	/	Updated
		Leakage current	1 mA	0.75 mA
		No load voltage- Typical	1	Added
		OVP	/	Deleted
		Efficiency of 5000mA Model	/	1\%lower
		Typical value of OTP	$110^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
		MTBF	320,000 hours	259,000 hours
		Efficiency curve	/	Added
		PF curve	1	Added
		THD curve	/	Added
		Dimming control- With pull-up resistor dimming curve	1	Updated
		Mechanical outline	/	Updated

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Power Supplies category:
Click to view products by Inventronics manufacturer:
Other Similar products are found below :
ESS015W-1000-12 EUC-075S105DT PDA-WIFI PIFC-K250F PITB-K222A ALD-514012PJ134 LB240S24KH LMH020-SPLC-000000000017953479535 EUG-200S210DT ESS030W-1050-21 ESS030W-0900-32 BPOXL 4-12-035 SLM160W-3.9-40-ZA ESS010W-018042 ESS010W-0350-24 ESS010W-0200-42 PDA080B-1A0G PDA150B-S1A5G ZPS-20 SLM140W-1.05-130-ZA ESS040W-1400-27 ESS015W-0700-18 ESS010E-0250-42 EDC-100S105SV-0007 79278 EUD-150S350DVA LWA320-C420-ARK-B 50304 HVG-320-36AB HVG-320-54AB OT FIT 50/220-240/300 D L OT FIT 35/220-240/350 D CS L OT FIT 65/220-240/350 D CS L ELEMENT 30/220-240/700 S LC 75W 100-400MA 1-10V LP EXC LCA 35W 150-700MA ONE4ALL LP PRE LCA 50W 100-400MA ONE4ALL LP PRE LCA 50W 3501050MA ONE4ALL LP PRE LCA 50W 350-1050MA 2XCH LP PRE LCI 150/325-1050/300 O4A SL PRE LCA 75W 100-400MA
ONE4ALL LP PRE LCA 45W 500-1400MA ONE4ALL SC PRE LC 50W 100-400MA FLEXC LP EXC LCA 75W 350-1050MA ONE4ALL LP PRE LC 50W 350-1050MA FLEXC LP EXC LC 75W 350-1050MA FLEXC LP EXC LCA 75W 900-1800MA ONE4ALL LP PRE LCA 100W 250-700MA ONE4ALL LP PRE

