

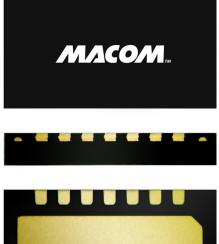
Rev. V3

Features

- GaN on SiC D-Mode Transistor Technology •
- Unmatched, Ideal for Pulsed Applications .
- 50 V Typical Bias, Class AB
- **Common-Source Configuration** .
- Thermally-Enhanced 3 x 6 mm 14-Lead DFN •
- MTTF = 600 years (T_{\downarrow} < 200°C)
- Halogen-Free "Green" Mold Compound •
- RoHS* Compliant and 260°C Reflow Compatible •
- MSL-1

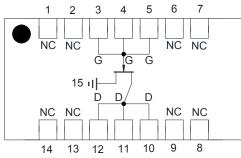
Description

The MAGX-000035-05000P is a GaN on SiC unmatched power device offering the widest RF frequency capability, most reliable high voltage operation, lowest overall power transistor size, cost and weight in a "TRUE SMT" plastic-packaging technology.


Use of an internal stress buffer technology allows reliable operation at junction temperatures up to 200°C. The small package size and excellent RF performance make it an ideal replacement for costly flanged or metal-backed module components.

Ordering Information^{1,2}

Part Number	Package
MAGX-000035-05000P	Bulk Packaging
MAGX-000035-0500TP	250 Piece Reel
MAGX-000035-PB2PPR	Sample Board


1. Reference Application Note M513 for reel size information.

2. When ordering sample evaluation boards, choose a standard frequency range indicated on page 4 or specify a desired custom range. Custom requests may increase lead times.

Functional Schematic

Pin Configuration³

Pin No.	Function	Pin No.	Function
1	No Connection	8	No Connection
2	No Connection	9	No Connection
3	V_{GG}/RF_{IN}	10	V _{DD} /RF _{OUT}
4	V_{GG}/RF_{IN}	11	V _{DD} /RF _{OUT}
5	V_{GG}/RF_{IN}	12	V_{DD}/RF_{OUT}
6	No Connection	13	No Connection
7	No Connection	14	No Connection
		15	Paddle ⁴

3. MACOM recommends connecting unused package pins to ground.

The exposed pad centered on the package bottom must be 4 connected to RF and DC ground.

Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

> M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macomtech.com for additional data sheets and product information.

1

GaN Wideband 50 W Pulsed Transistor in Plastic Package DC - 3.5 GHz

Rev. V3

Typical Performance⁵: V_{DD} = 50 V, I_{DQ} = 100 mA, T_A = 25°C

Parameter	30 MHz	1 GHz	2.5 GHz	3.5 GHz	Units
Gain	24	22	17	14	dB
Saturated Power (P _{SAT})	65	65	50	45	W
Power Gain at P _{SAT}	22	21	15	11	dB
PAE @ P _{SAT}	73	65	58	53	%

5. Typical RF performance measured in M/A-COM Technology Solutions RF evaluation boards. See recommended tuning solutions on page 4.

Electrical Specifications: Freq. = 1.6 GHz, $T_A = 25^{\circ}C$, $V_{DD} = +50 V$, $Z_0 = 50 \Omega$

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
RF FUNCTIONAL TESTS						
CW Output Power (P2.5 dB)	V_{DD} = 28 V, I_{DQ} = 100 mA	P _{OUT}	-	12	-	W
Pulsed Output Power (P2.5 dB) 1 ms and 10% Duty Cycle	V_{DD} = 50 V, I_{DQ} = 100 mA	P _{OUT}	42	50	-	W
Pulsed Power Gain (P2.5 dB)	V_{DD} = 50 V, I_{DQ} = 100 mA	G _P	16	18	-	dB
Pulsed Drain Efficiency (P2.5 dB)	$V_{DD} = 50 \text{ V}, \ I_{DQ} = 100 \text{ mA}$	η_{D}	55	66	-	%
Load Mismatch Stability (P2.5 dB)	V_{DD} = 50 V, I_{DQ} = 100 mA	VSWR-S	-	5:1	-	-
Load Mismatch Tolerance (P2.5 dB)	V_{DD} = 50 V, I_{DQ} = 100 mA	VSWR-T	-	10:1	-	-

Electrical Characteristics: T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
DC CHARACTERISTICS				•		
Drain-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 175 V	I _{DS}	-	-	3.0	mA
Gate Threshold Voltage	$V_{DS} = 5 V, I_D = 6 mA$	$V_{GS(th)}$	-5	-3	-2	V
Forward Transconductance	V_{DS} = 5 V, I _D = 1500 mA	G _M	1.1	-	-	S
DYNAMIC CHARACTERISTICS			•			
Input Capacitance	V_{DS} = 0 V, V_{GS} = -8 V, F = 1 MHz	C _{ISS}	-	13.1	-	pF
Output Capacitance	V_{DS} = 50 V, V_{GS} = -8 V, F = 1 MHz	C _{OSS}	-	5.2	-	pF
Reverse Transfer Capacitance	V_{DS} = 50 V, V_{GS} = -8 V, F = 1 MHz	C _{RSS}	-	0.5	-	pF

2

GaN Wideband 50 W Pulsed Transistor in Plastic Package DC - 3.5 GHz

Rev. V3

Absolute Maximum Ratings ^{6,7,8,9,10}

Parameter	Absolute Max.			
Input Power	P _{OUT} - G _P + 2.5 dBm			
Drain Supply Voltage, V _{DD}	+65 V			
Gate Supply Voltage, V_{GG}	-8 V to 0 V			
Supply Current, IDD	2500 mA			
Power Dissipation, CW @ 85°C	13 W			
Power Dissipation (P _{AVG}), Pulsed @ 85°C	43 W			
Junction Temperature ¹¹	200°C			
Operating Temperature	-40°C to +95°C			
Storage Temperature	-65°C to +150°C			

6. Exceeding any one or combination of these limits may cause permanent damage to this device.

7. M/A-COM Technology Solutions does not recommend sustained operation near these survivability limits.

8. For saturated performance it is recommended that the sum of $(3 * V_{DD} + abs (V_{GG})) \le 175 V$.

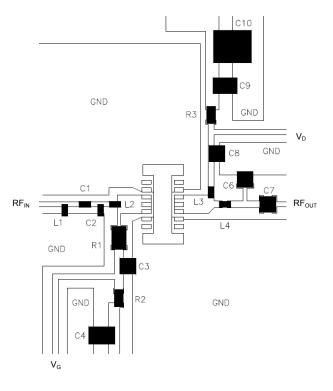
9. CW operation at V_{DD} voltages above 28 V is not recommended.

10. Operating at nominal conditions with $T_J \le 200^{\circ}C$ will ensure MTTF > 1 x 10⁶ hours. Junction temperature directly affects device MTTF and should be kept as low as possible to maximize lifetime.

11. Junction Temperature $(T_J) = T_C + \Theta_{JC} * ((V * I) - (P_{OUT} - P_{IN}))$

Typical CW thermal resistance $(\Theta_{JC}) = 9.63^{\circ}C/W$ a) For $T_{C} = 79^{\circ}C$, $T_{J} = 200^{\circ}C @ 28 V, 840 mA, P_{OUT} = 12 W, P_{IN} = 0.92 W$ Typical transient thermal resistances: b) 300 µs pulse, 10% duty cycle, $\Theta_{JC} = 1.6^{\circ}C/W$ For $T_{C} = 79^{\circ}C$, $T_{J} = 117^{\circ}C @ 50 V, 1090 mA, P_{OUT} = 30.2 W, P_{IN} = 1.42 W$ c) 1 ms pulse, 10% duty cycle, $\Theta_{JC} = 2.0^{\circ}C/W$ For $T_{C} = 79^{\circ}C$, $T_{J} = 129^{\circ}C @ 50 V, 1110 mA, P_{OUT} = 30.7 W, P_{IN} = 1.5 W$

d) 1 ms pulse, 20% duty cycle, Θ_{JC} = 2.81°C/W For T_C = 79°C, T_J = 153°C @ 50 V, 1120 mA, P_{OUT} = 30.9 W, P_{IN} = 1.59 W


3

GaN Wideband 50 W Pulsed Transistor in Plastic Package DC - 3.5 GHz

Rev. V3

Evaluation Board Details and Recommended Tuning Solutions

Parts measured on evaluation board (8-mils thick RO4003C). Electrical and thermal ground is provided using copper-filled via hole array (not pictured), and evaluation board is mounted to a metal plate.

Matching is provided using lumped elements as shown at left. Recommended tuning solutions for 2 frequency ranges are detailed in the parts list below.

Bias Sequencing

Turning the device ON

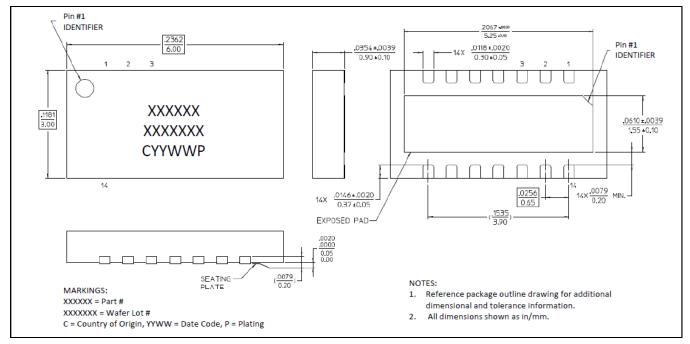
- 1. Set V_G to the pinch-off (V_P), typically -5 V.
- 2. Turn on V_D to nominal voltage (50 V).
- 3. Increase V_{GS} until the I_{DS} current is reached.
- 4. Apply RF power to desired level.

Turning the device OFF

- 1. Turn the RF power off.
- 2. Decrease V_G down to $V_{P.}$
- 3. Decrease V_D down to 0 V.
- 4. Turn off V_G.

Parts List (N/A = not applicable for this tuning solution)

Part	Frequency = 1.6 GHz	Frequency = 0.9 - 1.2 GHz
C1	0402 27 pF, ±5%, 200 V, ATC	0402, 8.2 pF, ±0.1 pF, 200 V, ATC
C2	0603, 6.8 pF, ±0.1 pF, 250 V, ATC	0402, 15 pF, ±5%, 200 V, ATC
C3	0505, 100 pF, ±10%, 200 V, ATC	0505, 100 pF, ±10%, 200 V, ATC
C4	0805, 1000 pF, 100 V, 5%, AVX	0805, 1000 pF, 100 V, 5%, AVX
C5	N/A	N/A
C6	0505, 2.2 pF, ±5%, 250 V, ATC	0505, 2.7 pF, ±0.1 pF, 250 V, ATC
C7	0505, 36 pF, ±5%, 250 V, ATC	0603, 56 pF, ±5%, 250 V, ATC
C8	0505, 36 pF, ±5%, 250 V, ATC	0505, 100 pF, ±10%, 200 V, ATC
C9	0805, 1000 pF, 100 V, 5%, AVX	0805, 1000 pF, 100 V, 5%, AVX
C10	1210, 1 μF, 100 V, 20%, ATC	1210, 1 μF, 100 V, 20%, ATC
C11	N/A	100 µF, 160 V
R1	33 Ω, 0805, 5%	9.1 Ω, 0805, 5%
R2	1.0 Ω, 0603, 5%	0.33 Ω, 0805, 5%
R3	1.0 Ω, 0603, 5%	0.33 Ω, 0805, 5%
L1	N/A	0402HP, 3.3 nH
L2	N/A	0402HP, 1.0 nH
L3	N/A	0402HP, 4.7 nH
L4	N/A	0402HP, 3.6 nH


4

GaN Wideband 50 W Pulsed Transistor in Plastic Package DC - 3.5 GHz

Rev. V3

Lead-Free 3x6 mm 14-Lead DFN[†]

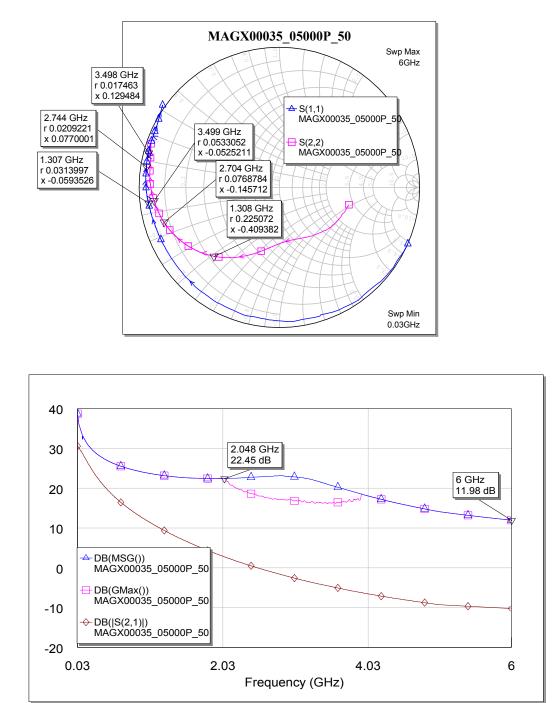
[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is Ni/Pd/Au.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Devices and Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1B devices.



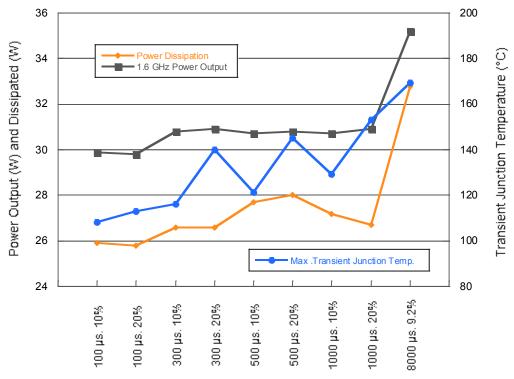
GaN Wideband 50 W Pulsed Transistor in Plastic Package DC - 3.5 GHz

Rev. V3

Applications Section

S-Parameter Data: $T_A = 25^{\circ}C$, $V_{DD} = +50 V$, $I_{DQ} = 100 mA$

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macomtech.com for additional data sheets and product information.


GaN Wideband 50 W Pulsed Transistor in Plastic Package DC - 3.5 GHz

Rev. V3

Applications Section

Thermal Performance: Freq. = 1.6 GHz, $T_c = 85^{\circ}C$, $V_{DD} = +50$ V, $I_{DQ} = 100$ mA, $Z_0 = 50 \Omega$

Power (Output & Dissipated) vs. Transient Junction Temperature, Pulse Duration and Duty Cycle

Pulse	Width	(µs),	Duty	Cycle	(%)	
-------	-------	-------	------	-------	-----	--

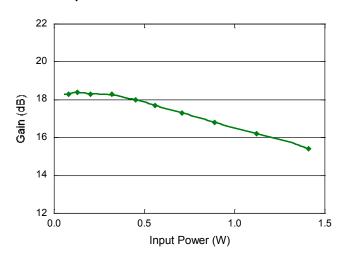
Pulse Width, Duty Cycle	100 μs, 10%	100 μs, 20%	300 μs, 10%	300 μs, 20%	500 μs, 10%	500 μs, 20%	1000 μs, 10%	1000 μs, 20%	8000 µs, 9.2%
Power Dissipation (W)	25.9	25.8	26.6	26.6	27.7	28.0	27.2	26.7	32.8
1.6 GHz P _{OUT} (W)	29.9	29.8	30.8	30.9	30.7	30.8	30.7	30.9	35.2
Max. Transient Junction Temp. (°C)	108.2	113.1	116.6	139.9	121.3	145.2	129.2	153.1	169.6

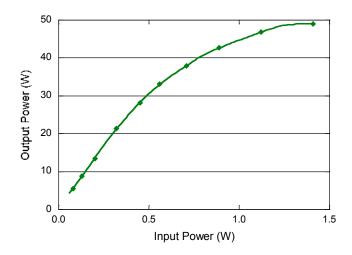
Junction temperature measured using High-Speed Transient (HST) temperature detection microscopy.

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macomtech.com for additional data sheets and product information.

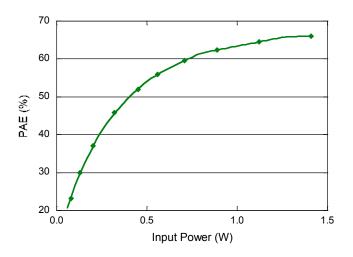
GaN Wideband 50 W Pulsed Transistor in Plastic Package DC - 3.5 GHz

Rev. V3


Applications Section


Typical Performance Curves (reference 1.6 GHz parts list):

1.6 GHz, 1 ms Pulse, 10% Duty Cycle, V_{DD} = +50 V, T_A = 25°C, Z_0 = 50 Ω


Gain vs. Input Power

Output Power vs. Input Power

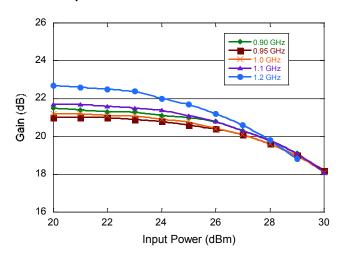
PAE vs. Input Power

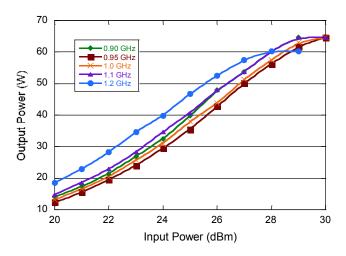
8

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macomtech.com for additional data sheets and product information.

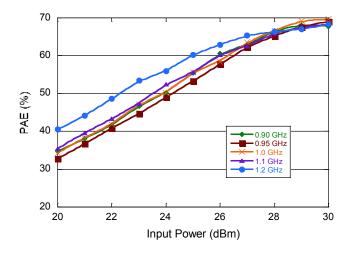
GaN Wideband 50 W Pulsed Transistor in Plastic Package DC - 3.5 GHz

Rev. V3


Applications Section


Typical Performance Curves (reference 0.9 - 1.2 GHz parts list):

0.9 - 1.2 GHz, 500 μ s Pulse, 10% Duty Cycle, V_{DD} = +50 V, T_A = 25°C, Z₀ = 50 Ω


Gain vs. Input Power

Output Power vs. Input Power

PAE vs. Input Power

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF JFET Transistors category:

Click to view products by MACOM manufacturer:

Other Similar products are found below :

XF1001-SC-EV1 CE3514M4 CE3514M4-C2 CE3520K3-C1 CE3521M4 CE3521M4-C2 NPT25100B CE3520K3 CGH55030F1 CGH27030F QPD0020 CGH25120F CMPA801B030F TGF2023-2-01 TGF2023-2-02 CGH40006P QPD1009 MAGX-011086 QPD1014SR T2G6000528-Q3 CG2H40025F CGHV40200PP CGHV40050F CGHV14800F CGH27030P CGH09120F CG2H80015D-GP4 CG2H40045F T2G4003532-FL TGF2942 T2G6003028-FS T2G6000528-Q3 28V T2G4003532-FS T1G2028536-FL QPD1015 QPD1010 QPD1008L QPD1008 QPD1000 JANTXV2N4858 ATF-521P8-BLK J175D26Z AGX-1/2 CE3512K2 2N3819 CGH55030F2 CGHV40180F CGHV27015S MMZ25332BT1 NPT2021