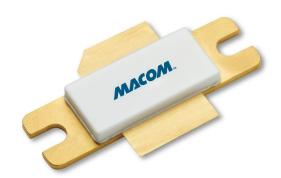


# GaN on SiC HEMT Pulsed Power Transistor 600 W Peak, 1030 to 1090 MHz, 32 µs Pulse, 2% Duty

Rev. V6

#### **Features**

- GaN on SiC Depletion-Mode Transistor Technology
- Internally Matched
- Common-Source Configuration
- · Broadband Class AB Operation
- RoHS\* Compliant and 260 °C Reflow Compatible
- +50 V Typical Operation
- MTTF = 600 years (T<sub>J</sub> < 200 °C)</li>


#### **Applications**

- Civilian Air Traffic Control (ATC), L-Band Secondary Radar for IFF and Mode-S avionics.
- · Military Radar for IFF and Data Links.

#### Description

The MAGX-001090-600L00 and MAGX-001090-600L0S are gold metalized matched Gallium Nitride (GaN) on Silicon Carbide (SiC) RF power transistor optimized for pulsed avionics and radar applications. Using state of the art wafer fabrication processes, these high performance transistors provide high gain, efficiency, bandwidth, and ruggedness over a wide bandwidth for today's demanding application needs. High breakdown voltages allow for reliable and stable operation under more extreme mismatch load conditions compared with older semiconductor technologies.

#### MAGX-001090-600L00



#### MAGX-001090-600L0S



### Ordering Information<sup>1</sup>

| Part Number        | Description                         |
|--------------------|-------------------------------------|
| MAGX-001090-600L00 | Flanged                             |
| MAGX-001090-600L0S | Flangeless                          |
| MAGX-A11090-600L00 | 1030 - 1090 MHz<br>Evaluation Board |

- When ordering the evaluation board, please indicate on sales order notes if it will be used for:
  - A. Standard Flange devices
  - B. Earless Flange devices

### Typical RF Performance under Standard Operating Conditions, Pout = 600 W (Peak)

| Freq<br>(MHz) | P <sub>IN</sub> (W) | Gain<br>(dB) | I <sub>D</sub> (A) | Eff.<br>(%) | RL<br>(dB) | Droop<br>(dB) | +1dB OD<br>(W) | VSWR-S<br>(3:1) | VSWR-T<br>(5:1) |
|---------------|---------------------|--------------|--------------------|-------------|------------|---------------|----------------|-----------------|-----------------|
| 1030          | 4.95                | 20.8         | 20.4               | 58.6        | -16.8      | 0.24          | 649            | S               | Р               |
| 1090          | 4.50                | 21.3         | 18.6               | 64.4        | -11.0      | 0.23          | 661            | S               | Р               |

<sup>\*</sup> Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.



### GaN on SiC HEMT Pulsed Power Transistor 600 W Peak, 1030 to 1090 MHz, 32 μs Pulse, 2% Duty

Rev. V6

### Electrical Specifications: Freq. = 1030 - 1090 MHz, T<sub>A</sub> = 25 °C

| Parameter                                      | Test Conditions                                                                                                    | Symbol          | Min. | Тур. | Max. | Units |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------|------|------|------|-------|
| RF Functional Tests                            | RF Functional Tests                                                                                                |                 |      |      |      |       |
| Peak Input Power                               |                                                                                                                    | P <sub>IN</sub> | -    | 4.3  | 6.7  | W     |
| Power Gain                                     |                                                                                                                    | G <sub>P</sub>  | 19.5 | 21.4 | -    | dB    |
| Drain Efficiency                               | $V_{DD}$ = 50 V, $I_{DQ}$ = 600 mA,<br>Pulse Width = 32 µs, Duty Cycle = 2%,<br>$P_{OUT}$ = 600 W Peak (12 W avg.) | η <sub>D</sub>  | 55   | 63   | -    | %     |
| Pulse Droop                                    |                                                                                                                    | Droop           | -    | 0.2  | 0.3  | dB    |
| Load Mismatch Stability                        |                                                                                                                    | VSWR-S          | -    | 3:1  | -    | -     |
| Load Mismatch Tolerance                        |                                                                                                                    | VSWR-T          | -    | 5:1  | -    | -     |
| Mode-S ELM Pulse Width Conditions <sup>2</sup> |                                                                                                                    |                 |      |      |      |       |
| Peak Input Power                               | $V_{DD}$ = 50 V, $I_{DQ}$ = 400 mA,<br>48 pulses of 32 µs on and 18 µs off,<br>repeat every 24 ms,                 | P <sub>IN</sub> | -    | 4.6  | -    | W     |
| Power Gain                                     |                                                                                                                    | G <sub>P</sub>  | -    | 20.7 | -    | dB    |
| Drain Efficiency                               | Overall Duty Factor = 6.4%,<br>P <sub>OUT</sub> = 550 W Peak (35.2 W avg.)                                         | $\eta_{D}$      | -    | 61   | -    | %     |

For Mode-S ELM pulse conditions power measurements are obtained as follows:
 RF input / output power is measured at the middle of the 25th pulse in the burst (t = 1.216 ms);
 Droop measurements are defined as the drop in power from the 5th pulse (t = 216us) and 43rd pulse (t = 2.116ms) in the burst.

### Electrical Characteristics: T<sub>A</sub> = 25 °C

| Parameter                    | Test Conditions                                   | Symbol               | Min. | Тур. | Max. | Units |
|------------------------------|---------------------------------------------------|----------------------|------|------|------|-------|
| DC Characteristics           |                                                   |                      |      |      |      |       |
| Drain-Source Leakage Current | V <sub>GS</sub> = -8 V, V <sub>DS</sub> = 175 V   | I <sub>DS</sub>      | -    | 1.0  | 30   | mA    |
| Gate Threshold Voltage       | $V_{DS} = 5 \text{ V}, I_{D} = 75 \text{ mA}$     | V <sub>GS (TH)</sub> | -5   | -3.1 | -2   | V     |
| Forward Transconductance     | $V_{DS} = 5 \text{ V}, I_{D} = 17.5 \text{ mA}$   | G <sub>M</sub>       | 12.5 | 19.2 | -    | S     |
| Dynamic Characteristics      |                                                   |                      |      |      |      |       |
| Input Capacitance            | Not applicable - Input matched                    | C <sub>ISS</sub>     | N/A  | N/A  | N/A  | pF    |
| Output Capacitance           | $V_{DS} = 50 \text{ V}, \ V_{GS} = -8 \text{ V},$ | Coss                 | -    | 55   | -    | pF    |
| Reverse Transfer Capacitance | Freq. = 1 MHz                                     | C <sub>RSS</sub>     | -    | 5.5  | -    | pF    |



### GaN on SiC HEMT Pulsed Power Transistor 600 W Peak, 1030 to 1090 MHz, 32 μs Pulse, 2% Duty

Rev. V6

### **Absolute Maximum Ratings**<sup>3,4,5</sup>

| Parameter                                   | Limit                            |
|---------------------------------------------|----------------------------------|
| Drain Voltage (V <sub>DD</sub> )            | +65 V                            |
| Gate Voltage (V <sub>GG</sub> )             | -8 to -2 V                       |
| Drain Current (I <sub>DD</sub> )            | 80 A                             |
| Input Power <sup>6</sup> (P <sub>IN</sub> ) | P <sub>IN</sub> (nominal) + 3 dB |
| Operating Junction Temperature <sup>7</sup> | 250 °C                           |
| Peak Pulsed Power Dissipation at 85 °C      | 3.5 kW                           |
| Operating Temperature Range                 | -40 to +95 °C                    |
| Storage Temperature Range                   | -65 to +150 °C                   |
| ESD Maximum - Charged Device Model (CDM)    | 1300 V                           |
| ESD Maximum - Human Body Model (HBM)        | 4000 V                           |

<sup>3.</sup> Exceeding any one or combination of these limits may cause permanent damage to this device.

#### **Thermal Characteristics**

| Parameter          | Test Conditions                                                                                                 | Symbol          | Typical | Units |
|--------------------|-----------------------------------------------------------------------------------------------------------------|-----------------|---------|-------|
| Thermal Resistance | $T_C$ = 70 °C, $V_{DD}$ = 50 V, $I_{DQ}$ = 600 mA, $P_{OUT}$ = 600 W, Pulse Width = 32 $\mu$ s, Duty Cycle = 2% | Θ <sub>JC</sub> | 0.05    | °C/W  |

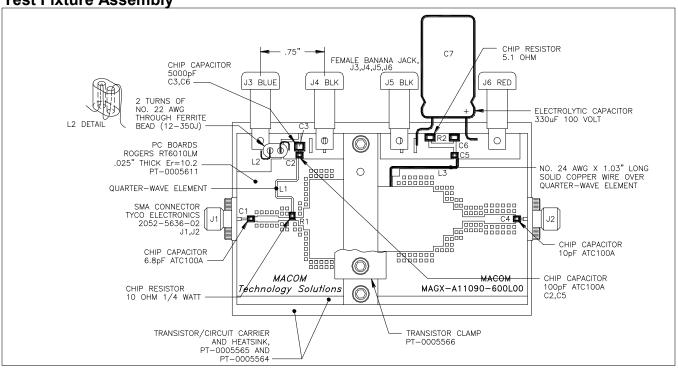
<sup>4.</sup> MACOM does not recommend sustained operation near these survivability limits.

<sup>5.</sup> For saturated performance it is recommended that the sum of (  $3 * V_{DD} + |V_{GG}|$  ) < 175 V.

<sup>6.</sup> Input Power Limit is +3 dB over nominal drive required to achieve Pout = 600 W.

<sup>7.</sup> Operating junction temperature is measured with infrared (IR) microscope. Junction temperature directly affects a device's MTTF and should be kept as low as possible to maximize lifetime.

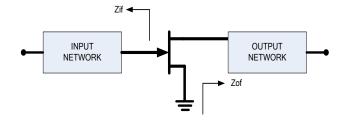
<sup>•</sup> MTTF =  $5.3 \times 10^6$  hours (T<sub>J</sub> < 200 °C)


MTTF = 6.8 x 10<sup>4</sup> hours (T<sub>J</sub> < 250 °C)</li>



### GaN on SiC HEMT Pulsed Power Transistor 600 W Peak, 1030 to 1090 MHz, 32 μs Pulse, 2% Duty

Rev. V6


**Test Fixture Assembly** 



Contact MACOM for additional circuit information.

#### **Test Fixture Impedances**

| Freq. (MHz) | Z <sub>IF</sub> (Ω) | Z <sub>OF</sub> (Ω) |
|-------------|---------------------|---------------------|
| 1030        | 1.1 - j1.5          | 1.5 + j0.5          |
| 1060        | 1.1 - j1.4          | 1.5 + j0.6          |
| 1090        | 1.1 - j1.3          | 1.5 + j0.6          |

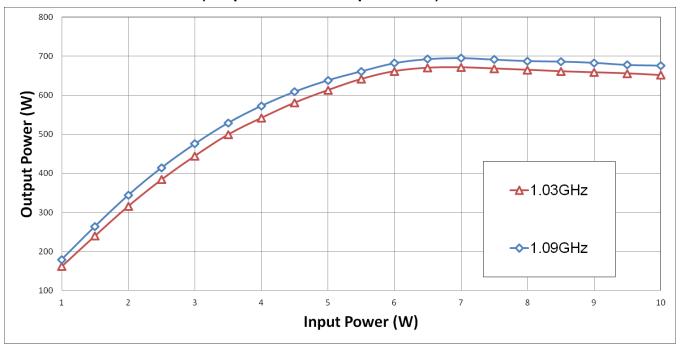


#### **Correct Device Sequencing**

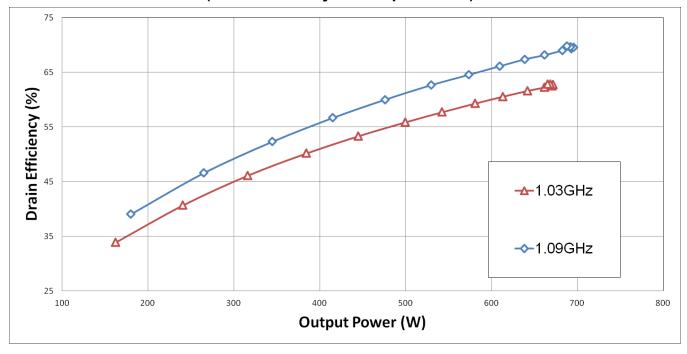
#### Turning the device ON

- 1. Set  $V_{GS}$  to the pinch-off  $(V_P)$ , typically -5 V.
- 2. Turn on V<sub>DS</sub> to nominal voltage (50 V).
- 3. Increase  $V_{\text{GS}}$  until the  $I_{\text{DS}}$  current is reached.
- 4. Apply RF power to desired level.

#### Turning the device OFF


- 1. Turn the RF power off.
- 2. Decrease  $V_{\text{GS}}$  down to  $V_{\text{P}}$
- 3. Decrease V<sub>DS</sub> down to 0 V.
- 4. Turn off V<sub>GS</sub>



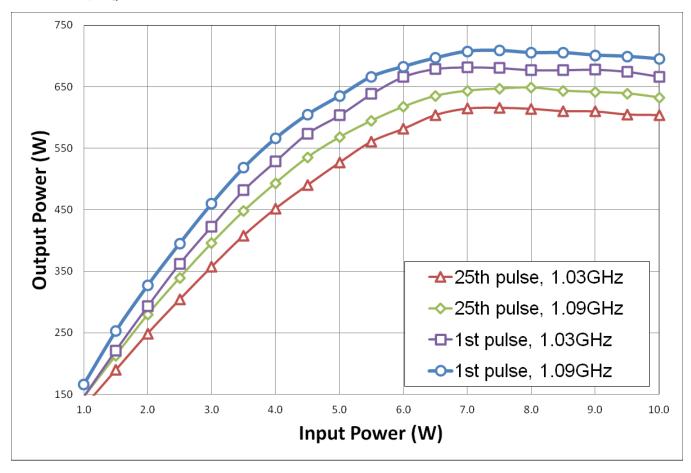

GaN on SiC HEMT Pulsed Power Transistor 600 W Peak, 1030 to 1090 MHz, 32 μs Pulse, 2% Duty

Rev. V6

### RF Power Transfer Curve (Output Power Vs. Input Power)



#### RF Power Transfer Curve (Drain Efficiency Vs. Output Power)

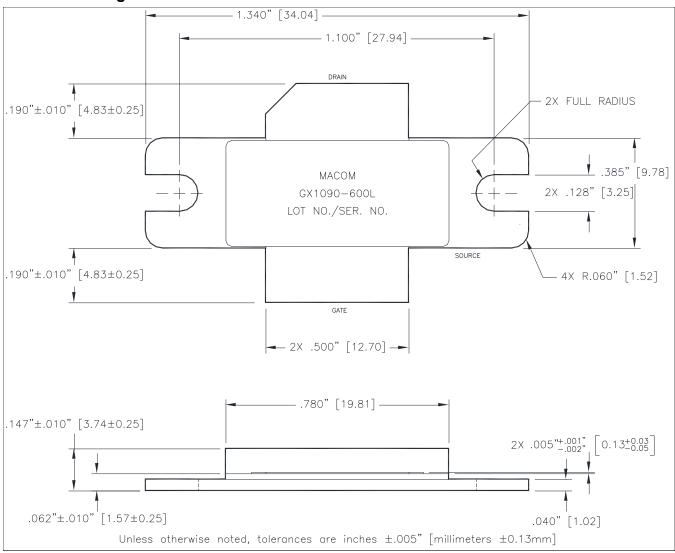





GaN on SiC HEMT Pulsed Power Transistor 600 W Peak, 1030 to 1090 MHz, 32 μs Pulse, 2% Duty

Rev. V6

Typical RF Data with Mode-S ELM 'pulse' conditions: 48 pulses of 32  $\mu$ s on and 18  $\mu$ s off, repeat every 24ms; Overall Duty Factor = 6.4%  $V_{DD}$  = 50 V;  $I_{DQ}$  = 400 mA



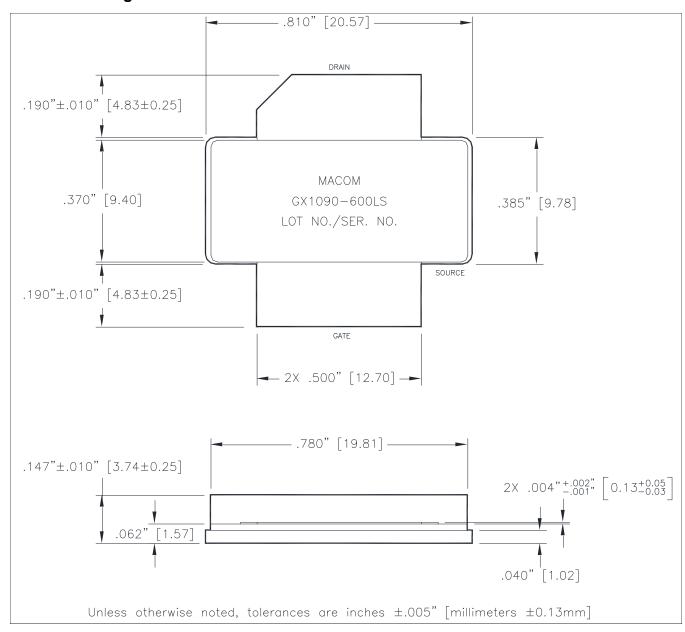



GaN on SiC HEMT Pulsed Power Transistor 600 W Peak, 1030 to 1090 MHz, 32 μs Pulse, 2% Duty

Rev. V6

### Outline Drawing MAGX-001090-600L00<sup>†</sup>




<sup>†</sup> Reference Application Note AN3025 for mounting/soldering recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is Ni/Au.



GaN on SiC HEMT Pulsed Power Transistor 600 W Peak, 1030 to 1090 MHz, 32 μs Pulse, 2% Duty

Rev. V6

### Outline Drawing MAGX-001090-600L0S<sup>†</sup>



<sup>†</sup> Reference Application Note AN3025 for mounting/soldering recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is Ni/Au.



GaN on SiC HEMT Pulsed Power Transistor 600 W Peak, 1030 to 1090 MHz, 32 µs Pulse, 2% Duty

Rev. V6

#### M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF JFET Transistors category:

Click to view products by MACOM manufacturer:

Other Similar products are found below:

XF1001-SC-EV1 CE3514M4 CE3514M4-C2 CE3520K3-C1 CE3521M4 CE3521M4-C2 NPT25100B CE3520K3 CGH55030F1

CGH27030F QPD0020 CGH25120F CMPA801B030F TGF2023-2-01 TGF2023-2-02 CGH40006P QPD1009 MAGX-011086 QPD1014SR

T2G6000528-Q3 CG2H40025F CGHV40200PP CGHV40050F CGHV14800F CGH27030P CGH09120F CG2H80015D-GP4

CG2H40045F T2G4003532-FL TGF2942 T2G6003028-FS T2G6000528-Q3 28V T2G4003532-FS T1G2028536-FL QPD1015 QPD1010

QPD1008L QPD1008 QPD1000 JANTXV2N4858 ATF-521P8-BLK J175D26Z AGX-1/2 CE3512K2 2N3819 CGH55030F2

CGHV40180F CGHV27015S MMZ25332BT1 NPT2021