TC74HC4538AP, TC74HC4538AF, TC74HC4538AFT

Dual Retriggerable Monostable Multivibrator

The TC74HC4538A is a high speed CMOS MONOSTABLE MULTIVIBRATOR fabricated with silicon gate C²MOS technology.

It achieves the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.

There are two trigger inputs, A input (positive edge input), and $\overline{\mathrm{B}}$ input (negative edge input). These inputs are valid for a slow rise/fall time signal $\left(\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=1 \mathrm{~s}\right)$ as they are schmitt trigger inputs.
After triggering, the output stays in a MONOSTABLE state for the time period determined by the external resistor and capacitor (RX, CX). A low level at $\overline{\mathrm{CD}}$ input breaks this STABLE STATE. In the MONOSTABLE state, if a new trigger is applied, it makes the MONOSTABLE period longer (retrigger mode).

Limitations for CX and RX are as follows:
External capacitor CX No limitation
External resistor RX. \qquad $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ more than $5 \mathrm{k} \Omega$
VCC $\geq 3.0 \mathrm{~V}$ more than $1 \mathrm{k} \Omega$
All inputs are equipped with protection circuits against static discharge or transient excess voltage.

Features (Note)

- High speed: $\mathrm{t}_{\mathrm{pd}}=25 \mathrm{~ns}$ (typ.) at VCC $=5 \mathrm{~V}$
- Low power dissipation

Stand by state: $\mathrm{ICC}_{\mathrm{C}}=4 \mu \mathrm{~A}(\max)$ at $\mathrm{Ta}=25^{\circ} \mathrm{C}$
Active state: ICC $=300 \mu \mathrm{~A}(\max)$ at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

- High noise immunity: $\mathrm{V}_{\mathrm{NIH}}=\mathrm{V}_{\mathrm{NIL}}=28 \% \mathrm{~V}_{\mathrm{CC}}(\mathrm{min})$
- Output drive capability: 10 LSTTL loads
- Symmetrical output impedance: $|\mathrm{IOH}|=\mathrm{IOL}=4 \mathrm{~mA}(\mathrm{~min})$
- Balanced propagation delays: $\mathrm{t}_{\mathrm{pLH}} \simeq \mathrm{t}_{\mathrm{pHL}}$
- Wide operating voltage range: VCC (opr) $=2 \mathrm{~V}$ to 6 V
- Pin and function compatible with $4538 B$

Note: In the case of using only one circuit, $\overline{C D}$ should be tied to GND, T1 T2 $\cdot \mathrm{Q} \cdot \overline{\mathrm{Q}}$ should be tied to OPEN, the other inputs should be tied to $V_{C C}$ or GND.

TC74HC4538AP

DIP16-P-300-2.54A
TC74HC4538AF

SOP16-P-300-1.27A
TC74HC4538AFT

TSSOP16-P-0044-0.65A

Weight

DIP16-P-300-2.54A $\quad: 1.00 \mathrm{~g}$ (typ.)
SOP16-P-300.1.27A : 0.18 (typ.)
TSSOP16-P-0044-0.65A : 0.06 g (typ.

Pin Assignment

IEC Logic Symbol

Truth Table

Inputs			Outputs		Note
A	$\overline{\mathrm{B}}$	$\overline{C D}$	Q	\bar{Q}	
\uparrow	H	H	\bigcirc	ป	Output Enable
X	L	H	L	H	Inhibit
H	X	H	L	H	Inhibit
L	\downarrow	H	\square	〕	Output Enable
X	X	L	L	H	Reset

X: Don't care

Block Diagram (Note 1)(Note 2)

Note 1: CX, RX, DX are external capacitor, resistor, and diode, respectively.
Note 2: External clamping diode, DX
The external capacitor is charged to V_{Cc} level in the wait state, i.e. when no trigger is applied. Supply voltage is turned off and C_{X} is discharged mainly through the internal (parasitic) diode. If C_{X} is sufficiently large and $V_{C C}$ drops rapidly, there will be some possibility of damaging the IC by rush current or latch-up. If the capacitance of the supply voltage filter is large enough and V_{CC} drops slowly, the rush current is automatically limited and damage to the IC is avoided.

The maximum value of forward current through the parasitic diode is $\pm 20 \mathrm{~mA}$.
In the case of a large C_{X}, the limitation of fall time of the supply voltage is determined as follows:
$\mathrm{tf}_{\mathrm{f}} \geq\left(\mathrm{V}_{\mathrm{CC}}-0.7\right) \mathrm{CX} / 20 \mathrm{~mA}$
(t_{f} is the time from the voltage supply turning off to the level of supply voltage reaching $0.4 \mathrm{~V}_{\mathrm{CC}}$.)
In the care of a system that does not satisfy the above condition, an external clamping diode is needed to protect the IC from rush current.

System Diagram

Timing Chart

Functional Description

(1) Stand-by state

The external capacitor is fully charge to VCC in the stand-by state. That means, before triggering, QP and QN transistors which are connected to the T2 node are in the off state. Two comparators that relate to the timing of the output pulse, and two reference voltage supplies stop their operation. The total supply current is only leakage current.
(2) Trigger operation

Trigger operation is effective in either of the following two cases. One is the condition where the A input is low, and the $\overline{\mathrm{B}}$ input has a falling signal. The other, where the $\overline{\mathrm{B}}$ input is high, and the A input has a rising signal.

After trigger becomes effective, comparators C_{1} and C_{2} start operating, and Q_{N} is turned on. The external capacitor discharges through QN . The voltage level at the T2 node drops. If the T2 voltage level falls to the internal reference voltage $\mathrm{V}_{\text {ref }} \mathrm{L}$, the output of C_{1} becomes low. The flip-flop is then reset and QN_{N} turns off. At that moment C_{1} stops but C_{2} continues operating.
After QN turns off, the voltage at T2 start rising at a rate determined by the time constant of external capacitor CX and resistor RX.
After the triggering, output Q becomes high, following some delay time of the internal F/F and gates. It stays high even if the voltage of T2 changes from falling to rising. When T2 reaches the internal reference voltage $\mathrm{V}_{\mathrm{ref}} \mathrm{H}$, the output of C_{2} becomes low, the output Q goes low and C_{2} stops its operation. That means, after triggering, when the voltage level of T 2 reaches $\mathrm{V}_{\mathrm{ref}} \mathrm{H}$, the IC returns to its MONOSTABLE state.
In the case of large value of CX_{X} and Rx , and ignoring the discharge time of the capacitor and internal delays of the IC, the width of the output pulse, ($\mathrm{t}_{\mathrm{w} O U T}$), is as follows:

$$
\mathrm{t}_{\mathrm{wOUT}}=0.70 \cdot \mathrm{CX} \cdot \mathrm{RX}^{2}
$$

(3) Retrigger operation

When another new trigger is applied to input A or $\overline{\mathrm{B}}$ while in the MONOSTABLE state, it is effective only if the IC is charging CX. The voltage level of T 2 then falls to $\mathrm{V}_{\text {ref }} \mathrm{L}$ level again.
Therefore the Q output stays high if the next trigger comes in before the time period set by CX and RX.
If the $2^{\text {nd }}$ trigger is very close to previous trigger, such as application during the discharge cycle, the $2^{\text {nd }}$ trigger will not be effective.
The minimum time for effective $2^{\text {nd }}$ trigger, $\mathrm{t}_{\mathrm{rr}}(\mathrm{min})$, depends on V_{CC} and CX_{X}.
(4) Reset operation

In normal operation, $\overline{\mathrm{CD}}$ input is held high. If $\overline{\mathrm{CD}}$ is low, a trigger has no effect because the Q output is held low and the trigger control F / F is reset. Also Qp turns on and CX is charged rapidly to VCC.
This means if $\overline{\mathrm{CD}}$ input is set low, the IC goes into a wait state.

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Supply voltage range	$\mathrm{V}_{\text {CC }}$	-0.5 to 7	V
DC input voltage	$\mathrm{V}_{\text {IN }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
DC output voltage	$\mathrm{V}_{\text {OUT }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Input diode current	I_{IK}	± 20	mA
Output diode current	I_{OK}	± 20	mA
DC output current	$\mathrm{I}_{\mathrm{OUT}}$	± 50	mA
DC $\mathrm{V}_{\text {CC }} /$ ground current	I_{CC}	mA	
Power dissipation	PD_{D}	500 (DIP) (Note 2$) / 180(\mathrm{SOP} / \mathrm{TSSOP})$	mW
Storage temperature	$\mathrm{T}_{\text {Stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.
Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc)

Note 2: 500 mW in the range of $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$. From $\mathrm{Ta}=65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ a derating factor of $-10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ should be applied up to 300 mW .

Operating Ranges (Note 1)

Characteristics	Symbol	Rating	Unit
Supply voltage	V_{CC}	2 to 6	V
Input voltage	V_{IN}	0 to V_{Cc}	V
Output voltage	VOUT	0 to V_{Cc}	V
Operating temperature	Topr	-40 to 85	${ }^{\circ} \mathrm{C}$
Input rise and fall time ($\overline{C D}$ only)	t_{r}, t_{f}	$\begin{aligned} & 0 \text { to } 1000\left(\mathrm{~V}_{\mathrm{CC}}=2.0 \mathrm{~V}\right) \\ & 0 \text { to } 500\left(\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}\right) \\ & 0 \text { to } 400\left(\mathrm{~V}_{\mathrm{CC}}=6.5 \mathrm{~V}\right) \end{aligned}$	ns
External capacitor	C_{X}	No limitation (Note 2)	F
External resistor	R_{X}	$\begin{aligned} & \geq 5 \mathrm{k}(\text { Note } 5)\left(\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}\right) \\ & \geq 1 \mathrm{k}(\text { Note } 5)\left(\mathrm{V}_{\mathrm{CC}} \geq 3.0 \mathrm{~V}\right) \end{aligned}$	Ω

Note 1: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND.

Note 2: The maximum allowable values of C_{X} and R_{X} are a function of leakage of capacitor C_{X}, the leakage of TC74HC4538A, and leakage due to board layout and surface resistance.
Susceptibility to externally induced noise signals may occur for $R_{X}>1 \mathrm{M} \Omega$.

Electrical Characteristics

DC Characteristics

Characteristics	Symbol	Test Condition			$\mathrm{Ta}=25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{Ta}= \\ -40 \text { to } 85^{\circ} \mathrm{C} \\ \hline \end{gathered}$		Unit
				$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})$	Min	Typ.	Max	Min	Max	
High-level input voltage	V_{IH}	-		2.0	1.50	-	-	1.50	-	
				4.5	3.15	-	-	3.15	-	V
				6.0	4.20	-	-	4.20	-	
Low-level input voltage	VIL	-		2.0	-	-	0.50	-	0.50	
				4.5	-	-	1.35	-	1.35	V
				6.0	-	-	1.80	-	1.80	
High-level output voltage (Q, $\overline{\mathrm{Q}}$)	V_{OH}	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \\ & =\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$		2.0	1.9	2.0	-	1.9	-	V
			$\mathrm{IOH}=-20 \mu \mathrm{~A}$	4.5	4.4	4.5	-	4.4	-	
				6.0	5.9	6.0	-	5.9	-	
			$\mathrm{IOH}^{\prime}=-4 \mathrm{~mA}$	4.5	4.18	4.31	-	4.13	-	
			$\mathrm{IOH}=-5.2 \mathrm{~mA}$	6.0	5.68	5.80	-	5.63	-	
Low-level output voltage (Q, $\overline{\mathrm{Q}}$)	VoL	$\begin{aligned} & V_{I N} \\ & =V_{I H} \text { or } V_{I L} \end{aligned}$		2.0	-	0.0	0.1	-	0.1	V
			$\mathrm{IOL}=20 \mu \mathrm{~A}$	4.5	-	0.0	0.1	-	0.1	
				6.0	-	0.0	0.1	-	0.1	
			$\mathrm{IOL}=4 \mathrm{~mA}$	4.5	-	0.17	0.26	-	0.33	
			$\mathrm{lOL}=5.2 \mathrm{~mA}$	6.0	-	0.18	0.26	-	0.33	
Input leakage current	In	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND		6.0	-	-	± 0.1	-	± 1.0	$\mu \mathrm{A}$
T2 terminal input leakage current	In	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$ or GND		6.0	-	-	± 0.5	-	± 5.0	$\mu \mathrm{A}$
Quiescent supply current	Icc	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$ or	GND	6.0	-	-	4.0	-	40.0	$\mu \mathrm{A}$
Active-state supply current (Note)	Icc	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~T} 2 \mathrm{ext}=0.5 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		2.0	-	40	120	-	160	$\mu \mathrm{A}$
				4.5	-	200	300	-	400	
				6.0	-	300	600	-		

Note: Per circuit

Timing Requirements (input: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=\mathbf{6} \mathbf{n s}$)

Characteristics	Symbol	Test Condition		Ta	$5^{\circ} \mathrm{C}$	$\begin{gathered} \hline \text { Ta } \\ -40 \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$	Unit
			$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Typ.	Limit	Limit	
Minimum pulse width (A, $\overline{\mathrm{B}}$)	$\begin{aligned} & \mathrm{t}_{\mathrm{w}(\mathrm{~L})} \\ & \mathrm{t}_{\mathrm{w}(\mathrm{H})} \end{aligned}$	-	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 19 \\ & 16 \end{aligned}$	ns
Minimum clear width $(\overline{C D})$	$t_{w}(\mathrm{~L})$	-	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 19 \\ & 16 \end{aligned}$	ns
Minimum clear removal time	trem	-	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 15 \\ 5 \\ 5 \end{gathered}$	$\begin{gathered} 15 \\ 5 \\ 5 \end{gathered}$	ns
Minimum retrigger time	$\mathrm{trr}^{\text {r }}$	$\begin{aligned} & \mathrm{RX}=1 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{X}}=100 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 380 \\ 92 \\ 72 \end{gathered}$	-	-	ns
		$\begin{aligned} & R_{X}=1 \mathrm{k} \Omega \\ & C_{X}=0.01 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 1.4 \\ & 1.2 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$-$	$\mu \mathrm{s}$

AC Characteristics ($\mathrm{C}_{\mathrm{L}}=\mathbf{1 5 ~ p F}, \mathrm{V}_{\mathrm{CC}}=\mathbf{5 V} \mathrm{V}, \mathrm{Ta}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, input: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=\mathbf{6 n s}$)

Characteristics	Symbol	Test Condition	Min	Typ.	Max	Unit
Output transition time	$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	-	-	6	12	ns
Propagation delay time $(\mathrm{A}, \overline{\mathrm{~B}}-\mathrm{Q}, \overline{\mathrm{Q}})$	$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \end{aligned}$	-	-	25	44	ns
Propagation delay time $(\overline{\mathrm{CD}}-\mathrm{Q}, \overline{\mathrm{Q}})$	$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \end{aligned}$	-	-	21	34	ns

AC Characteristics ($C_{L}=50 \mathrm{pF}$, input: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=\mathbf{6 n s}$)

Note: $\quad C_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:
$\operatorname{ICC}(\mathrm{opr})=$ CPD $\cdot \mathrm{V}_{\mathrm{CC}} \cdot \mathrm{fIN}+\mathrm{I}_{\mathrm{CC}} \cdot$ Duty/100 $+\mathrm{I}_{\mathrm{CC}} / 2$ (per circuit)
(ICC': active supply current)
(Duty: \%)

Output Pulse Width Constant K - Supply Voltage (typical)
(external resistor $\left(\mathrm{R}_{\mathrm{X}}\right)=10 \mathrm{k} \Omega: \mathrm{t}_{\mathrm{w}} \mathrm{OUT}=\mathrm{K} \cdot \mathrm{C}_{\mathrm{X}} \cdot \mathrm{R}_{\mathrm{X}}$)

Package Dimensions

DIP16-P-300-2.54A

Weight: 1.00 g (typ.)

Package Dimensions

Weight: 0.18 g (typ.)

Package Dimensions

TSSOP16-P-0044-0.65A

Weight: 0.06 g (typ.)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Monostable Multivibrator category:
Click to view products by Toshiba manufacturer:
Other Similar products are found below :
M38510/01205BEA NLV74HC4538ADR2G TC74HC4538AF-ELF NLV14536BDWR2G TC74HC4538AP(F) 74VHC123AMTC JM38510/31401B2A TC74HC4538AF(F) TC74HC123APNEWF LTC6993CDCB-1\#TRMPBF LTC6993IS6-1\#TRMPBF LTC6993HS61\#TRMPBF LTC6993IS6-3\#TRPBF LTC6993HS6-3\#TRMPBF LTC6993MPS6-2\#TRMPBF LTC6993HDCB-4\#TRMPBF LTC6993MPS64\#TRMPBF LTC6993IS6-4\#TRMPBF LTC6993CS6-4\#TRMPBF 74AHC123ABQ-Q100X LTC6993CS6-2\#TRMPBF LTC6993CS61\#TRMPBF LTC6993CDCB-2\#TRMPBF LTC6993MPS6-1\#TRMPBF LTC6993HS6-2\#TRMPBF LTC6993IS6-3\#TRMPBF LTC6993HDCB-2\#TRMPBF 74HCT4538PW,118 LTC6993MPS6-1\#TRPBF LTC6993CS6-3\#TRMPBF NTE74123 LTC6993HS61\#WTRMPBF LTC6993HS6-3\#WTRMPBF LTC6993HS6-4\#WTRMPBF LTC6993HS6-2\#WTRMPBF LTC6993CS6-1\#TRPBF 74HC4538D NLV14538BDR2G 74HC221D,652 74HC4538N,652 74AHC123ABQ,115 74AHC123AD, 112 74AHC123AD,118 74AHC123APW,112 74AHCT123ABQ,115 74AHCT123ABQ-Q100X 74AHCT123AD,118 74AHCT123APW,118 74HC123BQ,115 74HC123D,652

