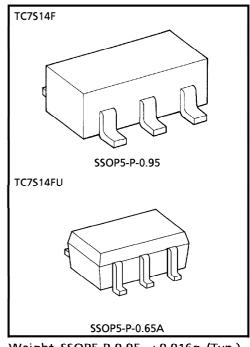
TOSHIBA TC7S14F/FU

TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC7S14F, TC7S14FU

SCHMITT INVERTER

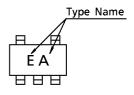
The TC7S14 is a high speed C2MOS SCHMITT INVERTER fabricated with silicon gate C2MOS technology. It achieves a high speed operation similar to equivalent LSTTL while maintaining the C2MOS low power dissipation.


Pin Configuration and function are the same as the TC7SU04F but input have 25% V_{CC} hysteresis and with its schmitt trigger function, the TC7S14F can be used as line receivers which will receive slow input signal. Input is equipped with protection circuits against static discharge or transinent excess voltage.

Output currents are 1/2 compared to TC74HC series models.

FEATURES

•	High Speed	t_{pd} = 11ns (Typ.) at V_{CC} = 5V
•	Low Power Dissipation	$I_{CC} = 1\mu A$ (Max.) at $Ta = 25^{\circ}C$
•	High Noise Immunity	$V_H = 1.1V$ at $V_{CC} = 5V$
•	Output Drive Capability	5 LSTTL Loads
•	Symmetrical Output Impedance	$ I_{OH} = I_{OL} = 2mA$

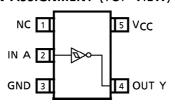


Weight SSOP5-P-0.95 : 0.016g (Typ.) SSOP5-P-0.65A: 0.006g (Typ.)

MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage Range	V _{CC}	-0.5~7	V
DC Input Voltage	V _{IN}	$-0.5 \sim V_{CC} + 0.5$	V
DC Output Voltage	Vout	$-0.5 \sim V_{CC} + 0.5$	٧
Input Diode Current	ΙΚ	± 20	mA
Output Diode Current	loк	± 20	mΑ
DC Output Current	lout	± 12.5	mΑ
DC V _{CC} /Ground Current	lcc	± 50	mΑ
Power Dissipation	PD	200	mW
Storage Temperature	T _{stg}	- 65∼150	°C
Lead Temperature (10s)	TL	260	°C

MARKING



2001-05-31

LOGIC DIAGRAM

PIN ASSIGNMENT (TOP VIEW)

TRUTH TABLE

А	Υ
L	Н
Η	L

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	Vcc	2~6	V
Input Voltage	VIN	0~V _{CC}	V
Output Voltage	VOUT	0~V _{CC}	V
Operating Temperature	T _{opr}	- 40~85	°C

DC ELECTRICAL CHARACTERISTICS

CHARACTERISTIC	SYMBOL	TEST CONDITION			Ta = 25°C			$Ta = -40 \sim 85^{\circ}C$		UNIT
CHARACTERISTIC	3 TIVIDOL			Vcc	MIN.	TYP.	MAX.	MIN.	MAX.	CIVIT
Positive				2.0	1.0	1.25	1.5	1.0	1.5	
Threshold Voltage	V _P		_	4.5	2.3	2.7	3.15	2.3	3.15	V
Tillesiloid Voltage				6.0	3.0	3.5	4.2	3.0	4.2	
Negative				2.0	0.3	0.65	0.9	0.3	0.9	
Threshold Voltage	V_N		_	4.5	1.13	1.6	2.0	1.13	2.0	V
Tillesiloid Voltage				6.0	1.5	2.3	2.6	1.5	2.6	
				2.0	0.3	0.6	1.0	0.3	1.0	
Hysteresis Voltage	VH		_	4.5	0.6	1.1	1.4	0.6	1.4	V
				6.0	0.8	1.2	1.7	0.8	1.7	
	VOH	V _{IN} = V _{IL}	I _{OH} = -20μA	2.0	1.9	2.0	—	1.9	_	
lliah Laval				4.5	4.4	4.5	—	4.4	_	
High-Level Output Voltage				6.0	5.9	6.0	_	5.9	_	V
Output voitage			$I_{OH} = -2mA$	4.5	4.18	4.31	—	4.13	_	
			$I_{OH} = -2.6mA$	6.0	5.68	5.80	—	5.63	_	
	V _{OL}	V _{IN} = V _{IH}		2.0	_	0.0	0.1	_	0.1	
l and land			$I_{OL} = 20 \mu A$	4.5	 —	0.0	0.1	_	0.1	
Low-Level				6.0	_	0.0	0.1	_	0.1	V
Output Voltage	-	'''	$I_{OL} = 2mA$	4.5	_	0.17	0.26	_	0.33	
			$I_{OL} = 2.6 mA$	6.0	_	0.18	0.26	_	0.33	
Input Leakage Current	IN	V _{IN} = V _{CC} or GND		6.0	_	_	± 0.1	_	± 1.0	μΑ
Quiescent Supply Current	lcc	V _{IN} = V _{CC} or GND		6.0	_	_	1.0	_	10.0	μΑ

Output currents are 1/2 compared to TC74HC series models.

2 2001-05-31

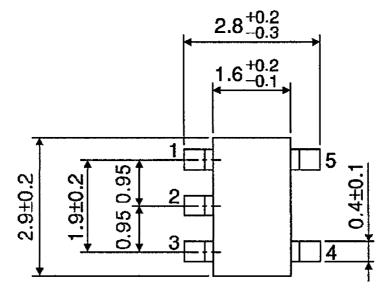
AC ELECTRICAL CHARACTERISTICS ($C_L = 15pF$, $V_{CC} = 5V$, Ta = 25°C)

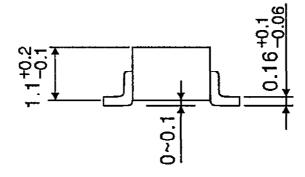
CHARACTERISTIC	SYMBOL	TEST CONDITION	Т	UNIT		
CHARACTERISTIC	3 TIVIBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Transition	^t TLH			4	8	
Time	^t THL	_		4	8	nc
Propagation Delay	t _{pLH}			11	21	ns
Time	t _{pHL}	_		''	21	

AC ELECTRICAL CHARACTERISTICS ($C_L = 50pF$, Input $t_f = t_f = 6ns$)

CHARACTERISTIC	SYMBOL	TEST CONDITION		Ta = 25°C			Ta = -4	UNIT	
CHARACTERISTIC	STIVIBOL			MIN.	TYP.	MAX.	MIN.	MAX.	CIVII
Output Transition	4		2.0	_	50	125	_	145	
Time	^t TLH	_	4.5	 —	14	25	_	30	
Time	^t THL		6.0	 	12	21	_	24	20
Propagation Delay	+	_	2.0	_	48	100	_	235	ns
	t _{pLH}		4.5	l —	12	20	_	48	
Time	t _{pHL}		6.0	 	9	17	_	40	
Input Capacitance	CIN	_		_	5	10	_	10	
Power Dissipation Capacitance	C _{PD}	Note (1)		_	28	_	ı	_	pF

Note (1): C_{PD} is defined as the value of internal equivalent capacitance which is calculated from the operating current consumption without load.

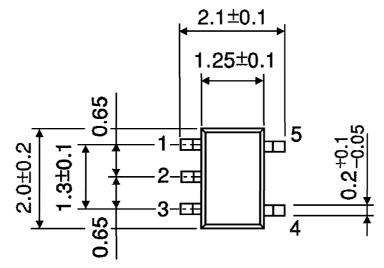

Average operating current can be obtained by the equation :

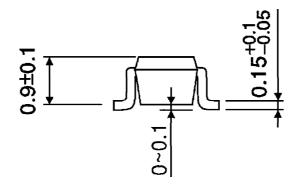

ICC (opr) = CPD·VCC·fIN + ICC

PACKAGE DIMENSIONS

SSOP5-P-0.95

Unit: mm


Weight: 0.016g (Typ.)


4 2001-05-31

PACKAGE DIMENSIONS

SSOP5-P-0.65A

Unit: mm

Weight: 0.006g (Typ.)

5 2001-05-31

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- ◆ The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for toshiba manufacturer:

Other Similar products are found below:

TLP250(F) TC7W125FU(TE12L,F) TC7SBL384CFU,LF TLP183(GB,E 431392HB EMPP008Z TC58DVM92A5TA00 TLP291(TP,E)

TLP705A(F) TLP5214(D4-TP,E TLP591B(C,F) 2SA1943N(S1,E,S) TLP5754(D4-TP,E TLP352(LF1,F) TLP2409(F) TLP109(TPR,E)

TC4013BP(N,F TCK112G,LF TLP184(GB-TPL,E(O TLP185(GR-TPL,E(O TLP108 VFNC3S-2015PL VFS15-4007PL-W TLP7820(D4-A,E TPH4R10ANL,L1Q SSM3J35AMFV,L3F THRIVECOVER 1SS392(TE85L,F) TCK22971G,LF TK28A65W,S5X TK6A80E,S4X

058399HB TORX177F,T TK31A60W,S4VX TLP190B(U,C,F) VFS15S-2015PL-W TK39N60W5,S1VF TLP2362(E) 74VHC125FT

TLP759(LF1,J,F) TLP5754(D4,E TLP4026G(F) TK8A65W,S5X TC7W14FUTE12LF TB6568KQ(O,8) TLP2662(F) 74HC138D

SW89CN0-ZCC THGAF8T1T83BAIR SSM3K345R,LF