

Data Sheet

Chip tantalum capacitors (Fail-safe open structure type)

TCFG Series B Case

Features

- 1) Safety design by open function built in.
- 2) Wide capacitance range
- 3) Screening by thermal shock.

●Dimensions (Unit : mm)

● Product No. Explanation

- 1 Series name
- 2 Case code
- 3 Rated voltage

Rated voltage (V)	2.5	4	6.3	10	16	20	25
CODE	0E	0G	0J	1A	1C	1D	1E

(4) Capacitance

Nominal capacitance in pF in 3 digits: 2 significant figure representing the number of 0's.

5 Capacitance tolerance

M: ±20%

- 6 Taping
 - 8 : Reel width (8mm)
 - R : Positive electrode on the side opposite to sprocket hole

●Capacitance range

(μF)	Rated voltage (V.DC)										
(μι)	2.5	4	6.3	10	16	20	25				
3.3 (335)					В	B *	В				
4.7 (475)				В	В	В	В				
6.8 (685)				В	В	B *					
10 (106)			В	В	В	B *					
15 (156)		В	В	В	В						
22 (226)		В	В	В	В						
33 (336)		В	В	В	В						
47 (476)		В	В	В							
68 (686)		В	В	В							
100 (107)		В	В	В							
150 (157)		В	В	В							
220 (227)	В	В	В								
330 (337)	B *	B *									

Remark) Case size codes (B) in the above show each size products line-up.

●Marking

The indications listed below should be given on the surface of a capacitor.

- Polarity : The polarity should be shown by □ bar. (on the anode side)
 Rated DC voltage : Due to the small size of A case, a voltage code is used as shown below.
- 3 Nominal capacitance

[B Case]

note 1) Visual typical example (1) voltage code (2) capacitance code

10 16V (2) (1)

note 2) voltage code and capacitance code are variable with parts number

^{*:} Under development

Data Sheet

Characteristics

Item			Performance							Test conditions (based on JIS C5101-1 and JIS C5101-3)					1-3)								
Operating Tem	−55 °C to +125 °C						Voltage reduction when temperature exceeds +85°C																
Maximum operatir with no voltage de	+85 °C																						
Rated Voltage	(V.DC)	2.5	4	6.3	10	10	6 20	25	5		at	85°C											
Category Volta	ge (V.DC)	1.6	2.5	4	6.3	10	0 13	16	3		at	125°C)										
Surge Voltage		3.2	5.0	8	13	2	0 26	32	2		at	85°C											
DC leakage cu	rrent						hiche rd list'		is	greater	As	As per 4.9 JIS C 5101-1 As per 4.5.1 JIS C 5101-3 Voltage : Rated voltage for 1 min											
Capacitance to	lerance	Sha ±20		e sati	sfied	all	owand	ce ra	ang	ge.	As Me Me	per 4 per 4 asurinç asurinç asurinç	I.5. g fr g vo	.2 c equ	JIS uend age	C 5	101 : 12 : 0.	-3 20± .5V	±12 /rms	s, +'	1.5V. lent s		s circuit
Tangent of loss (Df, tanδ)	angle	Sha	all be	e sati	sfied	th	e volta	ige o	on	"Standard list"	As Me Me	per 4 per 4 asurino asurino asurino asurino	l.5. g fr g vo	.3 c equ	JIS uend age	C 5	101 : 12 : 0.	-3 20± .5∨	±12 /rms	s, +	1.5V. lent s		s circuit
Impedance		Sha	all be	e sati	sfied	th	e volta	ige (on	"Standard list"	As Me Me	per 4 per 4 asurin asurii	I.5. ng fi ng	4 creq	JIS Juen Itag	C 5 icy : ge :	101 100 0.5	-3 0±′ 5Vr	10k ms	or l		ries	circuit
Resistance to	Appearance									bnormality.		per 4											
soldering heat	L.C	TCI TCI TCI	The indications should be clear. TCFGB0G227M8R: Less than 150% of initial limit TCFGB0J227M8R: Less than 150% of initial limit TCFGB1A157M8R: Less than 150% of initial limit TCFGB1A107M8R: Less than 150% of initial limit TCFGB1E475M8R: Less than 150% of initial limit Others: Less than initial limit						Dip So Du Re Aft	As per 4.6 JIS C 5101-3 Dip in the solder bath Solder temp : 260±5°C Duration : 5±0.5s Repetition : 1 After the specimens, leave it at room temperature													
	TCI TCI TCI TCI	$ \begin{array}{llll} TCFGB0G227M8R : Within \pm 15\% \ of initial \ value \\ TCFGB0J227M8R : Within \pm 15\% \ of initial \ value \\ TCFGB1A157M8R : Within \pm 15\% \ of initial \ value \\ TCFGB1A107M8R : Within \pm 15\% \ of initial \ value \\ TCFGB1E475M8R : Within \pm 10\% \ of initial \ value \\ Others : Within \pm 5\% \ of initial \ value \\ \end{array} $						for	for over 24h and then measure the sample.														
	tanδ	3.3 to 33µF : Less than initial limit : Less than 150% of initial limit TCFGB0E227M8R : Less than 200% of initial limit TCFGB0J227M8R : Less than 150% of initial limit TCFGB1A157M8R : Less than 150% of initial limit TCFGB1A107M8R : Less than 150% of initial limit TCFGB1C336M8R : Less than 150% of initial limit TCFGB1C336M8R : Less than 150% of initial limit TCFGB1C336M8R : Less than 150% of initial limit																					
Fail-Safe open	unit actuation	Wit	thin (320°	C – 2	20:	S				Dip	in the						°C					
Temperature	Appearance	The	ere s	houl	d be	no	signifi	can	t al	bnormality.		per 4	1.16	6 J	IS (C 51	01-	-1					
cycle	L.C	TCI TCI TCI	FGB(FGB [*] FGB [*])J227 IA157 IA107	M8R 'M8R 'M8R	1: L 1: L 1: L	ess that ess that ess that ess that	an 20 an 20 an 20 an 19	009 009 009 509	% of initial limit % of initial limit % of initial limit % of initial limit % of initial limit	Re	per 4 petition hout of Step	on dis	: 5	cyc	cles	(1 (сус		: ste	_	to 4	4)
	ΔC / C	-	ers FGB()F227	M8R		ess the			of initial value	-	1	4			± 3°() <u>+</u> 3r			
	2070	TCI	FGB()G22	7M8R	۱: ۱	Nithin	±15	% (of initial value of initial value		3	+			ten ±2°(3		n. oi)±3r	r less min	+	
		TCI	FGB′	1A157	M8R	١: ١	Vithin	±20°	% (of initial value of initial value		4	\dagger			ten		3			r less	;	
	tanδ	3.3 47 t TCI TCI TCI TCI	to 33 to 15 FGB(FGB' FGB'	βμF 0μF 0G227 0J227 1A157	7M8R M8R ′M8R ′M8R	: \	Vithin Less th	±10° nan i nan i nan i nan i nan i	niti 150 150 200 200 200	of initial value al limit 0% of initial limit		er the over 2											erature
Moisture resistance	Appearance						signifi uld be			bnormality.	As	per 4 per 4	1.12	2 J	IS (C 51	01-	-3					_
L.C		TCFGB0G227M8R: Less than 150% of initial limit TCFGB0J227M8R: Less than 200% of initial limit TCFGB1A157M8R: Less than 200% of initial limit TCFGB1A107M8R: Less than 200% of initial limit TCFGB1E475M8R: Less than 150% of initial limit Others: Less than initial limit Others					After leaving the sample under such atmospheric condition that the temperature and humidity are 60±2°C and 90 to 95%RH, respectively, for 500±12h level it at room temperature for over 24 and then measure the sample.																
	ΔC / C	TCI TCI TCI Oth	FGB(FGB' FGB' ners	0J227 1A157 1A107	M8R 'M8R	: \	Within Within Within Within	±20° ±20° ±20° ±10°	% (% (% (of initial value of initial value of initial value of initial value of initial value													
	tanδ	TCI TCI TCI TCI	FGB(FGB [*] FGB [*]	0μF 0G227 0J227 1A157	M8R 'M8R 'M8R	:	Less the Les	nan 7 nan 7 nan 2 nan 2	150 150 200 200 200	al limit 0% of initial limit													

Item		Performance	Test conditions (based on JIS C5101-1 and JIS C5101-3)					
Temperature Stability	Temp.	−55°C	As per 4.29 JIS C 5101-1					
Stability	ΔC / C	TCFGB0G227M8R: Within 0/-15% of initial value TCFGB0J227M8R: Within 0/-30% of initial value TCFGB1A157M8R: Within 0/-30% of initial value TCFGB1A107M8R: Within 0/-30% of initial value Others: Within 0/-12% of initial value	As per 4.13 JIS C 5101-3					
	tanδ	Shall be satisfied the value on Table5						
	L.C	_						
	Temp.	+85°C	-					
	ΔC / C	TCFGB0G227M8R: Within +12/0% of initial value TCFGB0J227M8R: Within +15/0% of initial value TCFGB1A157M8R: Within +15/0% of initial value TCFGB1A107M8R: Within +15/0% of initial value Others: Within +10/0% of initial value						
	tanδ	Shall be satisfied the value on Table5	-					
	L.C	Less than 1000% of intial limit	-					
	Temp.	+125°C						
	ΔC / C	TCFGB0J227M8R : Within +20/0% of initial value TCFGB1A157M8R : Within +20/0% of initial value TCFGB1A107M8R : Within +20/0% of initial value TCFGB1C336M8R : Within +20/0% of initial value Others : Within +15/0% of initial value						
	tanδ	Shall be satisfied the value on Table5						
	L.C	Less than 1250% of initial limit						
Surge Voltage	Appearance	There should be no significant abnormality. The indications should be clear.	As per 4.26 JIS C 5101-1 As per 4.14 JIS C 5101-3					
-	L.C	TCFGB0G227M8R: Less than 150% of initial limit TCFGB0J227M8R: Less than 200% of initial limit TCFGB1A157M8R: Less than 200% of initial limit TCFGB1A107M8R: Less than 200% of initial limit TCFGB1E475M8R: Less than 150% of initial limit TCFGB1E475M8R: Less than initial limit	Apply the specified surge voltage via the seria resistance of 1kΩ every 5±0.5min. for 30±5 s. each time in the atmospheric condit of 85±2°C. Repeat this procedure 1,000 times.					
	ΔC / C	TCFGB0E227M8R: Within ±12% of initial value TCFGB0G227M8R: Within ±15% of initial value TCFGB0J227M8R: Within ±20% of initial value TCFGB1A157M8R: Within ±20% of initial value TCFGB1A107M8R: Within ±20% of initial value Others: Within ±10% of initial value	After the specimens, leave it at room temperature for over 24h and then measure the sample.					
	tanδ	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Loading at High	Appearance	The indications should be clear.	As per 4.23 JIS C 5101-1 As per 4.15 JIS C 5101-3					
temperature	L.C	TCFGB0E227M8R : Less than 125% of initial limit TCFGB0G227M8R : Less than 150% of initial limit TCFGB0J227M8R : Less than 200% of initial limit TCFGB1A157M8R : Less than 200% of initial limit TCFGB1A107M8R : Less than 200% of initial limit TCFGB1E475M8R : Less than 150% of initial limit Others : Less than initial limit	After applying the rated voltage for 2000+72/0 without discontinuation via the serial resistanc of 3Ω or less at a temperature of $85\pm2^{\circ}\text{C}$, leav the sample at room temperature/humidity for 1 to 2h and measure the value. After the specimens, leave it at room temperature					
	ΔC / C	TCFGB0G227M8R: Within ±15% of initial value TCFGB0J227M8R: Within ±20% of initial value TCFGB1A157M8R: Within ±20% of initial value TCFGB1A107M8R: Within ±20% of initial value Others: Within ±10% of initial value	for over 24h and then measure the sample.					
	tanδ	$\begin{array}{llllllllllllllllllllllllllllllllllll$						

Item		Performance	Test conditions (based on JIS C5101-1 and JIS C5101-3)			
Terminal	Capacitance	The measured value should be stable.	As per 4.35 JIS C 5101-1			
Strength	Appearance	There should be no significant abnormality.	As per 4.9 JIS C 5101-3 A force is applied to the terminal until it bends to 1mm and by a prescribed tool maintain the condition for 5s. (See the figure below.) (Unit: mm) F (Apply force) Thickness 1.6mm			
Adhesiveness		The terminal should not come off.	As per 4.34 JIS C 5101-1 As per 4.8 JIS C 5101-3 Apply force of 5N in the two directions shown in the figure below for 10±1s after mounting the terminal on a circuit board. product Apply force a circuit board			
Dimension	ns	Be based on "External dimensions"	Measure using a caliper of JIS B 7505 Class 2 or higher grade.			
Resistanc	e to solvents	The indication should be clear.	As per 4.32 JIS C 5101-1 As per 4.18 JIS C 5101-3 Dip in the isopropyl alcohol for 30±5s, at room temperature.			
Solderability		3/4 or more surface area of the solder coated terminal dipped in the soldering bath should be covered with the new solder.	As per 4.15.2 JIS C 5101-1 As per 4.7 JIS C 5101-3 Dip speed = 25±2.5mm/s Pre-treatment (accelerated aging): Leave the sample on the boiling distilled water for 1h. Solder temp.: 245±5°C Duration: 3±0.5s Solder: M705 Flux: Rosin 25%, IPA 75%			
Vibration	Capacitance	Measure value should not fluctuate during the measurement.	As per 4.17 JIS C 5101-1 Frequency: 10 to 55 to 10Hz/min.			
Appearance		There should be no significant abnormality.	Amplitude: 1.5mm Time: 2h each in X and Y directions Mounting: The terminal is soldered on a print circuit board.			

TCFG Series B Case Data Sheet

●Standard list, TCFG series B Cases

Part No.	Rated Voltage @85°C	Derated Voltage @125°C	Surge Voltage @85°C	Capacitance 120Hz	Tolerance	Leakage current 25°C	DF 120Hz (%)			Impedance 100kHz	Case
	(V)	(V)	(V)	(μF)	(%)	1WV.60s (μA)	–55°C	25°C 85°C	125°C	(Ω)	
TCFG B 0E 227 M8R	2.5	1.6	3.2	220	±20	5.5	34	18	22	1.5	В
TCFG B 0G 156 M8R	4	2.5	5	15	±20	0.6	12	8	10	3.0	В
TCFG B 0G 226 M8R	4	2.5	5	22	±20	0.9	12	8	10	3.0	В
TCFG B 0G 336 M8R	4	2.5	5	33	±20	1.3	12	8	10	2.5	В
TCFG B 0G 476 M8R	4	2.5	5	47	±20	1.9	14	10	12	2.0	В
TCFG B 0G 686 M8R	4	2.5	5	68	±20	2.7	14	10	12	1.9	В
TCFG B 0G 107 M8R	4	2.5	5	100	±20	4.0	30	12	16	1.6	В
TCFG B 0G 157 M8R	4	2.5	5	150	±20	6.3	34	18	22	1.3	В
TCFG B 0G 227 M8R	4	2.5	5	220	±20	8.8	40	20	30	1.3	В
TCFG B 0J 106 M8R	6.3	4	8	10	±20	0.6	12	8	10	3.0	В
TCFG B 0J 156 M8R	6.3	4	8	15	±20	0.9	12	8	10	3.0	В
TCFG B 0J 226 M8R	6.3	4	8	22	±20	1.4	12	8	10	2.5	В
TCFG B 0J 336 M8R	6.3	4	8	33	±20	2.1	12	8	10	2.0	В
TCFG B 0J 476 M8R	6.3	4	8	47	±20	3.0	14	10	12	1.9	В
TCFG B 0J 686 M8R	6.3	4	8	68	±20	4.3	30	12	16	1.6	В
TCFG B 0J 107 M8R	6.3	4	8	100	±20	6.3	30	12	16	1.5	В
TCFG B 0J 157 M8R	6.3	4	8	150	±20	9.5	34	18	22	1.5	В
TCFG B 0J 227 M8R	6.3	4	8	220	±20	70	60	30	45	1.3	В
TCFG B 1A 475 M8R	10	6.3	13	4.7	±20	0.5	10	6	8	3.0	В
TCFG B 1A 685 M8R	10	6.3	13	6.8	±20	0.7	12	8	10	3.0	В
TCFG B 1A 106 M8R	10	6.3	13	10	±20	1.0	12	8	10	3.0	В
TCFG B 1A 156 M8R	10	6.3	13	15	±20	1.5	12	8	10	2.5	В
TCFG B 1A 226 M8R	10	6.3	13	22	±20	2.2	12	8	10	2.0	В
TCFG B 1A 336 M8R	10	6.3	13	33	±20	3.3	14	10	12	1.9	В
TCFG B 1A 476 M8R	10	6.3	13	47	±20	4.7	14	10	12	1.6	В
TCFG B 1A 686 M8R	10	6.3	13	68	±20	6.8	22	12	14	1.5	В
TCFG B 1A 107 M8R	10	6.3	13	100	±20	20	40	20	30	1.5	В
TCFG B 1C 335 M8R	16	10	20	3.3	±20	0.5	10	6	8	4.2	В
TCFG B 1C 475 M8R	16	10	20	4.7	±20	0.8	10	6	8	3.0	В
TCFG B 1C 685 M8R	16	10	20	6.8	±20	1.1	10	6	8	3.0	В
TCFG B 1C 106 M8R	16	10	20	10	±20	1.6	10	6	8	2.5	В
TCFG B 1C 156 M8R	16	10	20	15	±20	2.4	10	6	8	2.0	В
TCFG B 1C 226 M8R	16	10	20	22	±20	3.5	10	6	8	1.9	В
TCFG B 1C 336 M8R	16	10	20	33	±20	5.3	16	14	16	1.9	В
TCFG B 1D 335 M8R	20	13	26	3.3	±20	0.66	10	6	8	4.2	В
* TCFG B 1D 475 M8R	20	13	26	4.7	±20	1.0	10	6	8	3.0	В
* TCFG B 1D 106 M8R	20	13	26	10	±20	2.0	12	8	10	15.0	B
TCFG B 1E 335 M8R	25	16	32	3.3	±20	0.83	10	6	8	4.2	B
TCFG B 1E 475 M8R	25	16	32	4.7	±20	1.2	10	6	8	3.0	В

^{*} = Under development

Packaging specifications

	.g -p			(Unit : mm)
Case code	A±0.1	B±0.1	t1±0.05	t2±0.1
B (3528)	3.3	3.8	0.25	2.2

●Packaging style

Case code	Packaging	Packag	ing style	Symbol	Basic ordering unit
B Case	Taping	Plastic taping	φ180mm reel	8R	2,000

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Gate Drivers category:

Click to view products by ROHM manufacturer:

Other Similar products are found below:

00028 00053P0231 8967380000 56956 CR7E-30DB-3.96E(72) 57.404.7355.5 LT4936 57.904.0755.0 5801-0903 5803-0901 5811-0902 5813-0901 58410 00576P0030 00581P0070 5882900001 00103P0020 00600P0005 00-9050-LRPP 00-9090-RDPP 5951900000 01-1003W-10/32-15 LTILA6E-1S-WH-RC-FN12VXCR1 0131700000 00-2240 LTP70N06 LVP640 0158-624-00 5J0-1000LG-SIL 020017-13 LY1D-2-5S-AC120 LY2-0-US-AC120 LY2-US-AC240 LY3-UA-DC24 00-5150 00576P0020 00600P0010 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-RDNP 00-8609-RDPP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP