5 V ECL Triple 2:1 Multiplexer ### **Description** The MC100EL59 is a triple 2:1 multiplexer with differential outputs. The output data of the multiplexers can be controlled individually via the select inputs or as a group via the common select input. The flexible selection scheme makes the device useful for both data path and random logic applications. The 100 Series Contains Temperature Compensation. #### **Features** - Individual or Common Select Controls - 500 ps Typical Propagation Delays - PECL Mode Operating Range: V_{CC} = 4.2 V to 5.7 V with V_{EE} = 0 V - NECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = -4.2 V to -5.7 V - Q Output will Default LOW with Inputs Open or at V_{EE} - Internal Input Pulldown Resistors - ESD Protection: - ♦ > 2 kV Human Body Model - Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test - Moisture Sensitivity: Level 3 (Pb-Free) (For Additional Information, see Application Note <u>AND8003/D</u>) - Flammability Rating: UL 94 V-0 @ 1.125 in, Oxygen Index: 28 to 34 - Transistor Count = 182 Devices - This Device is Pb-Free, Halogen Free and is RoHS Compliant 1 # ON Semiconductor® www.onsemi.com SOIC-20 WB DW SUFFIX CASE 751D-05 ### **MARKING DIAGRAM*** A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week G = Pb-Free Package # ORDERING INFORMATION | Device | Package | Shipping | |--------------|-------------------------|---------------| | MC100EL59DWG | SOIC-20 WB
(Pb-Free) | 38 Units/Tube | ^{*}For additional marking information, refer to Application Note <u>AND8002/D</u>. Figure 1. Logic Diagram and Pinout: 20-Lead SOIC (Top View) **Table 1. PIN DESCRIPTION** | PIN | FUNCTION | |--------------------------------------|------------------------------| | D0a-D2a | ECL Input Data a* | | D0b-D2b | ECL Input Data b* | | SEL0-SEL2 | ECL Individual Select Input* | | COM_SEL | ECL Common Select Input* | | Q0-Q2; Q0 - Q2 | ECL Differential Outputs | | V_{CC} | Positive Supply | | V_{EE} | Negative Supply | ^{*}Pins will default LOW when left open. **Table 2. TRUTH TABLE** | SEL* | DATA | |------|------| | Н | а | | L | b | ^{*}Pins will default LOW when left open. **Table 3. MAXIMUM RATINGS** | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit | |------------------|--|--|---|-------------------|----------| | V _{CC} | PECL Mode Power Supply | V _{EE} = 0 V | | 8 to 0 | V | | V _{EE} | NECL Mode Power Supply | V _{CC} = 0 V | | -8 to 0 | V | | VI | PECL Mode Input Voltage
NECL Mode Input Voltage | V _{EE} = 0 V
V _{CC} = 0 V | $\begin{array}{c} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$ | 6 to 0
-6 to 0 | V
V | | l _{out} | Output Current | Continuous
Surge | | 50
100 | mA
mA | | T _A | Operating Temperature Range | | | -40 to +85 | °C | | T _{stg} | Storage Temperature Range | | | -65 to +150 | °C | | θJA | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | SOIC-20 WB
SOIC-20 WB | 90
60 | °C/W | | θJC | Thermal Resistance (Junction-to-Case) | Standard Board | SOIC-20 WB | 30 to 35 | °C/W | | T _{sol} | Wave Solder (Pb-Free) | | | 265 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. Table 4. PECL DC CHARACTERISTICS (V_{CC} = 5.0 V; V_{EE} = 0.0 V (Note 1)) | | | | -40°C | | | 25°C | | | 85°C | | | |-----------------|------------------------------|------|-------|------|------|------|------|------|------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | 130 | 156 | | 130 | 156 | | 130 | 156 | mA | | I _{EE} | Power Supply Current | | 27 | 32 | | 27 | 32 | | 27 | 32 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | 3915 | 3995 | 4120 | 3975 | 4045 | 4120 | 3975 | 4050 | 4120 | mV | | V _{OL} | Output LOW Voltage (Note 2) | 3170 | 3305 | 3445 | 3190 | 3295 | 3380 | 3190 | 3295 | 3380 | mV | | V _{IH} | Input HIGH Voltage | 3835 | | 4120 | 3835 | | 4120 | 3835 | | 4120 | mV | | V_{IL} | Input LOW Voltage | 3190 | | 3525 | 3190 | | 3525 | 3190 | | 3525 | mV | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μА | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.8 V / -0.5 V. - 2. Outputs are terminated through a 50 Ω resistor to VCC 2.0 V. Table 5. NECL DC CHARACTERISTICS (V_{CC} = 0.0 V; V_{EE} = -5.0 V (Note 1)) | | | | -40°C | | 25°C | | | 85°C | | | | |-----------------|------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | | 27 | 32 | | 27 | 32 | | 27 | 32 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | -1085 | -1005 | -880 | -1025 | -955 | -880 | -1025 | -955 | -880 | mV | | V _{OL} | Output LOW Voltage (Note 2) | -1830 | -1695 | -1555 | -1810 | -1705 | -1620 | -1810 | -1705 | -1620 | mV | | V _{IH} | Input HIGH Voltage | -1165 | | -880 | -1165 | | -880 | -1165 | | -880 | mV | | V _{IL} | Input LOW Voltage | -1810 | | -1475 | -1810 | | -1475 | -1810 | | -1475 | mV | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 1. Input and output parameters vary 1:1 with $V_{CC}.\ V_{EE}$ can vary +0.8 V / -0.5 V. - 2. Outputs are terminated through a 50 Ω resistor to V_{CC} 2.0 V. Table 6. AC CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ or $V_{CC} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 1)) | | | | -40°C | | 25°C | | | | | | | |--------------------------------------|---|-----|-------|-------------------|-------------------|-----|-------------------|-------------------|-----|-------------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | t _{PLH}
t _{PHL} | Propagation DATA to Q/0 Delay SEL to Q/0 COM_SEL to Q/0 | 340 | | 690
690
690 | 340
340
340 | | 690
690
690 | 340
340
340 | | 690
690
690 | ps | | t _{skew} | Output-Output Skew Any D_n , D_m to Q | | | 100 | | | 100 | | | 100 | ps | | tJITTER | Cycle-to-Cycle Jitter | | TBD | | | TBD | | | TBD | | ps | | t _r
t _f | Output Rise/Fall Times Q (20%-80%) | 200 | | 540 | 200 | | 540 | 200 | | 540 | ps | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 1. V_{EE} can vary +0.8 V / -0.5 V. Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices) ## **Resource Reference of Application Notes** AN1405/D – ECL Clock Distribution Techniques AN1406/D – Designing with PECL (ECL at +5.0 V) AN1503/D – ECLinPS™ I/O SPiCE Modeling Kit AN1504/D - Metastability and the ECLinPS Family AN1568/D - Interfacing Between LVDS and ECL AN1672/D - The ECL Translator Guide AND8001/D - Odd Number Counters Design AND8002/D - Marking and Date Codes AND8020/D - Termination of ECL Logic Devices AND8066/D - Interfacing with ECLinPS AND8090/D - AC Characteristics of ECL Devices ### **PACKAGE DIMENSIONS** #### SOIC-20 WB **DW SUFFIX** CASE 751D-05 **ISSUE H** #### NOTES: - NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMI IM MATERIAL DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIMETERS | | | | | | | | |-----|-------------|-------|--|--|--|--|--|--| | DIM | MIN | MAX | | | | | | | | Α | 2.35 | 2.65 | | | | | | | | A1 | 0.10 | 0.25 | | | | | | | | b | 0.35 | 0.49 | | | | | | | | С | 0.23 | 0.32 | | | | | | | | D | 12.65 | 12.95 | | | | | | | | E | 7.40 | 7.60 | | | | | | | | е | 1.27 | BSC | | | | | | | | Н | 10.05 | 10.55 | | | | | | | | h | 0.25 | 0.75 | | | | | | | | L | 0.50 | 0.90 | | | | | | | | θ | 0° | 7 ° | | | | | | | ### **RECOMMENDED SOLDERING FOOTPRINT*** DIMENSIONS: MILLIMETERS ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor datas sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify a ### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative # **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Encoders, Decoders, Multiplexers & Demultiplexers category: Click to view products by ON Semiconductor manufacturer: Other Similar products are found below: M38510/01406BEA MC74HC163ADTG 74HC253N HMC854LC5TR NLV74VHC1G01DFT1G NLVHC4851ADTR2G NLVHCT4851ADTR2G PI3B33X257BE M74HCT4052ADTR2G M74VHC1GT04DFT3G TC74AC138P(F) MC74LVX4051MNTWG HMC855LC5TR NLV14028BDR2G NLV14051BDR2G NLV74HC238ADTR2G 715428X COMX-CAR-210 5962-8607001EA 5962 8756601EA MAX3783UCM+D PI5C3253QEX 8CA3052APGGI8 TC74HC4051AF(EL,F) TC74VHC138F(EL,K,F PI3B3251LE PI5C3309UEX PI5C3251QEX PI3B3251QE 74VHC4052AFT(BJ) PI3PCIE3415AZHEX NLV74HC4851AMNTWG MC74LVX257DG M74HC151YRM13TR M74HC151YTTR PI5USB31213XEAEX M74HCT4851ADWR2G XD74LS154 AP4373AW5-7-01 QS3VH251QG8 QS4A201QG HCS301T-ISN HCS500-I/SM MC74HC151ADTG TC4066BP(N,F) 74ACT11139PWR HMC728LC3CTR 74VHC238FT(BJ) 74VHC4066AFT(BJ) 74VHCT138AFT(BJ)