3.3 V LVTTL/LVCMOS to **Differential LVECL Translator**

Description

The MC100EPT24 is a LVTTL/LVCMOS to differential LVECL translator. Because LVECL levels and LVTTL/LVCMOS levels are used, a -3.3 V, +3.3 V and ground are required. The small outline 8-lead package and the single gate of the EPT24 makes it ideal for those applications where space, performance, and low power are at a premium.

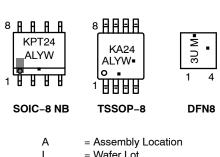
Features

- 350 ps Typical Propagation Delay
- Maximum Input Clock Frequency = > 1.0 GHz Typical
- The 100 Series Contains Temperature Compensation
- Operating Range:

 V_{CC} = 3.0 V to 3.6 V; V_{EE} = -3.6 V to -3.0 V; GND = 0 V

- PNP LVTTL Input for Minimal Loading
- Q Output will Default HIGH with Input Open
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

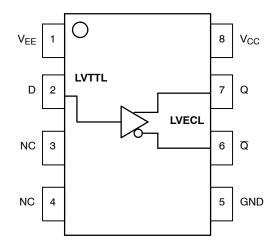
ON Semiconductor®


www.onsemi.com

SOIC-8 NB TSSOP-8 DENS DT SUFFIX D SUFFIX CASE 751-07 CASE 948R-02 CASE 506AA

MARKING DIAGRAMS*

L	= Wafer Lot
Υ	= Year
W	= Work Week
Μ	= Date Code
	= Pb-Free Package


(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

Device	Package	Shipping†
MC100EPT24DG	SOIC-8 NB (Pb-Free)	98 Units / Tube
MC100EPT24DR2G	SOIC-8 NB (Pb-Free)	2500 Tape & Reel
MC100EPT24DTG	TSSOP-8 (Pb-Free)	100 Units / Tube
MC100EPT24MNR4G	DFN8 (Pb-Free)	1000 Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Table 1. PIN DESCRIPTION

PIN	FUNCTION
Q, <u>Q</u>	Differential LVECL Outputs
D	LVTTL Input
V _{CC}	Positive Supply
GND	Ground
V _{EE}	Negative Supply
NC	No Connect
EP	(DFN8 only) Thermal exposed pad must be connected to a sufficient ther- mal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open.

Figure 1. 8-Lead Pinout (Top View) and Logic Diagram

Characteristics	Value
Internal Input Pulldown Resistor	N/A
Internal Input Pullup Resistor	N/A
ESD Protection Human Body Model Machine Model Charged Device Model	> 4 kV > 200 V > 2 kV
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)	Pb-Free Pkg
SOIC-8 NB TSSOP-8 DFN8	Level 1 Level 3 Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count	181 Devices
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	

Table 2. ATTRIBUTES

1. For additional information, see Application Note <u>AND8003/D</u>.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	GND = 0 V	V _{EE} = -3.3V	3.8	V
V_{EE}	Negative Power Supply	GND = 0 V	V _{CC} = 3.3V	-3.8	V
V _{IN}	Input Voltage	GND = 0 V	$V_{I} \leq V_{CC}$	0 to V _{CC}	V
l _{out}	Output Current	Continuous Surge		50 100	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 50 lfpm	SOIC-8 NB SOIC-8 NB	190 130	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-8 NB	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 50 lfpm	TSSOP-8 TSSOP-8	185 140	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-8	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 50 lfpm	DFN8 DFN8	129 84	°C/W
T _{sol}	Wave Solder (Pb-Free)			265	°C
θ_{JC}	Thermal Resistance (Junction-to-Case)	(Note 1)	DFN8	35 to 40	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. JEDEC standard multilayer board – 2S2P (2 signal, 2 power)

Symbol	Characteristic	Condition	Min	Тур	Max	Unit
I _{IH}	Input HIGH Current	V _{IN} = 2.7 V			20	μΑ
I _{IHH}	Input HIGH Current HIGH Voltage	$V_{CC} = V_{IN} = 3.8 V$			100	μΑ
IIL	Input LOW Current	V _{IN} = 0.5 V			-0.6	mA
V _{IK}	Input Clamp Voltage	I _{IN} = -18 mA			-1.0	V
V _{IH}	Input HIGH Voltage		2.0			V
V _{IL}	Input LOW Voltage				0.8	V

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 50 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Table 5. NECL OUTPUT DC CHARACTERISTICS (V_{CC} = 3.3 V, V_{EE} = -3.3 V, GND = 0.0 V (Note 1))

		-40°C		25°C							
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{OH}	Output HIGH Voltage (Note 2)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1030	-895	mV
V _{OL}	Output LOW Voltage (Note 2)	-1945	-1820	-1695	-1945	-1820	-1695	-1945	-1820	-1695	mV
I _{CC}	Positive Power Supply Current		2.0	4.0		2.0	4.0		2.0	4.0	mA
I _{EE}	Negative Power Supply Current	20	30	38	20	30	38	20	30	38	mA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 50 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Output levels will vary 1:1 with GND. V_{EE} can vary \pm 0.3 V.

2. Outputs are terminated through a 50 Ω resistor to GND – 2 V.

		-40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Input Clock Frequency (Figure 2)		> 1			> 1			> 1		GHz
t _{PLH} , t _{PHL}			500	800	300	530	800	300	560	800	ps
t _{JITTER}	RMS Random Clock Jitter (Figure 2)		0.2	< 1		0.2	< 1		0.2	< 1	ps
t _r t _f	Output Rise/Fall Times Q, Q (20% - 80%) @ 50 MHz	70	125	170	80	130	180	100	150	200	ps

Table 6. AC CHARACTERISTICS ($V_{CC} = 0 V$; $V_{EE} = -3.0 V$ to -5.5 V or $V_{CC} = 3.0 V$ to 5.5 V; $V_{EE} = 0 V$ (Note 1))

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 50 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Measured using a LVTTL source, 50% duty cycle clock source. All loading with 50 Ω to GND – 2.0 V.

2. Specifications for standard TTL input signal.

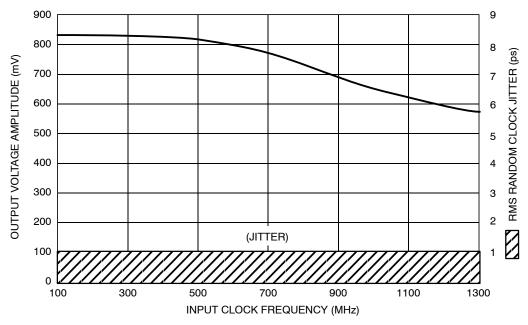
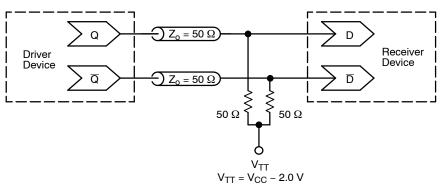
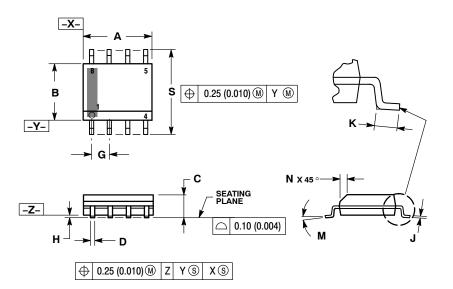


Figure 2. Output Voltage Amplitude (V_{OUTpp})/RMS Jitter vs. Input Clock Frequency at Ambient Temperature

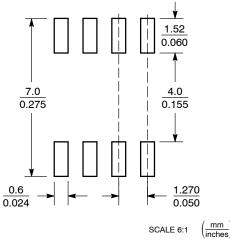



Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices)

Resource Reference of Application Notes

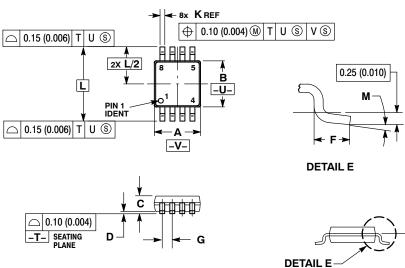
AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

PACKAGE DIMENSIONS


SOIC-8 NB **D SUFFIX** CASE 751-07 **ISSUE AK**

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.
- З.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 4.
- PER SIDE. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07. 5.
- 6.

	MILLIN	IETERS	INC	HES		
DIM	MIN	MAX	MIN	MAX		
Α	4.80	5.00	0.189	0.197		
В	3.80	4.00	0.150	0.157		
С	1.35	1.75	0.053	0.069		
D	0.33	0.51	0.020			
G	1.27	7 BSC	0.050 BSC			
Η	0.10	0.10 0.25		0.010		
J	0.19	0.25	0.007	0.010		
к	0.40	1.27	0.016	0.050		
Μ	0 °	8 °	0 °	8 °		
Ν	0.25	0.50	0.010	0.020		
S	5.80	6.20	0.228	0.244		

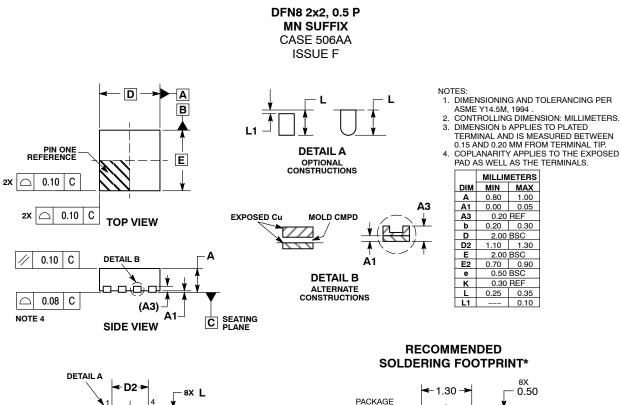

SOLDERING FOOTPRINT*

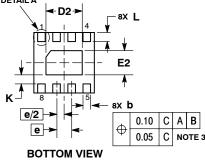
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

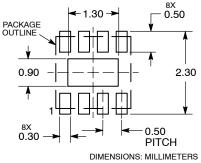
PACKAGE DIMENSIONS

TSSOP-8 DT SUFFIX CASE 948R-02 **ISSUE A**

-W-


EXCE 5. TE REFE 6. DIM	REFERENCE ONLY.									
	MILLIMETERS INCHES									
DIM	MIN	MAX	MIN	MAX						
Α	2.90	3.10	0.114	0.122						
В	2.90	3.10	0.114	0.122						
С	0.80	1.10	0.031	0.043						
D	0.05	0.15	0.002	0.006						
F	0.40	0.70	0.016	0.028						
G	0.65	BSC	0.026	BSC						
K	0.25	0.40	0.010	0.016						
L	4.90		0.193							
М	0 °	6 °	0 °	6 °						


DTES:
DIMENSIONING AND TOLERANCING PER ANSI Y14,5M, 1982.
CONTROLLING DIMENSION: MILLIMETER.
DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.


NOTES:

PACKAGE DIMENSIONS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor and its officers, employees, subsidiaries, and distributors harmed for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal i

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Translation - Voltage Levels category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

NLJVHC1GT08DFT2G NLSX4373DMR2G NLSX5012MUTAG HV583GA-G MC10H641FNR2G NLSX0102FCT1G NLSX0102FCT2G NLSX4302EBMUTCG NLVSX4373DR2G PCA9306FMUTAG SY10H351JZ MC100EPT622MNG MAX9374AEKA+T MAX3378EETD+ MAX34405BEZT+ NLSX3014MUTAG NVT4556BUKZ NLSV4T244EMUTAG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG MAX34405BEZT+T NLSV4T3144MUTAG NSV12200LT1G NLVSX4373MUTAG NB3U23CMNTAG MAX3371ELT+T MAX3008EUP+T NLVPCA9306AMUTCG NLSX3013BFCT1G MAX9378EUA+T NLV7WBD3125USG NLV14504BDTG NLSX3012DMR2G NLSX5012DR2G MAX3391EEUD+T MAX3379EETD+ PI4ULS3V4857GEAEX MAX3391EEBC+T MAX14842ATE+T 74AVCH1T45FZ4-7 CLVC16T245MDGGREP HEF4104BT TC74LCX16245(EL,F) MC10H124FNG CAVCB164245MDGGREP 7WBD383USG NVT2001GM,115 CLVC8T245MRHLTEP 74LVC1G175GS,132