MC100LVEL34

3.3V ECL $\div 2, \div 4, \div 8$ Clock Generation Chip

Description

The MC100LVEL34 is a low skew $\div 2, \div 4, \div 8$ clock generation chip designed explicitly for low skew clock generation applications. The internal dividers are synchronous to each other, therefore, the common output edges are all precisely aligned. The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias $A C$ coupled inputs. When used, decouple $V_{B B}$ and $V_{C C}$ via a $0.01 \mu \mathrm{~F}$ capacitor and limit current sourcing or sinking to 0.5 mA . When not used, V_{BB} should be left open.

The common enable ($\overline{\mathrm{EN}}$) is synchronous so that the internal dividers will only be enabled/disabled when the internal clock is already in the LOW state. This avoids any chance of generating a runt clock pulse on the internal clock when the device is enabled/disabled as can happen with an asynchronous control. An internal runt pulse could lead to losing synchronization between the internal divider stages. The internal enable flip-flop is clocked on the falling edge of the input clock; therefore, all associated specification limits are referenced to the negative edge of the clock input.

Upon start-up, the internal flip-flops will attain a random state; the master reset (MR) input allows for the synchronization of the internal dividers, as well as multiple LVEL34s in a system.

Features

- 50 ps Typical Output-to-Output Skew
- Synchronous Enable/Disable
- Master Reset for Synchronization
- 1.5 GHz Toggle Frequency
- The 100 Series Contains Temperature Compensation.
- PECL Mode Operating Range:

$$
\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 3.8 \mathrm{~V} \text { with } \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}
$$

- NECL Mode Operating Range:
$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{~V}$ to -3.8 V
- Open Input Default State
- LVDS Input Compatible
- These are $\mathrm{Pb}-$ Free Devices

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Table 1. PIN DESCRIPTION

PIN	FUNCTION
CLK *, CLK $^{* *}$	ECL Diff Clock Inputs
EN *	ECL Sync Enable
MR *	ECL Master Reset
Q0, $\overline{\text { Q0 }}$	ECL Diff $\div 2$ Outputs
Q1, $\overline{\text { 1 }}$	ECL Diff $\div 4$ Outputs
Q2, $\overline{\text { Q2 }}$	ECL Diff $\div 8$ Outputs
V_{BB}	Reference Voltage Output
V_{CC}	Positive Supply
V_{EE}	Negative Supply
NC	No Connect

* Pins will default LOW when left open.
${ }^{* * *}$ Pins will default to $V_{C C} / 2$ when left open.

Table 2. FUNCTION TABLE

CLK	EN	MR	FUNCTION
Z	L	L	Divide
ZZ	H	L	Hold Q_{0-3}
X	X	H	Reset Q_{0-3}

Z = Low-to-High Transition
ZZ = High-to-Low Transition

Figure 1. 16-Lead Pinout (Top View) and Logic Diagram

Table 3. ATTRIBUTES

Characteristics	Value	
Internal Input Pulldown Resistor	$75 \mathrm{k} \Omega$	
Internal Input Pullup Resistor	$37.5 \mathrm{k} \Omega$	
ESD ProtectionHuman Body Model Machine Model Charged Device Model	$\begin{aligned} & >2 \mathrm{kV} \\ & >200 \mathrm{~V} \\ & >2 \mathrm{kV} \end{aligned}$	
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)	Pb Pkg	Pb-Free Pkg
$\begin{array}{r} \text { SOIC-16 } \\ \text { TSSOP-16 } \end{array}$	Level 1 Level 1	Level 1 Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
Transistor Count	210 Devices	
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test		

1. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
$\mathrm{V}_{\text {CC }}$	PECL Mode Power Supply	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		6	V
V_{EE}	NECL Mode Power Supply	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$		-6	V
V_{1}	PECL Mode Input Voltage NECL Mode Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{I}} \geq \mathrm{V}_{\mathrm{EE}} \end{aligned}$	$\begin{gathered} \hline 6 \\ -6 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {out }}$	Output Current	Continuous Surge		$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {BB }}$	V_{BB} Sink/Source			± 0.5	mA
T_{A}	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	$\begin{aligned} & \hline \text { SOIC-16 } \\ & \text { SOIC-16 } \end{aligned}$	$\begin{gathered} 100 \\ 60 \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{w} \end{aligned}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-16	33 to 36	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JA }}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 Ifpm	$\begin{aligned} & \text { TSSOP-16 } \\ & \text { TSSOP-16 } \end{aligned}$	$\begin{aligned} & 138 \\ & 108 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{w} \end{aligned}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-16	33 to 36	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave SolderPb $\mathrm{Pb}-\mathrm{Free}$			$\begin{aligned} & 265 \\ & 265 \end{aligned}$	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 5. 100LVEL DC CHARACTERISTICS, PECL $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$ (Note 2)

Symbol	Characteristic	-40 ${ }^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Power Supply Current	40	50	60	40	50	60	42	52	62	mA
V_{OH}	Output HIGH Voltage (Note 3)	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 3)	1305	1570	1725	1305	1570	1725	1305	1570	1725	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	2075		2420	2075		2420	2075		2420	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (Single-Ended)	1305		1675	1305		1675	1305		1675	mV
$\mathrm{V}_{\text {BB }}$	Output Voltage Reference	1775	1875	1975	1775	1875	1975	1775	1875	1975	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 4)	1.2		3.3	1.2		3.3	1.2		3.3	V
I_{H}	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current D 	$\begin{gathered} \hline 0.5 \\ -150 \end{gathered}$			$\begin{gathered} \hline 0.5 \\ -150 \end{gathered}$			$\begin{gathered} \hline 0.5 \\ -150 \end{gathered}$			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
2. Input and output parameters vary $1: 1$ with V_{CC}. V_{EE} can vary +0.925 V to -0.5 V .
3. All loading with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
4. $V_{\text {IHCMR }}$ min varies $1: 1$ with $V_{E E}, V_{I H C M R}$ max varies $1: 1$ with $V_{C C}$. The $V_{I H C M R}$ range is referenced to the most positive side of the differential input signal.

Table 6. 100LVEL DC CHARACTERISTICS, NECL $V_{C C}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3.8 \mathrm{~V}$ to -3.0 V (Note 5)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{l}_{\text {EE }}$	Power Supply Current	23	30	40	23	30	40	23	30	40	mA
$\mathrm{I}_{\text {EE }}$	Power Supply Current	40	50	60	40	50	60	42	52	62	mA
V_{OH}	Output HIGH Voltage (Note 6)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V_{OL}	Output LOW Voltage (Note 6)	-1995	-1700	-1575	-1995	-1700	-1575	-1995	-1700	-1575	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	-1225		-880	-1225		-880	-1225		-880	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (Single-Ended)	-1995		-1625	-1995		-1625	-1995		-1625	mV
$\mathrm{V}_{\text {BB }}$	Output Voltage Reference	-1525	-1425	-1325	-1525	-1425	-1325	-1525	-1425	-1325	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 7)	$\mathrm{V}_{\mathrm{EE}}+1.2$		0.0	$\mathrm{V}_{\mathrm{EE}}+1.2$		0.0	$\mathrm{V}_{\mathrm{EE}}+1.2$		0.0	V
I_{IH}	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current ${ }^{\text {D }}$	$\begin{gathered} \hline 0.5 \\ -150 \end{gathered}$			$\begin{gathered} \hline 0.5 \\ -150 \end{gathered}$			$\begin{gathered} \hline 0.5 \\ -150 \end{gathered}$			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
5. Input and output parameters vary $1: 1$ with V_{CC}.
6. All loading with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
7. $\mathrm{V}_{I H C M R}$ min varies $1: 1$ with $\mathrm{V}_{E E}, \mathrm{~V}_{\mathrm{IHCMR}}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\mathrm{IHCMR}}$ range is referenced to the most positive side of the differential input signal.

Table 7. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{~V}$ to -5.5 V or $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 5.5 V ; $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$ (Note 8)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{f}_{\text {max }}$	Maximum Toggle Frequency (Figure 4)	1.5			1.5			1.5			GHz
tpLH ${ }_{\text {tPHL }}$	Propagation CLK to Q0, Q1, Q2 Delay to Output MR to Q	$\begin{aligned} & 550 \\ & 500 \end{aligned}$	$\begin{aligned} & \hline 650 \\ & 600 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	$\begin{aligned} & 600 \\ & 550 \end{aligned}$	$\begin{aligned} & \hline 700 \\ & 650 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	$\begin{aligned} & 650 \\ & 600 \end{aligned}$	$\begin{aligned} & 750 \\ & 700 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	ps
$\mathrm{t}_{\text {IITTER }}$	Cycle-to-Cycle Jitter (Figure 4)		<1			<1			<1		ps
t_{5}	Setup Time EN	150	50		150	50		150	50		ps
t_{H}	Hold Time EN	200	100		200	100		200	100		ps
t_{RR}	Set/Reset Recovery	300	200		300	200		300	200		ps
V_{PP}	Input Swing (Note 9)	150		1000	150		1000	150		1000	mV
$\begin{array}{\|l\|l} \hline t_{r} \\ t_{f} \end{array}$	$\begin{aligned} & \text { Output Rise/Fall Times Q } \\ & (20 \%-80 \%) \end{aligned}$	120	170	400	140	180	400	160	200	400	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
8. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50Ω to VCC -2.0 V .
9. VPP (min) is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ≈ 40.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

There are two distinct functional relationships between the Master Reset and Clock:

CASE 1: If the MR is deasserted ($\mathrm{H}-\mathrm{L}$), while the Clock is still high, the outputs will follow the second ensuing clock rising edge.

CASE 2: If the MR is deasserted (H-L), after the Clock has transitioned low, the outputs will follow the third ensuing clock rising edge.

Figure 2. Timing Diagrams
The $\overline{\mathrm{EN}}$ signal will "freeze" the internal divider flip-flops on the first falling edge of CLK after its assertion. The internal divider flip-flops will maintain their state during the freeze. When $\overline{\mathrm{EN}}$ is deasserted (LOW), and after the next falling edge of CLK, then the internal divider flip-flops will "unfreeze" and continue to their next state count with proper phase relationships.

Figure 3. Reset Recovery Time

MC100LVEL34

Figure 4. $\mathrm{F}_{\text {max }}$ /Jitter

Figure 5. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices.)

MC100LVEL34

ORDERING INFORMATION

Device	Package	Shipping †
MC100LVEL34DG	SOIC-16 (Pb-Free)	48 Units / Rail
MC100LVEL34DR2G	SOIC-16 (Pb-Free)	$2500 /$ Tape \& Reel
MC100LVEL34DTG	TSSOP-16 (Pb-Free)	96 Units / Rail
MC100LVEL34DTR2G	TSSOP-16 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
Resource Reference of Application Notes
AN1405/D - ECL Clock Distribution Techniques
AN1406/D - Designing with PECL (ECL at +5.0 V)
AN1503/D - ECLinPS m I/O SPiCE Modeling Kit
AN1504/D - Metastability and the ECLinPS Family $^{\text {AN1568/D }}$ - Interfacing Between LVDS and ECL
AN1672/D - The ECL Translator Guide
AND8001/D - Odd Number Counters Design
AND8002/D - Marking and Date Codes
AND8020/D - Termination of ECL Logic Devices
AND8066/D - Interfacing with ECLinPS
AND8090/D - AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

TSSOP-16
CASE 948F
ISSUE B

SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D

PACKAGE DIMENSIONS

ON Semiconductor and (iin are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Generators \& Support Products category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
5P49V5901A748NLGI 5P49V5901B680NLGI 5P49V5901B744NLGI 5P49V5929B502NLGI 5P49V5935B520LTGI 5V49EE903-116NLGI CV183-2TPAG 82P33814ANLG/W 8T49N004A-002NLGI 8T49N004A-039NLGI 9FGV0631CKLF 9FGV0641AKLFT 9LRS3197AKLF 9UMS9633BFILF 9VRS4450AKLF NB3N51132DTR2G 8N3Q001EG-0035CDI 932SQ426AKLF 950810CGLF 9DBV0531AKILF 9DBV0741AKILF 9FGV0641AKLF 9UMS9633BKLF 9VRS4420DKILF 9VRS4420DKLF 9VRS4420DKLFT CY25404ZXI226 CY25422SXI-004 5P49V5901B712NLGI NB3H5150-01MNTXG 6INT61041NDG PL602-20-K52TC PL613-51QC 8N3Q001FG-1114CDI 9FGV0641AKILF ZL30314GKG2 ZL30253LDG1 ZL30251LDG1 ZL30250LDG1 ZL30169LDG1 ZL30142GGG2 9UMS9633BKILFT 9FGV0631CKLFT 9FGV0631CKILF 5P49V5935B536LTGI PI6LC48P0101LIE DS1099U-ST+ MAX24305EXG+ PI6LC48H02-01LIE 82P33814ANLG

