MC74LVX74

Dual D-Type Flip-Flop with Set and Clear

With 5.0 V-Tolerant Inputs

The MC74LVX74 is an advanced high speed CMOS D-type flip-flop. The inputs tolerate voltages up to 7.0 V , allowing the interface of 5.0 V systems to 3.0 V systems.

The signal level applied to the D input is transferred to O output during the positive going transition of the Clock pulse.

Clear $(\overline{\mathrm{CD}})$ and Set $(\overline{\mathrm{SD}})$ are independent of the Clock (CP) and are accomplished by setting the appropriate input Low.

Features

- High Speed: $\mathrm{f}_{\max }=145 \mathrm{MHz}(\mathrm{Typ})$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=2 \mu \mathrm{~A}(\mathrm{Max})$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Low Noise: $\mathrm{V}_{\text {OLP }}=0.5 \mathrm{~V}$ (Max)
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance:

Human Body Model > 2000 V;
Machine Model > 200 V

- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

Figure 1. Logic Diagram

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

SOIC-14 NB D SUFFIX CASE 751A

TSSOP-14
DT SUFFIX
CASE 948G

PIN ASSIGNMENT

$\mathrm{V}_{\mathrm{CC}} \overline{\mathrm{CD} 2} \mathrm{D} 2 \mathrm{CP2} \mathrm{SD2} 02 \quad \mathrm{O} 2$

14-Lead (Top View)

MARKING DIAGRAMS

LVX74	$=$ Specific Device Code
A	$=$ Assembly Location
WL, L	$=$ Wafer Lot
Y	$=$ Year
W, WW	$=$ Work Week
G or \quad	$=$ Pb-Free Package

(Note: Microdot may be in either location)

PIN NAMES	
Pins	Function
CP1, CP2	Clock Pulse Inputs
D1, D2	Data Inputs
CD1, CD2	Direct Clear Inputs
$\overline{\text { SD1, SD2 }}$	Direct Set Inputs
On, $\overline{\text { On }}$	Outputs

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MC74LVX74

INPUTS				OUTPUTS		OPERATING MODE
$\overline{\text { SDn }}$	$\overline{\text { CDn }}$	CPn	Dn	On	$\overline{\text { On }}$	
L	H	X	X	H	L	Asynchronous Clear
H	L	X	X	L	H	Undetermined
L	L	X	X	H	H	Load and Read Register
H	H	\uparrow	h	H	L	Hold
H	H	\uparrow		L	H	
H	H	\uparrow	X	NC	NC	

H = High Voltage Level; $\mathrm{h}=$ High Voltage Level One Setup Time Prior to the Low-to-High Clock Transition; L = Low Voltage Level; I = Low Voltage Level One Setup Time Prior to the Low-to-High Clock Transition; NC = No Change; X = High or Low Voltage Level or Transitions are Acceptable;
$\uparrow=$ Low-to-High Transition; $\uparrow=$ Not a Low-to-High Transition; For ICC Reasons DO NOT FLOAT Inputs
MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{\text {CC }}$	DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {in }}$	DC Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {out }}$	DC Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IK}	Input Diode Current	-20	mA
$\mathrm{I}_{\text {OK }}$	Output Diode Current	± 20	mA
$\mathrm{I}_{\text {out }}$	DC Output Current, per Pin	± 25	mA
I_{CC}	DC Supply Current, $\mathrm{V}_{\text {CC }}$ and GND Pins	± 50	mA
P_{D}	Power Dissipation	180	mW
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage	2.0	3.6	V
$\mathrm{~V}_{\text {in }}$	DC Input Voltage	0	5.5	V
$\mathrm{~V}_{\text {out }}$	DC Output Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature, All Package Types	-40	+85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Rise and Fall Time	0	100	$\mathrm{~ns} / \mathrm{V}$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	$\underset{\mathrm{V}}{\mathrm{~V}_{\mathrm{Cc}}}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	High-Level Input Voltage		$\begin{aligned} & 2.0 \\ & 3.0 \\ & 3.6 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 2.0 \\ & 2.4 \end{aligned}$			1.5 2.0 2.4		V
V_{IL}	Low-Level Input Voltage		$\begin{aligned} & 2.0 \\ & 3.0 \\ & 3.6 \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$		$\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$	V
V_{OH}	High-Level Output Voltage $\left(\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}}\right.$ or $\left.\mathrm{V}_{\mathrm{IL}}\right)$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-50 \mathrm{\mu A} \\ & \mathrm{I}_{\mathrm{OH}}=-50 \mathrm{\mu A} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 1.9 \\ 2.9 \\ 2.58 \end{gathered}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & \hline 1.9 \\ & 2.9 \\ & 2.48 \end{aligned}$		V
V_{OL}	Low-Level Output Voltage $\left(\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}}\right.$ or $\left.\mathrm{V}_{\mathrm{IL}}\right)$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{gathered} 0.1 \\ 0.1 \\ 0.36 \end{gathered}$		$\begin{gathered} 0.1 \\ 0.1 \\ 0.44 \end{gathered}$	V
$\mathrm{l}_{\text {in }}$	Input Leakage Current	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$ or GND	3.6			± 0.1		± 1.0	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {CC }}$ or GND	3.6			2.0		20.0	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Symbol	Parameter	Test Conditions		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{tpLH}}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay CP to O or $\overline{\mathrm{O}}$	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & \hline 7.3 \\ & 9.8 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 18.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 22.0 \end{aligned}$	ns
		$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & C_{L}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 5.7 \\ & 8.2 \end{aligned}$	$\begin{gathered} \hline 9.7 \\ 13.2 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 15.0 \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay SD or CD to O or $\overline{0}$	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 8.4 \\ & 10.9 \end{aligned}$	$\begin{aligned} & 15.6 \\ & 19.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 22.0 \end{aligned}$	ns
		$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & \hline 6.6 \\ & 9.1 \end{aligned}$	$\begin{aligned} & \hline 10.1 \\ & 13.6 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 15.5 \end{aligned}$	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency (50\% Duty Cycle)	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 55 \\ & 45 \end{aligned}$	$\begin{aligned} & 135 \\ & 60 \end{aligned}$		$\begin{aligned} & 50 \\ & 40 \end{aligned}$		MHz
		$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & C_{L}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & \hline 95 \\ & 60 \end{aligned}$	$\begin{aligned} & 145 \\ & 85 \end{aligned}$		$\begin{aligned} & 80 \\ & 50 \end{aligned}$		
toshl tosth	Output-to-Output Skew (Note 1)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	ns

1. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (toshL) or LOW-to-HIGH (tosLh); parameter guaranteed by design.

TIMING REQUIREMENTS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Symbol	Parameter	v_{cc}	Guaranteed Limit		Unit
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$	
t_{w}	Minimum Pulse Width, CP	$\begin{gathered} 2.7 \mathrm{~V} \\ 3.3 \mathrm{~V} \pm 0.3 \end{gathered}$	$\begin{aligned} & 8.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 7.0 \end{gathered}$	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, CD or SD	$\begin{gathered} 2.7 \mathrm{~V} \\ 3.3 \mathrm{~V} \pm 0.3 \end{gathered}$	$\begin{aligned} & 8.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 7.0 \end{gathered}$	ns
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, D to CP	$\begin{gathered} 2.7 \mathrm{~V} \\ 3.3 \mathrm{~V} \pm 0.3 \end{gathered}$	$\begin{aligned} & 8.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 6.5 \end{aligned}$	ns
$t_{\text {h }}$	Minimum Hold Time, D to CP	$\begin{gathered} 2.7 \mathrm{~V} \\ 3.3 \mathrm{~V} \pm 0.3 \end{gathered}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	ns
$\mathrm{t}_{\text {rec }}$	Minimum Recovery Time, SD or CD to CP	$\begin{gathered} 2.7 \mathrm{~V} \\ 3.3 \mathrm{~V} \pm 0.3 \end{gathered}$	$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.0 \end{aligned}$	ns

CAPACITIVE CHARACTERISTICS

	Parameter	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$		Unit
Symbol		Min	Typ	Max	Min	Max	
Cin	Input Capacitance		4	10		10	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Note 2)		25				pF

2. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $\mathrm{I}_{\mathrm{CC}(\mathrm{OPR})}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} / 2$ (per flip-flop). C_{PD} is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\text {in }}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

NOISE CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, Measured in SOIC Package)

Symbol	Characteristic	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		Unit
		Typ	Max	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic $\mathrm{V}_{\text {OL }}$	0.3	0.5	V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic $\mathrm{V}_{\text {OL }}$	-0.3	-0.5	V
$\mathrm{V}_{\text {IHD }}$	Minimum High Level Dynamic Input Voltage		2.0	V
$\mathrm{V}_{\text {ILD }}$	Maximum Low Level Dynamic Input Voltage		0.8	V

MC74LVX74

SWITCHING WAVEFORMS

Figure 2.

Figure 3.

Figure 4.

TEST CIRCUIT

*Includes all probe and jig capacitance

Figure 5.

MC74LVX74

ORDERING INFORMATION

Device	Package	Shipping †
MC74LVX74DR2G	SOIC-14 NB (Pb-Free)	2500 Tape \& Reel
MC74LVX74DTG	TSSOP-14 (Pb-Free)	96 Units / Rail
MC74LVX74DTR2G	TSSOP-14 (Pb-Free)	2500 Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MC74LVX74

PACKAGE DIMENSIONS

TSSOP-14
CASE 948G
ISSUE B

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MC74LVX74

PACKAGE DIMENSIONS

> ON Semiconductor and the ON are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Flip Flops category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
5962-8955201EA MC74HC11ADTG MC10EP29MNG MC74HC11ADTR2G NLV14013BDTR2G NLV14027BDG NLX1G74MUTCG 703557B 746431H 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA M38510/06102BFA M38510/06101B2A NLV74HC74ADR2G TC4013BP(N,F) NLV14013BDG NLV74AC32DR2G NLV74AC74DR2G MC74HC73ADG CY74FCT16374CTPACT MC74HC11ADR2G 74LVT74D,118 74VHCT9273FT(BJ) MM74HC374WM 74ALVCH162374PAG TC7WZ74FK,LJ(CT CD54HCT273F HMC853LC3TR HMC723LC3CTR MM74HCT574MTCX MM74HCT273WM SN74LVC74APW SN74LVC74AD MC74HC73ADTR2G MC74HC11ADG SN74ALVTH16374GR M74HCT273B1R M74HC377RM13TR M74HC374RM13TR M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74AUP1G74DC,125 74VHC374FT(BJ) 74VHC9273FT(BJ) NLV14013BCPG

