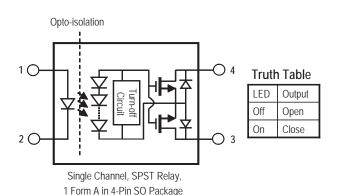
ASSR-4110, ASSR-4111, ASSR-4120

General Purpose, Form A, Solid State Relay (Photo MOSFET) $(400V/0.12A/25\Omega)$

Data Sheet


Description

The ASSR-41xx Series consists of an AlGaAs infrared light-emitting diode (LED) input stage optically coupled to a high-voltage output detector circuit. The detector consists of a high-speed photovoltaic diode array and driver circuitry to switch on/off two discrete high voltage MOSFETs. The relay turns on (contact closes) with a minimum input current of 3mA through the input LED. The relay turns off (contact opens) with an input voltage of 0.8V or less.

The single channel configurations, ASSR-4110 and ASSR-4111, are equivalent to 1 Form A Electromechanical Relays (EMR), and the dual channel configuration, ASSR-4120, are equivalent to 2 Form A EMR. They are available in 4-pin SO, 6-pin DIP, 8-pin DIP and Gull Wing Surface Mount for DIP packages. Their electrical and switching characteristics are specified over the temperature range of -40°C to +85°C. They are used for general purpose switching of signals and low power AC/DC loads.

ASSR-4111 enables AC/DC and DC-only output connections. For DC-only connection, the output current, lo, increases to 0.24A and the on-resistance, $R_{(ON)}$ reduces to 8.5 Ω .

Functional Diagram

Features

- Compact Solid-State Bi-directional Signal Switch
- Single and Dual Channel Normally-off Single-Pole-Single-Throw (SPST) Relay
- 400V Output Withstand Voltage
- 0.12A or 0.24A Current Rating (See Schematic for ASSR-4111 Connection A and B)
- Low Input Current: CMOS Compatibility
- Low On-Resistance:
 5.5Ω Typical for DC-only, 16Ω Typical for AC/DC
- Very High Output Off-state Impedance: 10 Teraohms Typical
- High Speed Switching:
 0.1ms (Ton), 0.02ms (Toff) Typical
- High Transient Immunity: >1kV/μs
- High Input-to-Output Insulation Voltage (Safety and Regulatory Approvals)
 - 3750 Vrms for 1 min per UL1577
 - CSA Component Acceptance

Applications

- Telecommunication Switching
- Data Communications
- Industrial Controls
- Medical
- Security
- EMR / Reed Relay Replacement

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Ordering Information

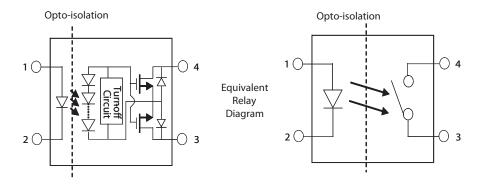
ASSR-xxxx is UL Recognized with 3750 Vrms for 1 minute per UL1577 and is approved under CSA Component Acceptance Notice #5.

	Option		Surface	Gull	Tape	
Part number	RoHS Compliant	Package	Mount	Wing	& Reel	Quantity
ASSR-4110	-003E	CO 4	Х			100 units per tube
ASSK-4110	-503E	SO-4	Х		Х	1500 units per reel
ASSR-4111	-001E					50 units per tube
	-301E	300mil DIP-6	Х	Х		50 units per tube
	-501E	DII O	Х	Х	Х	1000 units per reel
	-002E					50 units per tube
ASSR-4120	-302E	300 mil 1	Χ	Х		50 units per tube
	-502E	DII -0 -	Χ	Х	Х	1000 units per reel

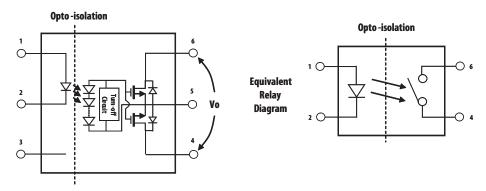
To order see attached table, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:

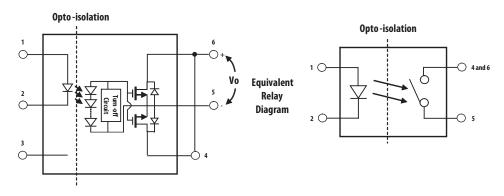
ASSR-4111-501E to order product of 300mil DIP-6 Gull Wing Surface Mount package in Tape and Reel packaging and RoHS Compliant.

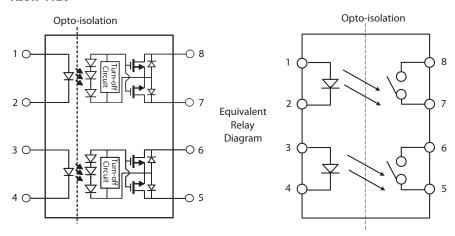

Example 2:

ASSR-4120-002E to order product of 300mil DIP-8 package in tube packaging and RoHS Compliant.

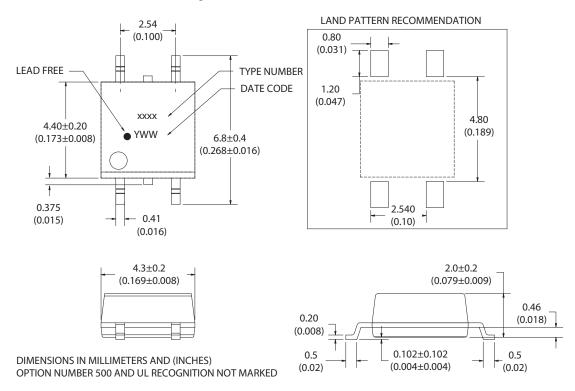

Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Schematic

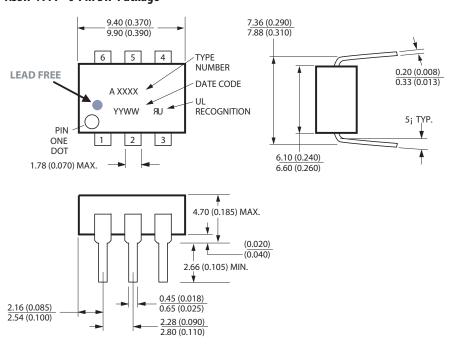

ASSR-4110


ASSR-4111 Connection A

ASSR-4111 Connection B

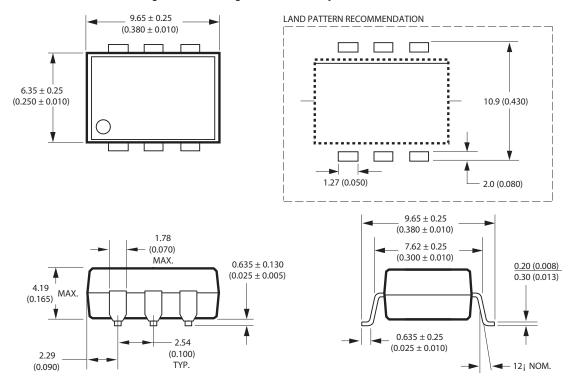


ASSR-4120

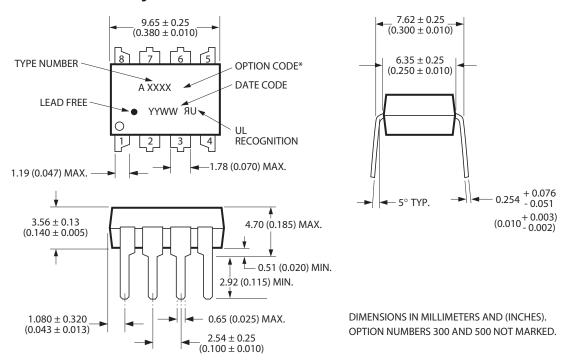


Package Outline Drawings

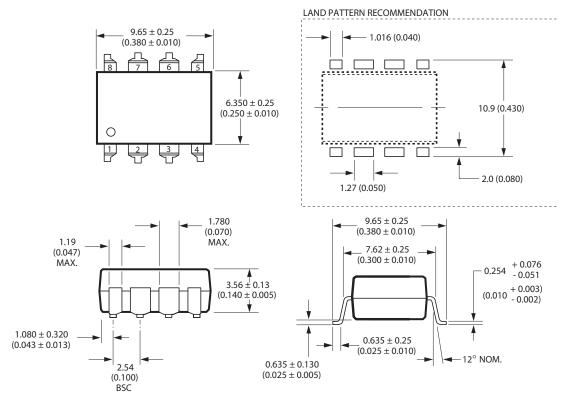
ASSR-4110 4-Pin Small Outline Package



ASSR-4111 6-Pin DIP Package

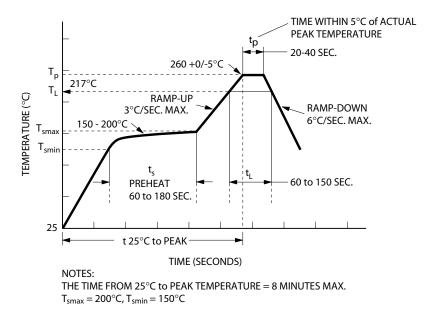

DIMENSIONS IN MILLIMETERS AND (INCHES).

ASSR-4111 6-Pin DIP Package with Gull Wing Surface Mount Option 300



NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

ASSR-4120 8-Pin DIP Package


ASSR-4120 8-Pin DIP Package with Gull Wing Surface Mount Option 300

DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES).

NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

Lead Free IR Profile

Non-halide flux should be used.

Regulatory Information

The ASSR-4110, ASSR-4111 and ASSR-4120 are approved by the following organizations:

UL

Approved under UL 1577, component recognition program up to $V_{ISO} = 3750 V_{RMS}$

CSA

Approved under CSA Component Acceptance Notice #5.

Insulation and Safety Related Specifications

Parameter	Symbol	ASSR- 4110	ASSR-4111 ASSR-4120	Units	Conditions
Minimum External Air Gap (Clearance)	L(101)	4.9	7.1	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	L(102)	4.9	7.4	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.08	0.08	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector.
Tracking Resistance (Comparative Tracking Index)	СТІ	175	175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group (DIN VDE0109)		Illa	IIIa		Material Group (DIN VDE 0109)

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Units	Note
Storage Temperature		Ts	-55	125	°C	
Operating Temperature		T _A	-40	85	°C	
Junction Temperature		TJ		125	°C	
Lead Soldering Cycle	Temperature			260	°C	
	Time			10	S	
Input Current	Average	I _F		25	mA	
	Surge	_		50		
	Transient	_		1000		
Reversed Input Voltage		V _R		5	V	
Input Power Dissipation	ASSR-4110	P _{IN}		40	mW	
	ASSR-4111	P _{IN}		40	mW	
	ASSR-4120	P _{IN}		80	mW	
Output Power Dissipation	ASSR-4110	Po		360	mW	
	ASSR-4111	Po		490	mW	
	ASSR-4120	Po		720	mW	
Average Output Current		Io		0.12	А	1
$(T_A = 25^{\circ}C, T_C \le 100^{\circ}C)$	ASSR-4111			0.24	Α	
	Connection B					
Output Voltage (T _A = 25°C)		V _O	-400	400	V	2
	ASSR-4111		0	400	V	
	Connection B					
Solder Reflow Temperature Pro	ofile	See Lead F	ree IR Profile			

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note
Input Current (ON)	I _{F(ON)}	3	20	mA	3
Input Voltage (OFF)	V _{F(OFF)}	0	0.8	V	
Operating Temperature	T _A	-40	+85	°C	

Package Characteristics

Unless otherwise specified, $T_A = 25^{\circ}C$.

Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions	Note
Input-Output Momentary Withstand Voltage	V _{ISO}	3750			Vrms	RH ≤ 50%, t = 1 min	4, 5
Input-Output Resistance	R _{I-O}		10 ¹²		Ω	V _{I-O} = 500 Vdc	
Input-Output Capacitance	ASSR-4110 C _{I-O}		0.4		pF	f = 1 MHz; $V_{I-O} = 0 Vdc$	4
	ASSR-4111 C _{I-O}		0.5		pF	f = 1 MHz; $V_{I-O} = 0 Vdc$	
	ASSR-4120 C _{I-O}		0.8		рF	f = 1 MHz; V _{I-O} = 0 Vdc	

Electrical Specifications (DC)

Over recommended operating $T_A = -40^{\circ}\text{C}$ to 85°C , $I_F = 5$ mA to 10 mA, unless otherwise specified.

Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions	Fig.	Note
Output Withstand Voltage	V _{O(OFF)}	400	450		V	$V_F = 0.8 \text{ V}, I_O = 250 \mu\text{A},$ $T_A = 25^{\circ}\text{C}$		
		360			V	$V_F = 0.8 \text{ V}, I_O = 250 \mu\text{A}$	5	
Output Leakage Current	I _{O(OFF)}		0.5	100	nA	$V_F = 0.8 \text{ V}, V_O = 400 \text{ V},$ $T_A = 25^{\circ}\text{C}$		
				1	μΑ	$V_F = 0.8 \text{ V}, V_O = 400 \text{ V}$	6	
Output Offset Voltage	V _(OS)		1		μV	$I_F = 5 \text{ mA}, I_O = 0 \text{ mA}$		
Input Reverse Breakdown Voltage	V _R	5			V	$I_R = 10 \mu A$		
Input Forward Voltage	V _F	1.1	1.3	1.65	V	I _F = 5 mA	7, 8	
Output On-resistance	R _(ON)		16	25	Ω	$I_F = 5 \text{ mA}, I_O = 120 \text{ mA},$ Pulse $\leq 30 \text{ ms}, T_A = 25^{\circ}\text{C}$	9, 10	6
	ASSR-4111 Connection B		5.5	8.5	Ω	$I_F = 5 \text{ mA}, I_O = 240 \text{ mA},$ Pulse $\leq 30 \text{ ms}, T_A = 25^{\circ}\text{C}$		

Switching Specifications (AC)

Over recommended operating $T_A = -40$ °C to 85°C, $I_F = 5$ mA to 10 mA, unless otherwise specified.

Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions	Fig.	Note
Turn On Time	T _{ON}		0.25	0.5	ms	$I_F = 5 \text{ mA},$ $I_O = 120 \text{ mA},$ $T_A = 25^{\circ}\text{C}$	11, 15	
				1.0	ms	I _F = 5 mA, I _O = 120 mA	12	
			0.1	0.25	ms	$I_F = 10 \text{ mA},$ $I_O = 120 \text{ mA},$ $T_A = 25^{\circ}\text{C}$		
				0.5	ms	$I_F = 10 \text{ mA},$ $I_O = 120 \text{ mA}$		
Turn Off Time	T _{OFF}		0.02	0.2	ms	$I_F = 5 \text{ mA},$ $I_O = 120 \text{ mA},$ $T_A = 25^{\circ}\text{C}$	13, 15	
				0.5	ms	I _F = 5 mA, I _O = 120 mA	14	
			0.02	0.15	ms	$I_F = 10 \text{ mA},$ $I_O = 120 \text{ mA},$ $T_A = 25^{\circ}\text{C}$		
				0.2	ms	$I_F = 10 \text{ mA},$ $I_O = 120 \text{ mA}$		
Output Transient Rejection	dV _O /dt	1	7		kV/μs	$\Delta V_O = 400 \text{ V},$ $T_A = 25^{\circ}\text{C}$	16	
Input-Output Transient Rejection	dV _{I-O} /dt	1	≥10		kV/μs	$\Delta V_{I-O} = 1000 \text{ V},$ $T_A = 25^{\circ}\text{C}$	17	

Notes:

- 1. For derating, refer to Figure 1, 2, 3 and 4.
- 2. The voltage across the output terminals of the relay should not exceed this rated withstand voltage. Over-voltage protection circuits should be added in some applications to protect against over-voltage transients.
- 3. Threshold to switch device is $I_F \ge 0.5$ mA, however, for qualified device performance over temperature range, it is recommended to operate at $I_F = 5$ mA.
- 4. Device is considered as a two terminal device:

ASSR-4110 - pin 1, 2 shorted and pin 3, 4 shorted.

ASSR-4111 - pin 1, 2, 3 shorted and pin 4, 5, 6 shorted.

ASSR-4120 - pin 1, 2, 3, 4 shorted and pin 5, 6, 7, 8 shorted.

- 5. The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table (if applicable), your equipment level safety specification, or Avago Technologies Application Note 1074, "Optocoupler Input-Output Endurance Voltage."
- 6. During the pulsed $R_{(ON)}$ measurement (I_O duration \leq 30 ms), ambient (I_A) and case temperature (I_C) are equal.

Applications Information

On-Resistance and Derating Curves

The Output On-Resistance, $R_{(ON)}$, specified in this data sheet, is the resistance measured across the output contact when a pulsed current signal ($lo=120\,\text{mA}$) is applied to the output pins. The use of a pulsed signal ($lo=30\,\text{ms}$) implies that each junction temperature is equal to the ambient and case temperatures. The steady-state resistance, Rss, on the other hand, is the value of the resistance measured across the output contact when a DC current signal is applied to the output pins for a duration sufficient to reach thermal equilibrium. Rss includes the effects of the temperature rise in the device.

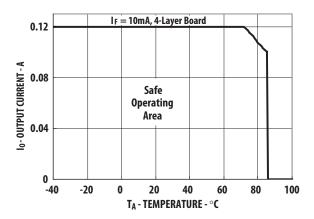


Figure 1. Maximum Output Current Rating vs Ambient Temperature (ASSR-4110-003E)

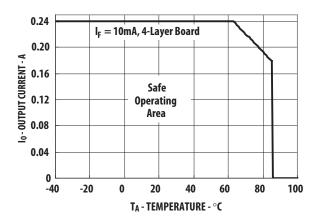


Figure 3. Maximum Output Current Rating vs Ambient Temperature (ASSR-4111-001E) DC Connection

Figure 1, 2, 3 and 4 specify the maximum average output current allowable for a given ambient temperature. The maximum allowable output current and power dissipation are related by the expression Rss = Po(max)/(lo(max))² from which Rss can be calculated. Staying within the safe area assures that the steady state MOSFET junction temperature remains less than 125°C.

Turn On Time and Turn Off Time Variation

The ASSR-41xx Series exhibits a very fast turn on and turn off time. Both the turn on and turn off time can be adjusted by choosing proper forward current as depicted in Figures 11 and 13. The changes of the turn on and turn off time with ambient temperature are also shown in Figures 12 and 14.

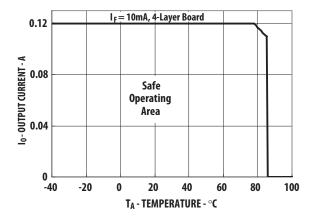


Figure 2. Maximum Output Current Rating vs Ambient Temperature (ASSR-4111-001E)

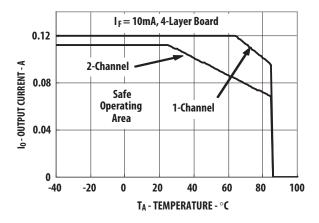


Figure 4. Maximum Output Current Rating vs Ambient Temperature, ASSR-4120-002E

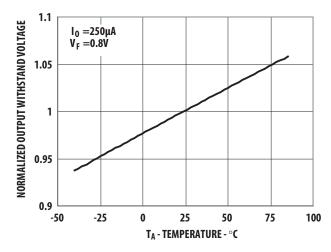


Figure 5. Normalized Typical Output Withstand Voltage vs. Temperature

Figure 6. Typical Output Leakage Current vs. Temperature

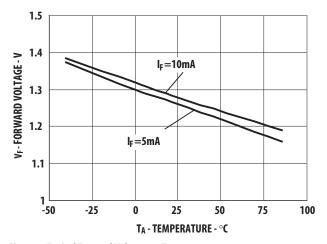


Figure 7. Typical Forward Voltage vs. Temperature

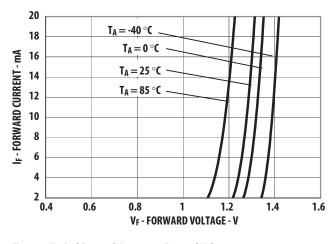


Figure 8. Typical Forward Current vs. Forward Voltage

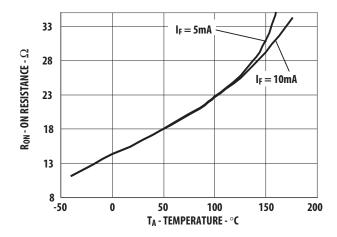


Figure 9. Typical On Resistance vs. Temperature

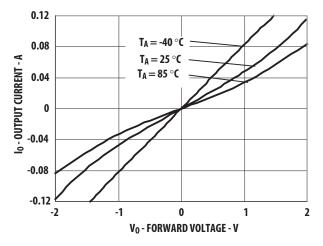


Figure 10. Typical Output Current vs. Output Voltage

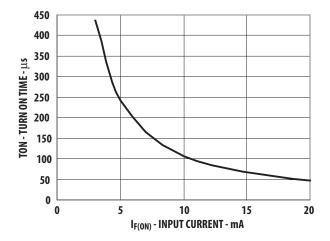


Figure 11. Typical Turn On Time vs. Input Current

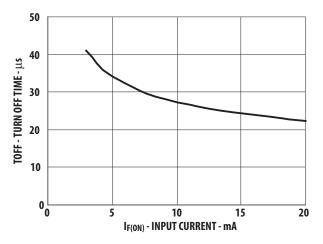


Figure 13. Typical Turn OFF Time vs. Input Current

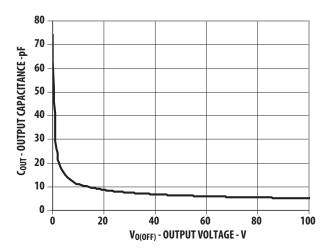


Figure 15. Typical Output Off-State Capacitance vs Output Voltage

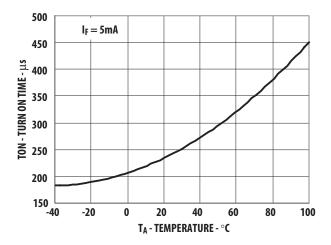


Figure 12. Typical Turn On Time vs. Temperature

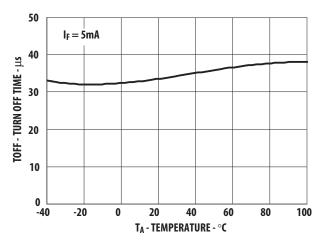


Figure 14. Typical Turn Off Time vs. Temperature

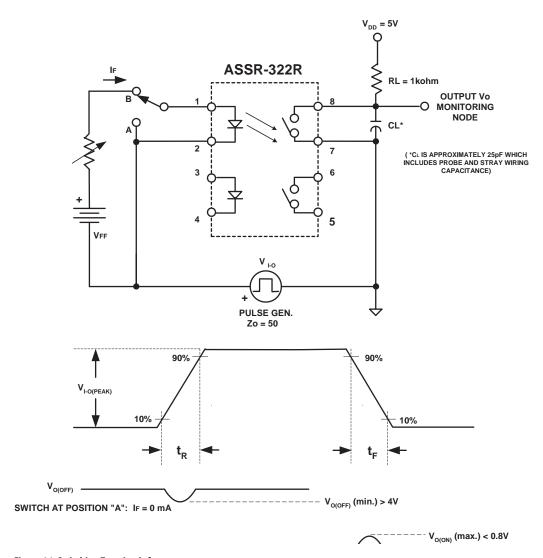
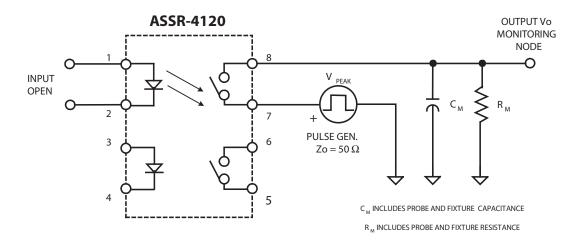



Figure 16. Switching Test circuit for t_{ON} , t_{OFF}

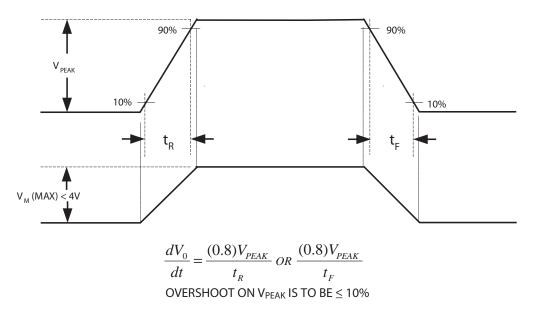


Figure 17. Output Transient Rejection Test Circuit

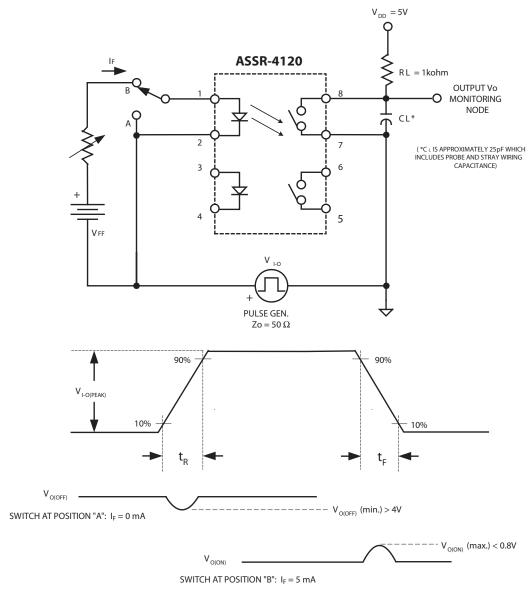


Figure 18. Input - Output Transient Rejection Test Circuit

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Solid State Relays - PCB Mount category:

Click to view products by Broadcom manufacturer:

Other Similar products are found below:

M86F-2W M90F-2W G2-1A07-ST G2-1A07-TT G2-1B02-TT G2-DA06-ST G3CN-202PL-3-US DC12 G3CN-203P DC3-28

G3RDX02SNUSDC12 PLA134S DMP6202A DS11-1005 AQ3A2-ZT432VDC AQV212J AQV214SD02 AQV252GAJ AQW414EA

AQY221R2SJ EFR1200480A150 LCA220 LCB110S 1618400-5 SR75-1ST AQV212AJ AQV238AD01 AQV252GAXJ AQW414TS

AQY210SXT AQY212ST AQY221N2V1YJ AQY275AXJ G2-1A02-ST G2-1A02-TT G2-1A03-ST G2-1A03-TT G2-1A05-ST G2-1A06
TT G2-1A23-TT G2-1B01-ST G2-1B01-TT G2-1B02-ST G2-DA03-ST G2-DA03-TT G2-DA06-TT G3M-203PL-UTU-1 DC24

CPC2330N 3-1617776-2 CTA2425 TS190 LBB110S