
 
 
 

 

APPLICATION NOTE 

AVR2052: BitCloud SDK Quick Start Guide 

Atmel MCU Wireless 

Introduction 

This document is intended as a starting point for software engineers’ prototyping, 
implementing, testing, and deploying ZigBee® Home Automation (ZHA), ZigBee Light 
Link (ZLL), and OEM ZigBee PRO devices based on the Atmel® BitCloud® software 
platform [1]. 

The BitCloud Software Development Kit (SDK) provides a complete set of tools – 
including BitCloud ZigBee PRO libraries, reference applications, API documentation, 
– required to build ZigBee-compliant end products running customized ZHA and ZLL 
applications. 

This document describes how to quickly start with the BitCloud SDK by installing 
development environment, assembling hardware and programming devices with 
reference applications. 

Chapter 1 provides an overview of the SDK, required development tools, and lists 
supported platforms. 

Chapter 2 describes the documentation set available for BitCloud SDK. Chapter 3 
gives instructions on SDK and tools development tools setup. 

Chapter 4 describes how to build BitCloud application using supported IDEs. 

Chapters 5, 6, and 7 provide description of ZLL, ZHA, and WSNDemo reference 
applications supplied with the SDK. 

Starting from Appendix A the hardware specific part of the document begins. Each 
next appendix chapter describes the usage of a particular platform. 

Features 

• Introduction to BitCloud Software Development Kit (BitCloud SDK) [1] 

• Description of SDK contents 

• Development tools installation procedure 

• Application build process 

• Description of reference applications 
• ZHADevices – ZigBee Home Automation devices 
• ZLLDemo – ZigBee Light Link devices 
• WSNDemo – OEM ZigBee devices 

  

8200Q−MCU−02/2015 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

2 

Table of Contents 

Table of Contents .................................................................................... 2 

1. Overview ............................................................................................ 4 
1.1 BitCloud SDK .................................................................................................... 4 
1.2 Development Tools ........................................................................................... 4 
1.3 Supported Hardware Platforms and IDEs ......................................................... 5 

2. BitCloud Documentation .................................................................... 6 
2.1 Learning BitCloud .............................................................................................. 7 

3. Development Environment Setup ....................................................... 8 
3.1 Installing the BitCloud SDK ............................................................................... 8 

3.1.2 Serial and OTAU Bootloader Setup .................................................... 9 
3.2 IDE Installation .................................................................................................. 9 

3.2.1 Atmel Studio ....................................................................................... 9 
3.2.2 IAR Embedded Workbench .............................................................. 10 

3.3 Hardware Configuration .................................................................................. 10 

4. Building BitCloud Applications .......................................................... 11 
4.1 Building Applications in Atmel Studio .............................................................. 11 
4.2 Building Applications in IAR Embedded Workbench ....................................... 12 
4.3 Makefiles Organization .................................................................................... 13 

4.3.2 Low-level Makefile Name Structure .................................................. 14 

5. ZigBee Light Link Reference Application .......................................... 15 
5.2 Launching the Demo ....................................................................................... 15 
5.3 Supported Clusters ......................................................................................... 16 
5.4 Source Code Organization .............................................................................. 17 

5.4.1 Application Configuration .................................................................. 17 
5.5 Serial Console Commands ............................................................................. 18 
5.6 Light’s Functions ............................................................................................. 20 

5.6.1 Reset Light to the Factory New State ............................................... 21 
5.6.2 Use of On-board Peripherals ............................................................ 21 

5.7 Bridge’s Functions ........................................................................................... 22 
5.7.1 Network Joining ................................................................................ 23 
5.7.2 Light Discovery and Control .............................................................. 23 
5.7.3 SLRemote GUI ................................................................................. 23 

5.8 Color Scene Controller’s Functions ................................................................. 24 
5.8.1 Touchlink / Network Joining .............................................................. 24 
5.8.2 Use of On-board Peripherals ............................................................ 25 

5.8.2.2 LCD Screen Output on Key Remote Control................... 25 
5.8.2.3 Button Functionality on Key Remote Board .................... 26 

5.9 Over-the-Air Firmware Update ........................................................................ 29 
5.9.1 OTAU Configuration for ZLL Bridge .................................................. 29 
5.9.2 OTAU Configuration for ZLL Light and Controller ............................. 29 
5.9.3 OTAU Procedure .............................................................................. 29 

5.10 Interoperability with ZHA Networks ................................................................. 31 
5.11 Running Certification Test Scripts ................................................................... 31 

5.11.1 Prerequisites ..................................................................................... 31 
5.11.2 WSNRunner Setup ........................................................................... 31 
5.11.3 Run a Script from the Command Line ............................................... 32 

6. ZigBee Home Automation Reference Application ............................. 33 
6.1 Launching the Demo ....................................................................................... 33 
6.2 Supported Clusters ......................................................................................... 34 
6.3 Source Code Organization .............................................................................. 35 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

3 

6.3.1 Configuration .................................................................................... 35 
6.4 Serial Console Commands ............................................................................. 37 
6.5 Over-the-Air Firmware Update ........................................................................ 40 

6.5.1 OTAU Server Configuration .............................................................. 40 
6.5.2 OTAU Client Configuration ............................................................... 41 
6.5.3 OTAU Procedure .............................................................................. 41 

7. WSNDemo Application ..................................................................... 42 
7.1 Overview ......................................................................................................... 42 
7.2 Launching the Demo ....................................................................................... 42 
7.3 Network Startup .............................................................................................. 43 
7.4 WSNMonitor .................................................................................................... 43 
7.5 Identifying Nodes ............................................................................................ 44 
7.6 Node Timeouts ................................................................................................ 45 
7.7 Sensor Data Visualization ............................................................................... 45 
7.8 Over-the-Air Upgrade ...................................................................................... 46 

Appendix A. SAMR21 Specifics ....................................................... 47 
A.1 Hardware Setup .............................................................................................. 47 

A.1.1 Required Hardware ........................................................................... 47 
A.1.2 ATSAMR21 Xplained PRO Setup ..................................................... 47 
A.1.3 OTAU Hardware Setup ..................................................................... 48 

A.2 Pre-built Firmware Images .............................................................................. 48 
A.3 Programming the Boards ................................................................................ 48 

A.3.1 Extended (MAC) Address Assignment.............................................. 48 
A.3.2 Programming with IAR Embedded Workbench ................................. 49 

A.3.2.1 Precompiled Images ....................................................... 49 
A.3.2.2 Application Workspace ................................................... 49 

A.3.3 Programming with Atmel Studio ........................................................ 49 
A.3.4 Programming with Serial Bootloader ................................................ 50 

A.4 Reserved Hardware Resources ...................................................................... 50 

Appendix B. ATmegaRFR2 Specifics ............................................... 51 
B.1 Hardware Setup .............................................................................................. 51 

B.1.1 Required Hardware ........................................................................... 51 
B.1.2 AT256RFR2-EK Setup...................................................................... 51 
B.1.3 AT256RFR2-XPRO Setup ................................................................ 53 
B.1.4 OTAU Hardware Setup ..................................................................... 53 

B.2 Pre-built Firmware Images .............................................................................. 53 
B.3 Programming the Boards ................................................................................ 53 

B.3.1 Setting Fuse Bits ............................................................................... 53 
B.3.2 Extended (MAC) Address Assignment.............................................. 54 
B.3.3 Programming with IAR Embedded Workbench ................................. 55 

B.3.3.1 Loading Precompiled Images .......................................... 55 
B.3.3.2 Programming from Application Workspace ..................... 55 

B.3.4 Programming with Atmel Studio ........................................................ 55 
B.3.5 Programming with Serial Bootloader ................................................ 56 

B.4 Reserved Hardware Resources ...................................................................... 56 

8. References ...................................................................................... 58 

9. Revision History ............................................................................... 59 
   



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

4 

1. Overview 
BitCloud is a full-featured, production grade, embedded software development platform from Atmel. It provides a 
framework for creating ZigBee Home Automation (ZHA), ZigBee Light Link (ZLL), and proprietary ZigBee devices 
running on supported Atmel microcontrollers and IEEE® 802.15.4-2006-compliant [5] radio transceivers. The BitCloud 
stack is fully compliant with the ZigBee PRO standards for wireless sensing and control. 

1.1 BitCloud SDK 
The main items provided as part of the BitCloud software development kit (SDK) [1] are: 

• Atmel implementation of ZigBee PRO core stack protocol in form of libraries and API header files. The same 
core-stack library is used for all BitCloud applications. 

• Source code and IDE projects for Atmel reference applications: 
• HADevice - ZigBee Home Automation Profile devices (see Chapter 6) 
• ZLLDemo - ZigBee Light Link Profile devices (see Chapter 5) 
• WSNDemo - OEM ZigBee PRO device implementation (see Chapter 7) 
• Blink - basic example that only does LED blinking 
• ZAppSINP - ZigBee PRO network processor application (see [28] for details) 

• Source code of some of the BitCloud components, including: 
• ZigBee Cluster Library 
• Hardware Abstraction Layer 
• Board Support Package 
• System Task Manager 

…and some others. 
• Set of precompiled firmware images for reference applications 
• ZLL certification test suite (see Section 5.11) 
• Documentation files (see Chapter 2) 
• Etc… 

Detailed structure of BitCloud SDK is given in Table 3-1. 

1.2 Development Tools 
A development tool chain for BitCloud applications consists of: 

• BitCloud SDK 
• A set of development or custom boards with supported Atmel MCU and RF transceivers as given in Table 1-1 
• An integrated development environment (Atmel Studio [25] or IAR Embedded Workbench® [19], [20]), where 

sample applications may be modified, compiled, and debugged. IDE versions supported by BitCloud SDK are 
given for particular platforms in Table 1-1 

• A corresponding compiler tool chain (AVRGCC, ARMGCC, or IAR™), which provides the necessary tools to 
compile application source code into binary images 

• A programming device (for example, JTAGICE3 [22]), which may be used to program and debug the 
application on a target platform 

• Optional: Atmel Serial/OTA Bootloader [12] if firmware programming over the serial interface or over-the-air is 
required 

• Optional: ZigBee packet sniffer tool [23] for capturing over-the-air traffic 

Setup instructions for the BitCloud SDK as well as supported IDEs are given in Chapter 2. 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

5 

1.3 Supported Hardware Platforms and IDEs 
The supported hardware platforms are shown in Table 1-1. 

Table 1-1. Supported Hardware Platforms and IDEs 

Name in this 
Document 

Microcontroller Supported RF 
Transceivers 

Supported Evaluation 
Kits 

Supported IDEs 

megaRFR2 ATmega256RFR2 [9] 
ATmega2564RFR2 [10] 

Built-in AT256RFR2-EK [15] 
 
 
ATMEGA256RFR2-
XPRO [17] 

IAR Embedded Workbench for AVR® 6.40.3 
(with C/C++ compiler 6.40.3) [20] 
 
Atmel Studio v6.2 (with 
AVR_8_bit_GNU_Toolchain_3.4.5_1522) [25] 

SAMR21 ATSAMR21G18A [31] 
ATSAMR21E18A [32] 

Built-in ATSAMR21-XPRO [33] IAR Embedded Workbench for ARM® 7.30 
(with C/C++ compiler 7.30) [19] 
 
Atmel Studio v6.2 (with GCC version 4.8.3 
213147, Atmel build 371) [25] 

  



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

6 

2. BitCloud Documentation 
This chapter describes the documentation set available for BitCloud SDK. It is intended to help the user to understand 
where to find information required during application evaluation and development. 

Table 2-1 lists all documents that compose BitCloud documentation set. The list of documents is the same for all 
platform-specific packages. The document files are available in the /Documentation/ folder of the BitCloud SDK as 
well as from the Atmel website http://www.atmel.com/. 

Table 2-1. BitCloud Documentation List 

Title Description 

AVR2052: BitCloud Quick Start Guide [1] This document. Contains following parts: 

• BitCloud SDK overview 
• SDK and IDE installing instructions 

• Description of reference ZHA, ZLL, and WSNDemo applications 

• Platform-specific details related to BitCloud SDK 

AVR2050: BitCloud Developer Guide [4] Focuses on user’s application development and provides: 

• Architecture of the stack and that of a user’s application 

• Application development concepts and rules 

• Stack features descriptions with reference to BitCloud API and code 
examples 

The document is organized around main tasks that a ZigBee application 
normally should accomplish. The tasks are grouped by the areas, to which they 
belong (such as network management, data exchange, security, etc.). 
Information contained in a developer guide is generally platform-independent 
unless stated otherwise. 

BitCloud API Reference [3] Provides full specification and description of functions and data types that 
compose BitCloud public APIs. API reference also describes the most common 
uses of the APIs illustrated with code samples mostly extracted from reference 
applications. 
API reference document is provided in CHM and HTML formats. 

Application notes 

AVR2058: BitCloud OTAU User Guide [24] Describes how to use the Over-the-Air upgrade feature in BitCloud applications. 

AVR2057: ZAppSI User Guide [28] Describes development of applications using ZAppSI serial protocol, protocol’s 
implementation – ZAppSI host library, and scripting environment based on 
Python. Contains user’s instruction for the WSNRunner development tool. 

AT02597: ZigBee PRO Packet Analysis 
with Sniffer [23] 

Describes how to configure and use various packet sniffing tools (along with 
Atmel MCU-based sniffer hardware) for analyzing ZigBee traffic. 

AVR2054: Serial Bootloader User Guide 
[12] 

Describes the standalone Serial Bootloader package, which is used to load 
firmware images to devices via serial connection. Not included into BitCloud 
SDK. 

AT03663: Power Consumption of ZigBee 
End Devices [30] 

Provides detailed description on the power consumption of Atmel ZigBee End 
Device node in various networking scenarios. 

AT08550: ZigBee Attribute Reporting [36] Provides in-depth details on the configuration and usage of Attribute Reporting 
in BitCloud applications. 

 

  



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

7 

2.1 Learning BitCloud 
As evident from Table 2-1 BitCloud documents are divided into the following categories: 

• Quick start guide 
• Developer guide 
• API reference 
• Application notes 

AVR2052: BitCloud SDK Quick Start Guide (this document) [2] is intended to be the starting point for a user learning 
BitCloud programming. Once the user understands the reference applications, a quick start guide may be used as a 
reference book for hardware-specific details. 

Actual application development is described in the developer guide: AVR2050: BitCloud Developer Guide [4]. This 
document describes programming basics such as overall application’s organization, task management, and other 
topics, as well as describes common ZigBee tasks in detail. This document is inevitable for the application development 
on top of BitCloud stack. 

The user may find it convenient to start investigating the use of BitCloud APIs from AVR2050: BitCloud Developer 
Guide and then look for further information in other developer guides. Note that specification of all APIs available with a 
package can be found in the BitCloud API Reference [3]. 

Application notes focus on specific important topics. This kind of documents may contain instructions on installation of 
specific features, and the usage of related development tools and APIs.   



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

8 

3. Development Environment Setup 
This chapter provides instructions on how to set up BitCloud SDK as well as supported IDEs. It also describes the 
structure of the BitCloud SDK and includes references to hardware setup of the supported platforms. 

3.1 Installing the BitCloud SDK 
Install the BitCloud SDK by unzipping BitCloud .zip archive into an empty folder with no blank spaces in the path to it 
(that is, avoid having folder names such as /Program Files/, /My Documents/ and similar in the installation path). 

Note: If the SDK installation path contains any blank spaces in its directory names, errors indicating path issues 
will occur when compiling reference and custom applications with the SDK. 

Table 3-1 lists the location and purpose of key folders provided with the SDK. 

Table 3-1. BitCloud SDK Directory Structure 

Directory/File Description Notes 

./Applications/ Folder containing reference applications  

  ./Applications/ZLLDemo/ ZLL reference application Full application 
description is given in 
Chapter 5 

  ./Applications/HADevice/ ZHA reference application Full application 
description is given in 
Chapter 6 

  ./Applications/WSNDemo/ Proprietary application for OEM-devices based 
purely on ZigBee PRO stack. Doesn’t use ZigBee 
Clusters 

Full application 
description is given in 
Chapter 7 

  ./Applications/Blink/ Basic application that only blinks LEDs on the 
board. No over-the-air frames are exchanged 

 

  ./Applications/ZAppSINP/ ZAppSINP reference application for network 
processor 

Full application des-
cription is given in [28] 

 

./BitCloud/   

  ./BitCloud/lib/ Makerules and library files for BitCloud PRO stack 
and HAL 

Doesn’t require any 
modifications by a user 

  ./BitCloud/Components/ ZigBee PRO stack header files organized by 
stack component and included by reference 
applications 

For more details on 
BitCloud stack’s 
components and their 
usage see [4] 

  ./BitCloud/Components/ZCL/ ZCL header files included by reference 
applications 

 

  ./BitCloud/Components/HAL/ HAL component source code and header files for 
application access to available hardware 
interfaces such as UART and SPI 

The HAL component is 
compiled separately 
from the application 
and from the core 
stack components 

  ./BitCloud/Components/BSP/ BSP component source code and header files for 
application access to external peripherals (for 
example, LEDs, buttons, LCD available on 
development boards) 

 

 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

9 

Directory/File Description Notes 

./Evaluation Tools/   

  ./Evaluation Tools/ZLLDemo/ Precompiled firmware images of ZLL reference 
devices for supported platforms 

Full application 
description is given in 
Chapter 5 

  ./Evaluation Tools/HADevice/ Precompiled firmware images of ZHA reference 
devices for supported platforms 

Full application 
description is given in 
Chapter 6 

  ./Evaluation Tools/WSNDemo (Embedded)/ Precompiled firmware images of WSNDemo 
devices for supported platforms 

Full application 
description is given in 
Chapter 7 

  ./Evaluation Tools/WSNDemo (WSN Monitor)/ Installer of WSNMonitor PC application required 
for WSNDemo 

WSN Monitor is 
described in Section 
7.4 

  ./Evaluation Tools/ZAppSINP/ ZigBee PRO network processor application.  See [28] for details 

  ./Evaluation Tools/Runner/ 
Installation file for the WSNRunner application, 
which is used to run the ZLL test scripts  

Described in Section 
5.11 

  ./Evaluation Tools/SLRemote/ ZLL Bridge GUI application’s installation files See Section 5.7.2 

  ./Evaluation Tools/ZLL_Scripts/ ZLL certification test scripts See Section 5.11 

./Documentation/ BitCloud documentation, including this Quick Start 
Guide 

See Chapter 2 

./ThirdPartySoftware/ Third party software such as drivers, libraries, etc.  

3.1.2 Serial and OTAU Bootloader Setup 
For users who intend to use Serial Bootloader or Over-the-Air Upgrade (OTAU) features, find detailed description of the 
Serial Bootloader package, the list of supported platforms, instructions on generating SREC images in AVR2054: Serial 
Bootloader User Guide [12]. OTAU use is fully described in AVR2058: OTAU User Guide [24]. 

3.2 IDE Installation 

3.2.1 Atmel Studio 
Atmel Studio can be used to develop and debug applications for AVR- and ARM®-based platforms. Atmel Studio is 
equipped with the GCC compiler and does not require any additional external tools to compile and debug BitCloud 
applications. In order to compile the BitCloud applications using command line few of the utilities which are required are 
vailable only as part of MYSIS [35]. 

Installation procedure: 
a. Download and install Atmel Studio [25] of the supported version given in Section 1.3, if not already installed 

on your PC. 
b. Add path to the folder containing the AVRGCC compiler to the Path Windows® environment variable. The 

compiler is located in the \extensions\Atmel\AVRGCC\3.3.1.27\AVRToolchain\bin directory of the 
Atmel Studio installation directory. This step is necessary for command line compilation (with makefiles). 

c. For detailed instructions on how to compile applications using Atmel Studio, refer to Chapter 4. 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

10 

3.2.2 IAR Embedded Workbench 
IAR Embedded Workbench for Atmel AVR [20] can be used to develop and debug applications for AVR-based 
platforms. IAR Embedded Workbench for ARM [19] can be used to develop and debug applications on ARM-based 
platforms. IAR IDEs support editing of application source code, compiling source files, linking object modules with 
libraries, and application debugging. 

Installation procedure: 

• IAR Embedded Workbench for AVR: 
a. Download and install IAR Embedded Workbench for Atmel AVR [20], if not already installed on your PC. 
b. Add a Windows environment variable named IAR_AVR_HOME, and set its value to the IAR Embedded 

Workbench installation directory (for a default installation, it is C:\Program Files\IAR 
Systems\Embedded Workbench 6.40). To do this, go to Control Panel > System > Advanced > 
Environment Variables, click New below the System variables list, and enter Variable Name and 
Variable Value. This step is required if you plan to build embedded images using IAR Embedded 
Workbench from the command line. 

c. For detailed instructions on how to compile applications using IAR Workbench, refer to Chapter 4. 

• IAR Embedded Workbench for ARM: 
a. Download and install IAR Embedded Workbench for ARM [19], if not already installed on your PC. 
b. Add a Windows environment variable called IAR_ARM_HOME, and set its value to the IAR Embedded 

Workbench installation directory (for a default installation, it is C:\Program Files\IAR 
Systems\Embedded Workbench 7.20). To do this, go to Control Panel > System > Advanced > 
Environment Variables, click New below the System variables list and enter Variable Name and 
Variable Value. This step is required if you plan to build embedded images using IAR Embedded 
Workbench from the command line. 

c. For detailed instructions on how to compile applications using IAR Workbench, refer to Chapter 4. 

3.3 Hardware Configuration 
Hardware configuration instructions depend on the particular hardware platform used to evaluate and develop with the 
BitCloud SDK. 

To get started, proceed to the platform-specific sections listed in Table 3-2. 

Table 3-2. Hardware-specific getting Started Sections 

Section Name SAMR21-specific Sections ATmegaRFR2-specific Sections 

Hardware-specific Appendix Appendix A Appendix B 

Hardware setup A.1 B.1 

Precompiled images A.2 B.2 

Programming devices A.3 B.3 

Reserved resources A.4 B.4 
   



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

11 

4. Building BitCloud Applications 
This chapter provides an overview on how to use Atmel Studio and IAR IDEs to work with reference BitCloud 
applications. IDE versions that are used during verification and guarantee to work are given in Table 1-1. 

As mentioned in Section 1.1, a part of the stack components and hardware drivers are provided in source code, and are 
not part of the stack library. For convenience reasons, source files for these components are included in the IDE 
projects and can be accessed from the IDE. 

4.1 Building Applications in Atmel Studio 
Atmel Studio can be used to develop and build Atmel BitCloud applications. Reference applications include Atmel 
Studio project files located in the \atmelStudio_projects subdirectory of the application root directory. These 
projects rely on the configurations given by external low-level makefiles (see Section 4.3). 

Atmel Studio GUI allows the user to select an appropriate configuration from the list of available configurations and to 
modify any given configuration. For details on compilation and editing of configurations, refer to Atmel Studio 
documentation [27]. 

• Building application from IDE: 
• Open an appropriate .atsln project file from the <appName>\atmelStudio_projects directory with 

Atmel Studio. Solution Explorer tab as shown on Figure 4-1 provides access to the application source files 
as well as stack components that compile together with the application. 

Note: Source files are included virtually to provide access to them. The set of files to be actually compiled is 
defined in corresponding external Makefile as described in Section 4.3. 

Figure 4-1. Example Structure of Atmel Studio Application Project 

 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

12 

• Select a target configuration in the dropdown list on the toolbar, as shown on Figure 4-2 

Figure 4-2. Selecting Project’s Configuration in Atmel Studio 

 

• From the main menu execute Build => Rebuild All 
Once the build process is completed, some of the .hex, .srec, .bin, and .elf image files will be generated, 
depending on the platform configuration that has been chosen. Use the .hex file for programming devices via 
JTAG and the .srec file for programming via Serial Bootloader. The .elf file is used for debugging. 

• Building application from command line: 
• After selecting the target configuration in the application Makefile (see Section 4.3), compile the 

application by running the make utility, executing 

 make clean all 

It is possible to run the make utility from Atmel Studio by selecting Tools > Command Prompt. This will 
guarantee that the make utility provided with Atmel Studio is used. Otherwise, the path to the folder containing 
the make utility can be added to the Path environment variable. In this case, run the make utility in the 
command line from the application’s root directory. 

4.2 Building Applications in IAR Embedded Workbench 
IAR Embedded Workbench can be used to develop and build Atmel BitCloud applications. All reference applications 
include IAR project files located in the \iar_projects subdirectory of the application root directory. IAR projects come 
complete with a set of configurations, which correspond to the configurations given by low-level makefiles. 

IAR Embedded Workbench GUI allows the user to select an appropriate configuration from the list of available 
configurations and to modify any given configuration. For details on compilation and editing of configurations, refer to 
the IAR Embedded Workbench documentation [21]. 

As mentioned above, a part of stack components and drivers are compiled with the application. For convenience 
reasons, source files for these components are included in the IAR projects, so they are effectively a part of the 
application. 

For compilation from the command line with the IAR compiler, makefiles are used in exactly the same way as described 
in Chapter 4.3. 

• IDE build procedure: Open the .eww file in the iar_projects subdirectory of the appropriate application directory 
(for WSNDemo, the WSNDemo.eww file from the <SDK-Root>\Applications\WSNDemo\iar_projects 
subdirectory) with IAR Embedded Workbench, select appropriate configuration (as shown in Figure 4-3) and 
execute the Rebuild All item from the Project menu. 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

13 

By default, the .a90 file (for WSNDemo, WSNDemo.a90) will be generated in the \iar_projects\Debug\exe 
subdirectory (for WSNDemo, in the <SDK-Root>\Applications\WSNDemo\iar_projects\Debug\exe 
directory) with format as specified in Linker Output Options of the IAR project. 

• Command line build procedure: Compile the application by running the make utility, executing 

make clean all 

Some of the .hex, .srec, .bin, and .elf image files will then be generated, depending on the platform 
configuration that has been chosen. 

Figure 4-3. Project’s Structure and Configuration’s Selection in IAR Embedded Workbench 

 

4.3 Makefiles Organization 
Each sample application is provided with makefiles for the most typical application configurations. Makefiles are located 
in the \makefiles directory inside subdirectories corresponding to different supported boards. In addition to these low-
level makefiles each application includes high-level makefile located in the application root folder. 

The high-level makefile is used to specify the low-level makefile that will be used to build the application. The choice 
depends on the values assigned to special variables inside the high-level makefile: 

• PROJECT_NAME: specifies the subdirectory name of the \makefiles directory where the target file is located 

• CONFIG_NAME: used to obtain the target makefile name by adding CONFIG_NAME to Makefile_ 

For example, if makefile contains the following lines: 

PROJECT_NAME = Atmega256rfr2 
CONFIG_NAME = All_StdlinkSec_MegaRf_Atmega256fr2_8Mhz_Gcc 

then the compilation instructions will be extracted from the makefile located at 

\makefiles\Atmega256rfr2\Makefile_All_StdlinkSec_MegaRf_Atmega256fr2_8Mhz_Gcc 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

14 

The application structure is illustrated in Figure 4-4. A high-level makefile for sample applications already contains 
commented lines for all configurations provided, so the user just has to uncomment appropriate lines. 

Figure 4-4. Application Build Structure with Makefiles 

Makefile_All_..._Iar
Makefile_All_..._Gcc

...

PROJECT_NAME = 
CONFIG_NAME =

Makefile

#define CS_EXT_PANID …
#define CS_NWK_ADDR …
…

configuration.h

Platform1 ./makefiles/Platform1
./

./

Makefile_All_..._Iar
Makefile_All_..._Gcc

Makefile_Coord_..._Iar

...

Application
Source Code

Stack 
components 
provided in 

source code 
(PDS, BSP, 

etc.)

Source Code

Makefile_All_..._Iar

Platform2 ./makefiles/Platform2

 

After the desired configuration is chosen in the makefile, the application can be built by executing make clean all from 
the command line in the application root folder or by selecting the Build command in the context menu in Atmel Studio. 

4.3.2 Low-level Makefile Name Structure 
The name of a low-level makefile consists of parts showing which configuration the file specifies. These include 
specification of: 

• ZigBee device type (All, Coordinator, Router, or EndDevice); All means that this configuration can be 
used for any device type 

• Security supported (standard with link keys (StdlinkSec), standard (Sec), or none (empty)) 
• Platform (board or SoC family) 
• MCU 
• Radio chip, if applicable  
• MCU frequency 
• Compiler 

Note: Not all combinations make sense for a given platform. Makefiles are provided only for supported 
configurations. 

  



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

15 

5. ZigBee Light Link Reference Application 
ZLLDemo reference application implements standard device types defined in the ZigBee Light Link Profile specification 
[29] color scene controller, light devices, and bridge. Figure 5-1 shows a scheme of interactions between devices in a 
ZLL network. Several types of the light device with different sets of supported clusters and cluster commands are 
provided: on-off light, dimmable light, color light, temperature color light and extended color light. 

Figure 5-1. Interactions Scheme in the ZLLDemo Application 

Light

Bridge

Controller

PC

Touchlink 
and 

commands

Transferring 
commands 

from PC

Serial link

Exchanging 
lights’ info

SLRemote GUI 
or

Serial Console

User

User

 

The application demonstrates controlling lights by color scene controllers as well as their interactions with a bridge 
device. All main features of the ZigBee Light Link profile are implemented: 

• Light control functionality, including On/Off, Level (brightness), Color (hue, saturation), Groups, and Scenes 
• Touchlink commissioning – network parameters are transferred to a new light from a scene controller, while 

the scene controller is kept close to the light 
• A ZigBee Light Link network has no ZigBee network coordinator, even a bridge device acts as a ZigBee router 
• Lights are ZigBee routers and propagate messages across the network 
• Multiple controllers may be used to control same or different sets of lights 
• Application data and network parameters are saved to non-volatile memory to restore the state after reset, 

power off, etc. 

5.2 Launching the Demo 
To launch the demo, at least one light is needed and one color scene controller or a bridge. More lights and/or 
controllers may be added as required. 

Follow the instruction below to launch a demo: 
1. Assemble devices as instructed for target platform in Section 3.3. 
2. Program devices with firmware images as described for corresponding platform in Section 3.3. 

The pre-built images are located in the \Evaluation Tools\ZLLDemo directory. Precompiled light’s firmware 
is for an extended color light device. To program other types of the light device, the application must be 
recompiled for corresponding device type set in the configuration.h file (see Section 5.4.1). 

Note: Prebuilt firmware images are built for 8MHz MCU frequency. 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

16 

3. Bring devices into the same network and perform light control. 
a. Using a bridge device: 

 Use SLRemote PC application or serial console commands to create a network via the bridge 
device. Open the network for joining. See Section 5.6.2 for bridge device functionality description. 

 Reset light device, on power up it will automatically join the network 
 Perform light discovery from the bridge using SLRemote or serial console commands 
 Control discovered lights using SLRemote GUI or using console commands 

See Section 5.6.2 for more details on the bridge device functionality including syntax of serial console 
commands and use of SLRemote GUI. 

b. Using a color scene controller device: 
 Bring color scene controller in close proximity to a light. Perform a touchlink procedure between the 

light and the color scene controller by using either corresponding on-board button on the controller 
device or using “touchlink” serial command. 

 Control touchlinked light from remote controller using its on-board buttons or serial console 
commands 

See Section 5.8 for detailed description of color scene controller functionality including syntax of serial 
console commands, reset to factory new, etc. 

4. See Section 5.5 for details on the light functionality such as light status indication, reset to factory new, logging 
into serial interface, etc. 

5. Additionally: 
• More light devices and controller devices may be added through touchlink with the controller device that is 

already in the network or via classical joining 
6. For details in executing firmware Over-the-Air upgrade (OTAU) see Section 5.9. 
7. For details on interoperability with Home Automation networks see Section 0. 

5.3 Supported Clusters 
Table 5-1 lists clusters supported by the demo applications for light and color scene controller. Note that most of the 
clusters used by Light Link applications duplicate common clusters from ZigBee Cluster Library, but may be slightly 
different, and so applications should employ clusters specially defined for the ZigBee Light Link profile (header files for 
these clusters include Zll in their names). 

Table 5-1. ZigBee Clusters Supported by Devices in the ZLLDemo Application 

Device Type Server Clusters Client Clusters 

On/Off light 
Dimmable light 
Color light 
Extended color light 
Color temperature light 

Basic 
ZLL Commissioning 
OnOff 
Groups 
Identify 
Scenes 
Level Control  
Color Control (for color capable lights only) 

Basic 
OTAU (if enabled) 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

17 

Device Type Server Clusters Client Clusters 

Color scene remote controller Basic 
ZLL Commissioning 

Basic 
ZLL Commissioning 
OnOff 
Level control 
Groups 
Identify 
Scenes 
Color Control 
Link Info (manufacture-specific) 
OTAU (if enabled) 

Control bridge Basic 
ZLL Commissioning 
Link Info (manufacture-specific) 
OTAU (if enabled) 

ZLL Commissioning 
Identify 
OnOff 
Level Control 
Groups 
Scenes 
Color Control 

5.4 Source Code Organization 
Application projects and source code are located in the \Applications\ZLLDemo folder inside the SDK. The source 
code is divided into the common part and device-specific code. The entry main() function is located in the light.c, 
bridge.c, and colorSceneRemote.c files in the corresponding folders. An endpoint for communication between 
clusters is registered in the same file. 

Supported clusters are configured in <device>Clusters.c files. A separate source code file is provided for each 
cluster supported by a specific device. Such file initializes structures needed for the cluster and implements callback 
functions that are called to indicate commands’ responses. For example, see the lightColorControlCluster.c file, 
which initializes the color control cluster for the light device. 

The application’s configuration is set in the configuration.h file located in the \Applications\ZLLDemo folder. 
Serial interface used by the device to send information to a PC is also configured in this file. Additionally, in the 
application’s source code UART is configured in the \Applications\ZLLDemo\common\src\uartManager.c file. 

5.4.1 Application Configuration 
Reference application’s configuration parameters are set in the configuration.h file. Table 5-2 describes parameters 
of particular interest to the user. Note that parameters starting with APP_ are application specific (defined only in 
reference applications), while those starting with CS_ are stack-level parameters implemented in the ConfigServer 
component. 

Table 5-2. Key Application Parameters and Their Meanings 

Parameter Description 
APP_ZLL_DEVICE_TYPE Selects ZLL device type; possible values are: 

APP_DEVICE_TYPE_ON_OFF_LIGHT 
APP_DEVICE_TYPE_DIMMABLE_LIGHT 
APP_DEVICE_TYPE_COLOR_LIGHT 
APP_DEVICE_TYPE_TEMPERATURE_COLOR_LIGHT 
APP_DEVICE_TYPE_EXTENDED_COLOR_LIGHT 
APP_DEVICE_TYPE_COLOR_SCENE_REMOTE 
APP_DEVICE_TYPE_BRIDGE 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

18 

Parameter Description 

APP_ENABLE_CONSOLE Specifies whether or not serial console commands are supported in the 
application. If set to 1 then reception of serial commands is enabled on 
defined APP_INTERFACE. Also in such case sleep on end devices is 
automatically disabled. 

APP_DEVICE_EVENTS_LOGGING Configures events logging. If set to 1 then application will print information 
on application’s events to serial port defined via APP_INTERFACE. 

BSP_SUPPORT Specifies the board that will be used by the application. 
On-board peripherals such as buttons, LEDs, LCD, MAC address reading, 
etc. will be configured and compiled according to the made selection. 
User can extend BSP options to support its custom board. 
BOARD_FAKE option can be used for testing network communication as it 
substitutes BSP API with stub functions. 

APP_INTERFACE Configures the serial interface used to connect the device to a PC. Available 
options depend on the platform and are listed in the configuration.h 
file. Values are of APP_INTERFACE_<name> format. For some interfaces 
(UART) additional parameters should be configured such as 
APP_USART_CHANNEL. 

APP_PRIMARY_CHANNELS_MASK Bitmask of ZLL primary channels. 
APP_SECONDARY_CHANNELS_MASK Bitmask of ZLL secondary channels. 
APP_SCAN_ON_STARTUP If set to 1 for the light device, the application scans for networks on startup. 
APP_USE_OTAU Set to 1 to enable OTAU support in the application and set to 0 to disable it. 
OTAU_CLIENT  
OTAU_SERVER 

Defines whether device acts as OTAU client (device that will be upgraded) 
or OTAU server (device that will provide the new firmware). Only one role 
shall be selected. By default bridge device acts as OTAU server and other 
devices as OTAU clients. Applicable only if APP_USE_OTAU is set to 1. 

APP_USE_ISD_CONSOLE_TUNNELING Support simultaneous usage of the same serial interface for passing (1) 
commands from console and (2) commands exchanged by the ISD driver 
and the bootloader PC tool. This parameter is valid for the OTAU server (the 
bridge device). 

APP_USE_FAKE_OFD_DRIVER Enables fake implementation of the OFD driver on OTAU client devices. 
This may be useful for testing OTAU on boards without external flash 
memory. 

APP_SUPPORT_OTAU_PAGE_REQUEST Configures use of OTAU image page request feature on OTA client devices 
(refer to [24] for details). 

EXTERNAL_MEMORY Specifies the type of external memory (where the new firmware image will 
be stored). 

APP_ENABLE_CERTIFICATION_EXTENSION Set to 1 to compile application for running certification test scripts (see 
Section 5.11) and to 0 otherwise. 

5.5 Serial Console Commands 
ZLLDemo reference application includes implementation of a serial console interface that allows control and monitoring 
of the device over a serial connection using a terminal program (HyperTerminal, RealTerm, etc.) on a PC. 

To enable use of such console in the application APP_DEVICE_EVENTS_LOGGING and APP_ENABLE_CONSOLE 
parameters shall be set to 1 in applications’ configuration.h file. Additionally, APP_INTERFACE and, if applicable, 
APP_USART_CHANNEL shall be set correctly for the target board as described in Section Table 5-4. Configuration is the 
same independent on the device type used. 

 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

19 

On the PC side virtual COM port connection that corresponds to the board shall have following settings: 
BAUD RATE: 38400 

PARITY: None 

DATA BITS: 8 

STOP BITS: 1 

FLOW CONTROL: None (Hardware for the Xplained-PRO boards) 

Additionally local echo and sending line ends with line feeds shall be enabled as shown in Figure 5-2 as an example for 
HyperTerminal. This configuration is available from the Connection Properties => Settings tab => ASCII Setup… button. 

Figure 5-2. Additional HyperTerminal Configuration for Serial Console 

 

Once connection settings and the COM port assigned to the bridge device are specified, type commands in the terminal 
window. Key supported commands are described in Table 5-3, while complete list is available in console 
implementation files: colorSceneRemoteConsole.c, lightConsole.c and bridgeConsole.c. 

Table 5-3. Key Serial Console Commands 

Command Syntax Applies to Device Types Description 

help All Shows supported commands. 

reset All Perform HW reset for the device. Upon reset 
the device will attempt to restore data from 
NVM and apply it instead of starting as factory 
new. 

resetToFN All Resets the device to Factory New state by 
deleting network and application data from 
NVM. 
However this command doesn’t reset the 
outgoing NWK security counter, and hence 
device is able to join its previous network. 

resetToFD All Resets the device to Factory Default state by 
deleting network and application data from 
NVM. 
This command fully resets the outgoing NWK 
security counter and hence device might have 
problems joining to its previous network. 

startNetwork Bridge Initiates scan and join to existing networks. 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

20 

Command Syntax Applies to Device Types Description 

createNetwork <ePanIdHigh> 
<ePanIdLow> <ch> <panId> 
<addr> <updateId> 

Bridge Creates a network with the provided 
parameters. 

sendPermitJoin <permit> Bridge Sends the permit joining ZDP command to all 
routers, permitting joining to the network by 
association permanently (<permit> is greater 
than zero) or permanently forbidding it 
(<permit> is 0). 

startDiscovery Bridge Starts discovery of the light devices. 

touchlink Color Scene Controller Initiates touchlink procedure.  

resetDeviceToFN Color Scene Controller Resets remote device to factory new state. 
Target device shall be in close proximity and 
will be indicating to show that it is selected for 
reset. 

identify <addrMode> <addr> 
<endpoint> 

Bridge, Color Scene Controller Sends the Identify command to the specified 
light node(s). 

onOff <addrMode> <addr> 
<endpoint> <“-on” – turn on; 
“-off” – turn off> 

Bridge, Color Scene Controller Sends On or Off command to the specified 
node(s). 

setBrightness <addrMode> 
<addr> <endpoint> <level> 
<time> 

Bridge, Color Scene Controller Sets brightness level on one or several light 
devices, depending on the address mode 
used. 

stepBrightness <addrMode> 
<addr> <endpoint> <mode> 
<size> <time> 

Bridge, Color Scene Controller Sends the Step Brightness command to the 
specified node(s). 

setColor <addrMode> <addr> 
<endpoint> <hue> <sat> <time> 

Bridge, Color Scene Controller Sets color via hue and saturation on the 
specified light node(s). 

stepSaturation <addrMode> 
<addr> <endpoint> <mode> 
<size> <time> 

Bridge, Color Scene Controller Sends the Step Saturation command to the 
specified node(s). 

addGroup <addrMode> <addr> 
<endpoint> <group> 

Bridge, Color Scene Controller Sends the Add Group command to the 
specified node(s). 

removeGroup <addrMode> <addr> 
<endpoint> <group> 

Bridge, Color Scene Controller Sends the Remove Group command to the 
specified node(s). 

scene <addrMode> <addr> 
<endpoint> <cmd: “-store” or 
“-remove”> <group> <scene> 

Bridge, Color Scene Controller Sends Store Scene or Remove Scene 
command to the specified node(s). 

startOtau Light, Color Scene Controller Start OTAU process if stopped. 

stopOtau Light, Color Scene Controller Stop OTAU process. 

5.6 Light’s Functions 
Light devices in ZLLDemo reference application are implemented following the requirements for corresponding device 
types defined in ZigBee Light Link specification [29]. In order to compile ZLLDemo for a light device 
APP_ZLL_DEVICE_TYPE parameter in application configuration.h file shall be set to one of the following values: 

• APP_DEVICE_TYPE_ON_OFF_LIGHT 
• APP_DEVICE_TYPE_DIMMABLE_LIGHT 
• APP_DEVICE_TYPE_COLOR_LIGHT 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

21 

• APP_DEVICE_TYPE_TEMPERATURE_COLOR_LIGHT 
• APP_DEVICE_TYPE_EXTENDED_COLOR_LIGHT 

That defines functional capabilities of the ZLL light according to ZLL spec. 

On power up or reset a factory new (FN) light performs scanning for existing ZigBee networks (can be controlled by 
APP_SCAN_ON_STARTUP parameter) on primary and secondary ZLL channels. If any open networks are found, the light 
will try to join them using classical ZigBee MAC association mechanism. If such network discovery or joining fails the 
light simply stays in a listening mode on one of the primary channels and is ready to be joined via a touchlink procedure. 

FN light as well as non factory new (NFN) light can be joined into the target network using a touchlink procedure. For 
this the light shall be brought in close proximity (10 - 20cm range) to a controller device and then touchlink procedure 
shall be initiated from the controller (see sections 5.8 and 5.6.2 for description of controller functionalities). 

After the light is joined to a network it can be controlled remotely. On Atmel development boards a ZLLDemo light 
device application will indicate its light status (On/Off, Level, Color, etc.) via on-board LEDs, LCD screen, or just by 
printing text information to the serial interface, depending on the board and configuration. Section 5.6.2 provides details 
on such indications for particular development board. 

Section 5.6.1 explains how a light device can be reset to factory new state. This includes a common way using a 
controller device, as well as mechanisms specific for particular development boards. 

It is also possible to perform firmware Over-the-Air upgrade (OTAU) on light devices. For details, see Section 5.9. 

5.6.1 Reset Light to the Factory New State 
There are two ways to reset a light device to the factory new state: 

1. Remotely, by sending a special command from a controller device (bridge or color scene remote): 
a. Bring the light into close proximity to the color scene controller device. 
b. From the color scene controller device initiate reset of a remote node to factory new state. For example: 

 using a resetDeviceToFN console command 
or 

 if using color scene controller device with 256RFR2 RCB mounted on a Key Remote Control board,  
hold R1, R2, and PWR buttons, altogether, on the color scene controller for three seconds 

c. Observe target light identifying. After that the light will be reset to FN new state. 
2. Locally, using an on-board button: 

a. See Section 5.6.2 for the button functionality description. 

5.6.2 Use of On-board Peripherals 
Table 5-4 summarizes functionality of the board peripherals for a ZLLDemo light device. Additional information on HW 
setup is given in corresponding platform-specific sections as referenced in Section 3.3. 

Table 5-4. Functionality of Board Peripherals for ZLLDemo Light Devices 

Development Board LEDs Functionality Buttons Functionality Indication to Serial Interface(1) 

ATSAMR21-XPRO [34] 
(BSP_SUPPORT set to 
BOARD_SAMR21_XPRO) 

Light status is 
indicated on LED 0 

For reset to factory new -
hold the SW0 button within  
one second after reset is 
released and it must be held 
pressed for atleast 1 second 

Via EDBG USB connection (2). 
Set APP_INTERFACE to 
APP_INTERFACE_USART and 
APP_USART_CHANNEL to 
USART_CHANNEL_1 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

22 

Development Board LEDs Functionality Buttons Functionality Indication to Serial Interface(1) 

256RFR2 RCB on Key Remote 
Control board [16] 
(BSP_SUPPORT set to 
BOARD_RCB_KEY_REMOTE) 

N/A 
For LCD indication 
see Figure 5-3  

For reset to factory new -
hold the PWR button on Key 
Remote pressed when RCB 
is reset via red switch 

Via RS-232 connection on EXT 
header. 
Set APP_INTERFACE to 
APP_INTERFACE_USART and 
APP_USART_CHANNEL to 
USART_CHANNEL_0 

256RFR2 RCB on STB [16] 
(BSP_SUPPORT set to 
BOARD_RCB) 

N/A N/A Via USB connection. 
Set APP_INTERFACE to 
APP_INTERFACE_USBFIFO 

AT256RFR2-XPRO [18] 
(BSP_SUPPORT set to 
BOARD_ATMEGA256RFR2_XPRO) 

Light status is 
indicated on LED 0 

For reset to factory new -
hold the SW0 button pressed 
when XPRO board is reset 

Via DEBUG USB connection (2). 
Set APP_INTERFACE to 
APP_INTERFACE_USART and 
APP_USART_CHANNEL to 
USART_CHANNEL_1 

Standalone 256RFR2 RCB [16] 
(BSP_SUPPORT set to 
BOARD_RCB) 

Light status is 
indicated on LED 
D4 

For reset to factory new, 
hold the black push-button 
pressed when RCB is reset 
via red switch 

N/A 

Notes: (1) – See Section 5.5 for configuration instructions. 
 (2) – Corresponding virtual COM port connection shall be used on PC side. Note that Flow Control shall be 

enabled on the PC when working with XPRO boards. 

Figure 5-3 describes functions of a light’s LCD screen for 256RFR2 RCB mount on a Key Remote Control board. For 
the on-off light only On/Off status is shown. A dimmable light also displays color level. For a color light color information 
as X-Y and hue-saturation is added. A temperature color light allows setting the color via– temperature value is shown 
instead of X-Y color coordinates. Extended color light’s screen shows all these values. 

Figure 5-3. Light’s LCD Screen on a Key Remote Control Board. Parameters shown on the Screen depends on Light 
Device Type 

1   127

11111 22222 32456 127

NFN

Color level (brightess): 0 - 255

On/Off 
Status

Hue (0 – 65535)

Saturation (0 – 255)

X and Y coordinates in the 
color space (0 – 65535)Factory new/Non factory new

 

5.7 Bridge’s Functions 
In ZigBee Light Link the bridge device acts as a gateway between backend (Ethernet, Wi-Fi, 3G, etc.) and ZigBee 
network. In order to compile ZLLDemo for a bridge device APP_ZLL_DEVICE_TYPE parameter in application 
configuration.h file shall be set to APP_DEVICE_TYPE_BRIDGE. 

In the Atmel ZLLDemo reference implementation the bridge is connected to a PC via serial interface. On the PC, the 
SLRemote desktop application should be installed, and configured to use corresponding virtual COM port (details are 
found in Section 5.7.2). Another option is to send commands to the bridge device connected to a PC manually, through 
a terminal program (see Section 5.5). The bridge device also serves as the OTAU server. 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

23 

5.7.1 Network Joining 
There are three ways to add a bridge device to a ZLL network: 

1. Form own network. The bridge device may create its own network with given parameters. This can be 
accomplished by sending the createNetwork command to the bridge from console (see Section 5.5) or by 
using Create network option in the SLRemote GUI as described in Section 5.7.2. 

2. Automatically. On startup, the bridge automatically starts searching for open ZLL networks and tries to join 
them. 

3. Through touchlink with a color scene controller. In this case, bring the color scene controller close to the 
bridge, and initiate touch link procedure from the controller device. Once the touchlink is over, the color scene 
controller and the bridge will communicate using the manufacture-specific Link Info cluster. The color scene 
controller will send a command informing the bridge about the number of lights in the network. On receipt of 
this command, the bridge reads the attributes of the Link Info cluster containing information about the lights. 

Once the bridge gets information about the lights in the network, it passes it to the connected PC, and the user can start 
using the GUI to control the lights. 

5.7.2 Light Discovery and Control 
When bridge and lights are successfully joined to the same network (as described in Section 5.7.1), the bridge shall 
discover the light devices in the network, in particular their network addresses and application endpoint IDs, as well as 
capabilities to be able to control them. 

In the SLRemote GUI this can be accomplished by using Discover Lights button on the toolbar (see Section 5.7.2). 
Detected light devices will appear in the GUI. Click on the bulb icon corresponding to a light and send control 
commands by using the graphical interface from the pop-up menu as shown in Figure 5-4. 

If serial console menu is used the light discovery shall be performed with startDiscovery command entered into 
terminal window. Network addresses and endpoint IDs for detected lights will be printed into the serial console and can 
be used to send light controlling commands as described in Section 5.5. 

5.7.3 SLRemote GUI 
BitCloud SDK includes the SLRemote GUI application for PC for communication with the bridge device connected 
serially to that PC. Through the GUI a user can organize nodes in groups, create scenes, and send commands to 
individual nodes to change brightness level or color, or turn a node on or off. 

Basic usage of the SLRemote application is described below (see SLRemote’s window on Figure 5-4): 
1. Download and install Java® Runtime Environment [13], if not already installed on the PC. 
2. Install the SLRemote application by launching the installation file provided with the SDK and following the 

instructions on the screen. 
3. Launch the SLRemote’s GUI once it is installed. 
4. Connect the bridge device to the PC via serial cable. 
5. In SLRemote, click the Connect button on the toolbar and set connection settings for the bridge (same as 

described in Section 5.5), specifying the COM port corresponding to it. 
6. Associate the bridge device with a network by clicking Network button on the toolbar and then select either: 

a. Create network to make the bridge create a new network. To allow light devices to join it use Permit Join 
button. 
or 

b. Discover network to make the bridge device join an existing ZLL network. 
7. Discover the lights present in the network by pressing Discover lights button on the SLRemote toolbar. 
8. Light devices will appear in the GUI. Click the icon corresponding to a light and send commands by using the 

controls from the pop-up menu as shown on Figure 5-4. 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

24 

Figure 5-4. SLRemote Application’s Main Window and the Context Menu of a Light Device with Controls allowing 
sending Commands to that Light Device 

 

5.8 Color Scene Controller’s Functions 
Color scene controller device in ZLLDemo reference application is implemented according the requirements for 
corresponding device type defined in ZigBee Light Link specification [29]. In order to compile ZLLDemo for a bridge 
device APP_ZLL_DEVICE_TYPE parameter in application configuration.h file shall be set to 
APP_DEVICE_TYPE_COLOR_SCENE_REMOTE. This device type represents a superset of functionalities of all other ZLL 
controller device types. 

In ZLLDemo color scene remote controller device acts as a ZigBee end device and spends most of the time in sleep 
mode waiting for user input in order to send control commands. Such input can be triggered either by using on-board 
buttons on platforms that have them (see Section 5.8.2) or by using text commands to a serial console interface (see 
Section 5.5). 

Color scene controller device can be connected to a network in two ways; using touchlink or using a classical ZigBee 
joining as described in Section 5.8.1. 

It is also possible to perform firmware Over-the-Air Upgrade (OTAU) on color scene remote controller devices. For 
details, see Section 5.9. 

5.8.1 Touchlink / Network Joining 
For touchlink a color scene controller shall be brought close to a target device. Then the user shall initiate the touchlink 
procedure using on-board buttons (see Section 5.8.2). For example by pressing and holding PWR button on a Key 
Remote Control board with RCB256RFR2. Alternatively a touchlink serial console command can be used (see 
Section 5.5).  

After that the touchlink procedure will be performed according to ZigBee Light Link specification [29]. 

Note: If touchlink between controller devices is not performed pairing a new controller device with a light that is 
already in the network will cause the light’s leaving this network and form a new one. 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

25 

To touchlink another color scene remote controller the procedure described above needs to be started simultaneously 
on both devices. Note that one of the controllers must have a factory new status. 

A color scene controller can also be brought to an open ZLL network via classical ZigBee joining mechanism. To 
perform such joining the permit joining shall be enabled for the network (for example from a bridge device as described 
in Section 5.7.1) and then initiate actual joining using on-board buttons (see Section 5.8.2) or nwkAssociation console 
command.  

If a color scene controller is brought to a network using classical ZigBee joining or touchlink with another remote then it 
is not able to control the light right away. It still needs to touchlink the lights in the network to pair to them. 

5.8.2 Use of On-board Peripherals 
Table 5-5 summarizes functionality of the board peripherals for a ZLLDemo light device. Additional information on HW 
setup is given in corresponding platform-specific sections as referenced in Section 3.3. 

Table 5-5. Functionality of Board Peripherals for ZLLDemo Color Scene Controller Device 

Development Board LEDs Functionality Buttons Functionality Control via Serial Interface(1) 

ATSAMR21-XPRO [34] 
(BSP_SUPPORT set to 
BOARD_SAMR21_XPRO) 

N/A For reset to factory new -
hold the SW0 button within  
1 second after reset is 
released and it must be held 
pressed for atleast 1 second 

Via EDBG USB connection (2). 
Set APP_INTERFACE to 
APP_INTERFACE_USART and 
APP_USART_CHANNEL to 
USART_CHANNEL_1 

256RFR2 RCB on Key Remote 
Control board [16] 
(BSP_SUPPORT set to 
BOARD_RCB_KEY_REMOTE) 

N/A 
For LCD indication 
see Section 5.8.2.2 

See Section 5.8.2.3. Via RS-232 connection on EXT 
header. 
Set APP_INTERFACE to 
APP_INTERFACE_USART and 
APP_USART_CHANNEL to 
USART_CHANNEL_0 

256RFR2 RCB on STB [16] 
(BSP_SUPPORT set to 
BOARD_RCB) 

N/A N/A Via USB connection. 
Set APP_INTERFACE to 
APP_INTERFACE_USBFIFO 

AT256RFR2-XPRO [18] 
(BSP_SUPPORT set to 
BOARD_ATMEGA256RFR2_XPRO) 

N/A For reset to factory new -
hold the SW0 button pressed 
when XPRO board is reset 

Via DEBUG USB connection (2). 
Set APP_INTERFACE to 
APP_INTERFACE_USART and 
APP_USART_CHANNEL to 
USART_CHANNEL_1 

Notes: (1) – See Section 5.5 for configuration instructions. 
 (2) – Corresponding virtual COM port connection shall be used on PC side. Note that Flow Control shall be 

enabled on the PC when working with XPRO boards. 

5.8.2.2 LCD Screen Output on Key Remote Control 
When a Key Remote Control board is used for the color scene controller the application uses the LCD screen to output 
device’s information: 

• In the first line, network information is printed: FN and the active channel if the device is factory new, and 
device’s type (end device or router, short address, working channel, and network PANID) otherwise 

• In the second line, current application state is printed. In the idle state, it is ZLL Remote 
• In the third line, information about the currently selected target is printed. That is, to which group or a single 

device a command will be sent 

An example of LCD output with description of its components is shown in Figure 5-5. 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

26 

Figure 5-5. Color Scene Controller’s LCD Screen on a Key Remote Control Board 

ed0012 c20 p0034

Scanning...

Tgt Group: 0001

Type: end 
device or router

Current state

Target’s short addressWhat is selected: a 
group or a single 
device

Short address

Working channel

Network PANID

 

5.8.2.3 Button Functionality on Key Remote Board 
Table 5-6 explains how to use buttons on a Key Remote Board to perform most common functionalities such as 
touchlink, reset to factory new, etc. Figure 5-6 depicts the key remote board keyboard and all commands that can be 
sent with the buttons from the color scene controller. 

Table 5-6. Buttons for Executing Most Common ZLL Commands 

Button(s) Effect 

PWR Press and hold for three seconds in close proximity to the target device to perform touch link 

PWR & R+ Press and hold for three seconds to perform classical ZigBee scanning 

PWR & R- Press and hold for three seconds to reset device to factory new state 

PWR & R+ & R- Press and hold for three seconds in close proximity to the target device to reset it to factory new state 

L+/L- Light’s on/off 

Up/Down Increase/decrease light level 

Left/Right Increase/decrease saturation 

Colored buttons 

Set the corresponding color using the following values: 
Red:   hue = 60000 or x = 40000, y = 20000 
Green: hue = 30000 or x = 10000, y = 40000 
Yellow: hue = 15000 or x = 30000, y = 30000 
Blue:  hue = 45000 or x = 10000, y = 10000 

SEL Select the next bound device and requests it to identify itself. This allows sending unicast commands to 
a single device. Groupcast mode will be entered automatically after five seconds of inactivity. 

1/2/3 Store Scene if pressed for more than three seconds and Recall scene if pressed for less than three 
seconds 

7/8/9 Set minimum/middle/maximum light level 

The SEL button may be used to select a light. When this button is pressed and released, the next light becomes 
selected. This means that all commands initiated by the user (via button presses) will be sent to this light in a unicast 
manner. If no buttons are pressed for five seconds the remote will switch back to groupcast mode. So if unicast control 
for a particular light is needed for extended amount of time the intervals between consecutive button presses shall be 
not less than five seconds. 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

27 

To reset a color scene controller device to the factory new state press the PWR button while holding the R- button and 
wait for three seconds. The LED located at the bottom of the RCB board will blink single time to indicate that the device 
has been reset to the factory new state. 

Each button may be used to send up to four commands. What command is send by pressing a button depends on 
whether buttons R+ and R- are also pressed or not as shown in Table 5-7. 

Table 5-7. Alternating a Command by holding R+ and R- Buttons 

Number of Command R+ and R- Buttons State 

First command Both are not pressed 

Second command R+ is pressed, R- is not pressed 

Third command R+ is not pressed, R- is pressed 

Fourth command Both are pressed 

For example, to send a Toggle command press the L+ button while holding both the R+ and R- buttons pressed. 

For buttons 1, 2, and 3: if a button is pressed for more than three seconds (when both R+ and R- are not pressed) a 
Store Scene command is sent; if a button is pressed for less than three seconds a Recall Scene command is sent.   



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

28 

Figure 5-6. Color Scene Controller’s Keyboard Scheme 
PWR         

Touch Link (hold) 
ZigBee Scanning (hold) 
Self reset to FN (hold) 
Reset light to FN (hold) 

        

Red  Green  Yellow  Blue  SEL 
E Move To Hue 

 
Move To Hue 

Move To Color 
 

 E Move To Hue 
Move To Hue 

Move To Color 
 

 E Move To Hue 
 

Move To Hue 
Move To Color 

 

 E Move To Hue 
 

Move To Hue 
Move To Color 

 

 Select Next. Dev. 
& Identify 

Select Prev. Dev. 
Identify 

Trigger Effect 
  1  2  3   
  Store Scene(hold) 

/ Recall Scene 
Add Scene 

E Add Scene 
Remove Scene 

 Store Scene (hold) 
/ Recall Scene 

Add Scene 
E Add Scene 

Remove Scene 

 Store Scene (hold) 
/ Recall Scene 

Add Scene 
E Add Scene 

Remove Scene 

  

  4  5  6   
  Change channel 

Read ZCL version 
 
 

 Trigger Breathe 
Trigger Finish 
Trigger Stop 

 

 MoveCTemprUp 
MoveCTemprDown 
StepCTemprUp 

StepCTemprDown 

  

  7  8  9   
  MoveToLevel 

MoveToLevel (W) 
MoveToSat 

--- 

 MoveToLevel 
MoveToLevel (W) 

MoveToSat 
--- 

 MoveToLevel 
MoveToLevel (W) 

MoveToSat 
--- 

  

L+    0    R+ 
On 

On with Recall Scene 
On with Timed Off 

Toggle 

   Endpoint Info 
Permit Join True 
Permit Join False 

 

   

ALT1 

L-        R- 
Off 

Off with Effect 
 
 

    
 
 

Up 

   

ALT2 

   Step Level Up 
Move Level Up 

Step Lev. Up (W) 
Move Level Up (W) 

   

  Left  OK  Right   
 Step Saturation Down 

Move Saturation 
Down 

E Step Hue Down 
E Move Hue Down 

 Stop Level 
Stop Mov Step 

 
E MovHueStop 

 Step Saturation Up 
Move Saturation Up 

E StepHueUp 
E Move Hue Up  

 

    Down     
 
E – Enhanced 
(hold) – Hold longer 
than 3 sec. 
(W) – With On/Off 

  Step Level Down 
Move Level Down 

Step Lev. Down (W) 
Move Level Down (W) 

   



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

29 

5.9 Over-the-Air Firmware Update 
Nodes in a ZLL network can be updated with new firmware over the air. For this purpose, standard Over-the-Air 
Upgrade (OTAU) cluster is used.  

This section gives an overview on how to configure ZLLDemo application with OTA support and how to perform OTA on 
remote devices. For more details on OTAU, refer to [24]. 

In ZLLDemo a Bridge device acts as OTAU server that provides new firmware images to other devices in the network 
that act as OTAU clients. SLRemote GUI application (see Section 5.7.2) running on the PC provides an example of the 
user interface for controlling OTAU process. Note however that SLRemote application is meant only for demo purposes. 

To demonstrate OTAU procedure the ZLLDemo reference application shall be compiled with application (see Table 5-2) 
and ConfigServer stack parameters properly set in the application configuration.h file. 

5.9.1 OTAU Configuration for ZLL Bridge 
In ZLLDemo a Bridge device acts as OTAU server. 

First of all, the APP_USE_OTAU flag shall be set to 1 to enable use of OTAU cluster and corresponding services (image 
storage driver, etc.). If OTAU is enabled, the bridge is by default configured to act as an OTAU server with #define 
OTAU_SERVER enabled and #define OTAU_CLIENT disabled. 

Serial console and logging need to be enabled by setting APP_DEVICE_EVENTS_LOGGING and APP_ENABLE_CONSOLE 
parameters to 1. Additionally APP_USE_ISD_CONSOLE_TUNNELING shall be set to 1 to combine serial console support 
with simultaneous operation of Image Storage Driver (ISD) on the same connection to the PC. 

For more details on OTAU configuration in application and stack, see [24]. 

5.9.2 OTAU Configuration for ZLL Light and Controller 
At least one light or a remote controller device shall be compiled as an OTAU client. 

First of all, the APP_USE_OTAU flag shall be set to 1 to enable use of OTAU cluster and corresponding services (flash 
driver, etc.). If OTAU is enabled, a non-bridge device is by default configured to act as an OTAU client with #define 
OTAU_CLIENT enabled and #define OTAU_SERVER disabled. 

If real external flash is used on the board then, in order to be able to switch to downloaded firmware, the device shall be 
programmed with an OTA bootloader [12] configured to support corresponding flash memory. If the application is 
configured to use fake flash memory (APP_USE_FAKE_OFD_DRIVER set to 1) the presence of OTA bootloader is optional 
as firmware image won’t be stored on external memory anyway. 

HW configuration of external flash memory (used to store application images during OTAU) is described in platform-
specific appendices: B.1.4. 

For more details on OTAU configuration in application and stack, see [24]. 

5.9.3 OTAU Procedure 
Bridge device shall be first connected via a serial interface to a PC. The user should launch the SLRemote application 
on the PC and bring Bridge as well as other ZLL devices into the same network as described in Section 5.7.2. After 
selecting the Update firmware item on the toolbar the dialog window will appear displaying information on devices in the 
network with OTAU support. An example is shown in Figure 5-7. 

 

 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

30 

Figure 5-7. Selecting Target Device for OTAU 

 
Among the displayed nodes select the target device which needs to be updated and press the Update button next to it. 
Another dialog window will open asking to provide the path to the folder with new firmware image either in .srec or 
.zigbee format as shown on Figure 5-8. 

Figure 5-8. Selecting Target File for OTAU 

 
Among listed files select the one to be uploaded to the target device. 

Note: Parameter values for the .srec file (Manufacturer ID, Image Type, App version, and build, etc.) can be 
modified via the GUI. If .srec file is selected for the upload the SLRemote will automatically apply them. 
Alternatively selected .srec file can also be updated to .zigbee format using Convert button. 

To start the OTAU process, press the Upload button and the view will return to the dialog shown in Figure 5-7 with 
upload progress shown in the Update column. After file is successfully uploaded to the device the Update column for 
this device will turn into Switch button as shown on Figure 5-9. By pressing it the bridge will send a special ZCL 
command to the device instructing it to switch to the uploaded firmware. 

Figure 5-9. Switching to Uploaded Firmware on the Target Device 

 
  



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

31 

5.10 Interoperability with ZHA Networks 
ZLL devices are interoperable with ZigBee Home Automation (ZHA) networks. 

If the APP_SCAN_ON_STARTUP parameter is set to 1 in the configuration.h file on a light then, on startup, it will scan 
channels and try to join discovered networks. All devices hold HA network key and link keys, which are required to be 
authenticated in an HA network. 

To make a color scene controller join an HA network, press PWR and R+ buttons on the Key Remote Control board and 
hold for more than three seconds. Once both a color scene controller and a light join an HA network, perform touchlink 
between them and use the color scene controller to control the light. Commands can also be sent to the light from the 
HA dimmer switch device. 

5.11 Running Certification Test Scripts 
BitCloud SDK includes certification test scripts written in Python, which can be used to test the application against 
certification scenarios. Certification scripts are executed through the PC application WSNRunner also provided with the 
SDK. To use the test scripts the user shall first install the WSNRunner application (Section 5.11.2) and then run 
certification scripts with its help from the command line (Section 5.11.3). 

5.11.1 Prerequisites 
For execution of certification test scripts the demo application must be compiled with the 
APP_ENABLE_CERTIFICATION_EXTENSION parameter set to 1 in the configuration.h file. Other prerequisites are: 

• Types of ZLL devices: extended color lights (up to six devices) and remote controls (up to two devices). For 
the first one, set APP_ZLL_DEVICE_TYPE to APP_DEVICE_TYPE_EXTENDED_COLOR_LIGHT. For the second, 
set APP_ZLL_DEVICE_TYPE to APP_DEVICE_TYPE_COLOR_SCENE_REMOTE. 

• Boards: RCB with Sensor Terminal Board, or Key Remote Control Board 
• For testing interoperability with Home Automation devices, one HA device of each of the following types are 

required: dimmer switch, dimmable light, and occupancy sensor. For information on obtaining firmware for 
these devices, contact Atmel support. 

5.11.2 WSNRunner Setup 
To install WSNRunner follow the instructions below: 

1. Download and install Java Runtime Environment [13], if not already installed on the PC. 
2. Download and install Jython [14]. 
3. Launch WSNRunnerSetup.exe located in the .\Evaluation Tools\ folder of the BitCloud SDK, and follow 

the installation instructions. 
a. When prompted for Jython path, specify the folder where Jython was installed in Step 2. 
b. When prompted for Commands path, specify any path (not used by ZLL scripts). 
c. When prompted for Scripts path, specify any path (not used by ZLL scripts). 

4. Add the path to the installed WSNRunner application to the system PATH environment variable. For that, go to 
Control Panel > System > Advanced > Environment Variables, select Path from the System 
variables list, click Edit, and append “;” followed by the actual path to the WSNRunner directory (by 
default C:\Program Files\Atmel\WSNRunner), then click OK. 

5. Go to the C:\Documents and Settings\<account name>\.config\ directory. Open the 
wsnrunner.properties file in any text editor. 

6. In this file, you can: 
a. See and correct paths that were specified during installation (be careful; there should be no spaces at the 

end of the path strings). 
b. Add variables to be passed to the scripts; channel mask, for instance. 
c. Specify COM ports to be used for communication with devices. 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

32 

Note: When installing WSNRunner environment for the first time, only paths will be present in this file. The 
chmask (for channel mask) and nodes variables need to be added manually. It is recommended that you 
copy wsnrunner.properties-example from the installation directory to C:\Documents and 
Settings\<account name>\.config\wsnrunner.properties. In case the WSNRunner application is 
reinstalled, the properties file is saved and is not replaced. 

5.11.3 Run a Script from the Command Line 
The WSNRunner application includes both the GUI version and the command line version. For execution of test scripts 
the command line version is used. 

Once the WSNRunner is installed, to run a script, follow the instructions: 

1. Configure the nodes parameter in the wsnrunner.properties file by setting this parameter with a comma-
separating list of connection settings for all devices. For example, to be able to communicate with devices 
connected to the COM1 and the COM3 port, add the line: 

nodes = COM:COM2, COM:COM3 

2. Open a test script in a text editor and modify the lines starting with @connection by adding, after a comma, 
IDX<N> pointing to the corresponding element with the index <N> in the nodes list (starting from 0), for 
example: 

@connection r1 = router, IDX0 

It is also possible to specify connection settings directly in the test script, for example: 

@connection r1 = router, COM:COM2 

Note that router lines should correspond to light devices, and enddevice lines to color scene controllers. 
3. In the command line execute: 

runner.exe <script_name>.py 

or, to redirect the output and error log to the 1.txt file (choose any name), 

runner.exe <script_name>.py >1.txt 2>&1 

WSNRunner will load the wsnrunner.properties file and, using connection setting specified in this file, will execute 
the test script. Information about sent commands and received responses will be outputted to the console window or 
redirected to the specified files, as described in Step 3. 

  



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

33 

6. ZigBee Home Automation Reference Application 
HADevice is a reference implementation of the ZigBee Home Automation profile [8]. It contains the following HA device 
types: 

• Combined interface 
• Dimmer switch 
• Dimmable light 
• Multi-sensor device that can combine following sensors types: 

 Occupancy sensor 
 Temperature sensor 
 Light sensor 
 Humidity sensor 

• Thermostat 
• IAS ACE 

Other device types can be also implemented as described in BitCloud Developer’s Guide [4]. 

To compile the application for a specific device type, the corresponding APP_DEVICE_TYPE_<name> parameter (see 
Section 6.3.1) must be enabled in the configuration.h file located in the application’s root directory (see Table 3-1). 

Particular sensor functionality for the multi-sensor device can be selected using APP_SENSOR_TYPE_<sensorType> 
defines (e.g. APP_SENSOR_TYPE_OCCUPANCY_SENSOR, APP_SENSOR_TYPE_TEMPERATURE_SENSOR). Note that several 
sensor functionalities can be selected. 

The combined interface device serves as the network coordinator and the network trust center. On startup, the 
combined interface forms a network and other devices try to find an open HA network to join. 

The user should send commands from a terminal emulator program (like HyperTerminal or RealTerm) on a PC 
connected to the devices via the serial interface (see Section 6.1 for details on starting of the application and serial 
connection settings). 

6.1 Launching the Demo 
To start the application, follow these instructions: 

1. Assemble devices as instructed in Section 3.3. 
2. Program devices with firmware images. The pre-built images are located in the \Evaluation 

Tools\HADevice directory. 

Note: Prebuilt firmware images are built for 8MHz frequency. 

Note: Before programming, make sure the fuse bits are installed correctly (see Section B.3.1). 
3. To send commands to a device and observe the device’s output, connect the device to a PC; launch a terminal 

emulator (for example, RealTerm or HyperTerminal) on the PC, and point the terminal emulator to the COM 
port corresponding to the device. Use the following setting for the serial connection: 
BAUD RATE:  38400 

PARITY:  None 

DATA BITS:  8 

STOP BITS:  1 

FLOW CONTROL: None (Hardware for the Xplained-PRO boards) 
The console commands can be sent following their syntax as described in Section 6.4. 

4. Power up combined interface device. 
5. Start EZ-Mode on the combined interface device using startEZMode command in serial console. This will 

open network for joining of new devices.The CI will act as both Initiator and Target. 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

34 

6. Power up another HA device and wait until it joins the network. 
7. Perform device pairing. For this EZ-Mode shall be initiated on both devices within three minutes interval (using 

startEZMode command in serial console). After three minutes the EZ-mode expires and pairing won’t be 
done. Based on the supported clusters (see Section 6.2) following pairings are possible by default in 
HADevice application: 
• a dimmable light to the combined interface; 
• an occupancy sensor to the combined interface; 
• a dimmer switch to a dimmable light; 
• a thermostat to the Combined Interface; 
• an ACE device to the Combined Interface; 

8. After devices are paired console commands can be used to communicate between them (see Section 6.4). 

For demonstration of Over-the-Air upgrade functionality, see Section Table 6-6. 

6.2 Supported Clusters 
Table 6-1 lists server and client clusters from ZigBee Cluster Library supported by the HA reference application for 
different device types. Other clusters can be added as described in BitCloud Developer’s Guide [4]. 

Table 6-1. Clusters Supported by HA Devices 

Device Type Server Clusters Client Clusters 

Combined interface Basic 
Identify 
Time 
IAS ACE 
OTAU (if enabled) 

Basic 
Identify 
OnOff 
Level Control 
Groups 
Scenes 
Occupancy Sensing 
Temperature Measurement 
Relative Humidity Measurement 
Illuminance Measurement 
Thermostat 
Thermostat UI 
Diagnostics 
Alarms 
Power 
Fan Control 
IAS Zone 

Dimmer switch Basic 
Identify 

Identify 
OnOff 
Level Control 
OTAU (if enabled) 

Dimmable light Basic 
Identify 
OnOff 
Level Control 
Groups 
Scenes 

OTAU (if enabled) 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

35 

Device Type Server Clusters Client Clusters 

Multi-sensor device Basic 
Identify 
Occupancy Sensing (if enabled) 
Temperature Measurement (if enabled) 
Relative Humidity Measurement (if enabled) 
Illuminance Measurement (if enabled) 

Identify 
OTAU (if enabled) 

Thermostat Basic 
Identify 
Thermostat 
ThermostatUiConf 
OccupancySensing 
Diagnostics 
Alarms 
HumidityMeasurement 
Fan Control 
Groups 
Scenes 
TemperatureMeasurement 

Occupancy Sensing 
Time 
Humidity measurement 
Temperature measurement 
OTAU (if enabled) 

IAS ACE Basic 
Identify 
IAS Zone 
Diagnostics 

Identify 
IAS ACE 
OTAU (if enabled) 

6.3 Source Code Organization 
Application projects and source code are located in the \Applications\HADevice folder inside the SDK. The source 
code is divided into the common part and device-specific code. The entry main() function is located in the 
zclDevice.c file while device-specific initialization and endpoint registration for communication between clusters is 
registered in the device-specific .c file located in the device folder. 

Supported clusters for each device are configured in <deviceName>Clusters.c files. A separate source code file is 
provided for each cluster supported by a specific device. Such file initializes structures needed for the cluster and 
implements callback functions that are called to indicate commands’ responses. For example, see the 
dlIdentifyCluster.c file, which initializes the identify cluster for the dimmable light device. 

The application’s configuration is set in the configuration.h file located in the \Applications\HADevice folder. 
Serial interface used by the device to send information to a PC is also configured in this file. Additionally, in the 
application’s source code UART is configured in the \Applications\HADevice\common\src\uartManager.c file. 

6.3.1 Configuration 
The HA reference application’s configuration is set in the configuration.h file located in the root application’s 
directory and the appConsts.h file located in the application’s \common\include\ directory. Key parameters are listed 
in 0. Once any of these parameters is changed, the application must be rebuilt and the device’s firmware updated for 
changes to take effect. 

 

 

 
  



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

36 

Table 6-2. Key Configuration Parameters of the HA Reference Application 

Parameter Name Description 

APP_DEVICE_TYPE_<deviceType> Specifies the device type for which a reference application shall be compiled. 
COMBINED_INTERFACE, DIMMABLE_LIGHT, DIMMABLE_SWITCH, THERMOSTAT,  
IAS_ACE or MULTI_SENSOR shall be put in place of <deviceType> to define 
the device type. 

BSP_SUPPORT Specifies the board that will be used by the application. 
On-board peripherals such as buttons, LEDs, LCD, MAC address reading, etc. will 
be configured and compiled according to the made selection. 
User can extend BSP options to support its custom board. 
BOARD_FAKE option can be used for testing network communication as it 
substitutes BSP API with stub functions. 

APP_ENABLE_CONSOLE Specifies whether or not serial console commands are supported in the 
application. If set to 1 then reception of serial commands is enabled on defined 
APP_INTERFACE. Also in such case sleep on end devices is automatically 
disabled. 

APP_DEVICE_EVENTS_LOGGING Configures events logging. If set to 1 then application will print information on 
application’s events to serial port defined via APP_INTERFACE. 

APP_DEVICE_TYPE The parameter determines the type of ZigBee device for the reference application 
(for example, coordinator, router, end device). Defined in appConsts.h. 

APP_INTERFACE Configures the serial interface used to connect the device to a PC. Available 
options depend on the platform and are listed in the configuration.h file. 
Values are of APP_INTERFACE_<name> format. For some interfaces (UART) 
additional parameters should be set such as APP_USART_CHANNEL. 

APP_USE_OTAU Set to 1 to enable OTAU support in the application and set to 0 to disable it 
OTAU_CLIENT  
OTAU_SERVER 

Defines whether device acts as OTAU client (device that will be upgraded) or 
OTAU server (device that will provide the new firmware). Only one role shall be 
selected. By default combined interface device acts as OTAU server and other 
devices as OTAU clients. Applicable only if APP_USE_OTAU is set to 1. 

APP_USE_ISD_CONSOLE_TUNNELING Support simultaneous usage of the same serial interface for passing (1) 
commands from console and (2) commands exchanged by the ISD driver and the 
bootloader PC tool. This parameter is valid for the OTAU server (the bridge 
device). 

APP_USE_FAKE_OFD_DRIVER Enables fake implementation of the OFD driver on OTAU client devices. This may 
be useful for testing OTAU on boards without external flash memory. 

APP_SUPPORT_OTAU_PAGE_REQUEST Configures use of OTAU image page request feature on OTA client devices (refer 
to [24] for details). 

EXTERNAL_MEMORY Specifies the type of external memory (where the new firmware image will be 
stored). 

APP_ZAPPSI_INTERFACE Defines primary serial interface type to be used by ZAppSI (for example 
APP_INTERFACE_USART). 

APP_ZAPPSI_MEDIUM_CHANNEL Defines particular channel of the serial interface used by ZAppSI (for example 
USART_CHANNEL_1). 

APP_FRAGMENTATION If set to 1 then stack parameters are automatically configured to support APS-level 
fragmentation. 

APP_ZONE_TABLE_SIZE Enable and define the size of the Zone Table used as part of CI ( IAS CIE device 
functionality). By default the zone table size is defined as 3. 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

37 

6.4 Serial Console Commands 
Console commands are sent over a serial interface from a terminal program on a PC to a node connected to that PC. 
Table 6-3 presents console commands supported by all HA device types. 

Table 6-3. Console Commands Supported by all Device Types 

Command Syntax Description 

help Displays help instructions. 

reset Reset the device. Network and application parameters will be restored from non-
volatile memory upon reset. 

startEZMode Start ezMode depending whether target or initiator. Device will broadcast ZDO 
Permit Join command to open the network for joining, if it can act as a target will 
set itself into identify mode and if able to act as initiator will broadcast ZCL 
identifyQuery command to find the peer node. Once peer node is found device will 
perform cluster discovery and binding to target clusters. 

resetToFN Reset to factory new settings; data saved in the non-volatile memory is deleted, 
and the device restarts with compile-time settings. 

getDeviceType Request for device type. Returns following string: 
"DeviceType = %d\r\n", with %d being 0x02 for HA coordinator, 0x03 for HA 
router and 0x04 for HA end device. 

powerOff Emulate powers off of the device by disabling RF. 

setPermitJoin <dur> Sets Permit Join to a given duration in seconds. 

restartNwk <channel> Restarts network on a given channel. 

 

Table 6-4 lists commands supported only by combined interface device. Commands that result in over the air 
transmissions can be sent either as unicast frames, to specific devices, to bound devices. 

Table 6-4. Additional Serial Console Commands Supported by the Combined Interface Device 

Command Syntax Description 

setEzModeType <type> Sets EZ-Mode type: 0 - target, 1 - initiator 

EzModeInvoke <addrMode> <addr> <ep> <action> Send EZ-Mode Invoke command 

readAttribute <addrMode> <addr> <ep> 
<clusterId> <attrId> 

Read value of specified attribute on specified cluster from 
remote device 

writeAttribute <addrMode> <addr> <ep> 
<clusterId> <attrId> <type> <attrValue> 
<attrSize> 

Send Write Attribute command for specified attribute and 
cluster 

updateCommissioningState <addrMode> <addr> 
<ep> <action> <mask> 

Send Update Commissioning State command 

readBasicAttr <addrMode> <addr> <ep> <attrId> Read a specified Basic cluster’s attribute from a specified 
destination 

writeBasicAttr <addrMode> <addr> <ep> 
<attrId> <type> <attrValue> <attrSize> 

Write a Basic cluster’s attribute with the specified attribute 
ID, type, value, and size 

identify <addrMode> <addr> <ep> 
<identifyTime> 

Send the Identify command 

identifyQuery <addrMode> <addr> <ep> Send the Identify Query command 

onOff <addrMode> <addr> <ep> <“-on”/“-off”> Turn the specified light device(s) on or off 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

38 

Command Syntax Description 

moveToLevel <addrMode> <addr> <ep> <level> 
<transitionTime> <onOff> 

Send the Move To Level (with On/Off) command 

move <addrMode> <addr> <ep> <rate> <onOff> Send Move (with On/Off) command 

step <addrMode> <addr> <ep> <mode> <stepSize> 
<transitionTime> <onOff> 

Send the Step (with On/Off) command 

stop <addrMode> <addr> <ep> <onOff> Send the Stop (with On/Off) command 

addGroup <addrMode> <addr> <ep> <groupId> Send the Add Group command 

viewGroup <addrMode> <addr> <ep> <groupId> Send the View Group command 

getGroupMembership <addrMode> <addr> <ep> 
<count> <groupId1> <groupId2> <groupId3> 
<groupId4> <groupId5> 

Send the Get Group Membership command. <count> 
specifies how many group IDs following it should be 
considered, but five values must be provided as group IDs 
always. 

removeGroup <addrMode> <addr> <ep> <groupId> Send the Remove Group command 

removeAllGroups <addrMode> <addr> <ep> Send the Remove All Groups command 

addGroupIfIdentifying <addrMode> <addr> <ep> 
<groupId> 

Send the Add Group If Identifying command 

addScene <addrMode> <addr> <ep> <groupId> 
<sceneId> <transitionTime> <onOff> <level> 

Send the Add Scene command 

viewScene <addrMode> <addr> <ep> <groupId> 
<sceneId> 

Send the View Scene command 

removeScene <addrMode> <addr> <ep> <groupId> 
<sceneId> 

Send the Remove Scene command 

removeAllScenes <addrMode> <addr> <ep> 
<groupId> 

Send the Remove All Scenes command 

storeScene <addrMode> <addr> <ep> <groupId> 
<sceneId> 

Send the Store Scene command 

recallScene <addrMode> <addr> <ep> <groupId> 
<sceneId> 

Send the Recall Scene command 

getSceneMembership <addrMode> <addr> <ep> 
<groupId> 

Send the Get Scene Membership command 

configureOsReporting <addrMode> <addr> <ep> 
<min> <max> 

Configure reporting of the occupancy sensor with <min> and 
<max> values 

getDeviceType Lists the type of the device type configured 

setPermitJoin <duration> Duration for the Permit join when the device is in EzMode 

thermSetPointChange <addrMode> <addr> <ep> 
<setPtmode> <amount> 

Sends thermostat Set Point Change Command along with 
the mode and amount 

setUTCTime <dd:mm:yr:hr:min:sec> Sets the UTC time 

readTime Reads the current time 

setTimeZoneAndDST <timeZone> <dstStart> 
<dstEnd> <dstShift> 

Sets  time zone and DST 

setTimeStatus <timeZone> <dstStart> <dstEnd> 
<dstShift> 

Sets the time status of the device 

resetAlarm <addrMode > <addr> <ep> 
<ClusterId> <alarmCode> 

Resets the alarm with its code 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

39 

Command Syntax Description 

alarmCmd <addrMode > <addr> <ep>  

< resetAllAlarm/getAlarm/resetAlarmLog> 
Alarm Command which could be 
resetAllAlarm/getAlarm/resetAlarmLog 

ACEGetPanelStatusChangedCommand <addrMode > 
<addr> <ep> <panel_status> 
<seconds_remaining> <audible_noti> 
<alarmstatus> 

Sends Panel Status Changed Command to the Ace device 
with its status and seonds remaining for the change with 
actions to be taken w.r.t alarmstatus and its audible 
notification 

ACEZoneStatusChangedCommand <addrMode > 
<addr> <ep> <zoneId> <zone_status> <audible> 
<zone_label> 

Sends Zone status Changed command to the Ace device 
with its status along with audible details and zone label 

ZoneInitiateNormalOperatingModeCommand 
<addrMode > <addr> <ep> 

Sends to initiate Normal Operating mode at the Ace device 

ZoneInitiateTestModeCommand <addrMode > 
<addr> <ep> <Test_Mode_Duration> 
<Current_Zone_Sensitivity Level> 

Sends to initiate Test operating Mode at the Ace device with 
its dutaion for the same with its current zone sensitivity level 

 

Table 6-5. Additional Serial Console Commands Supported by the Dimmer Switch Device 

Command Syntax Description 
onOff <addrMode> <addr> <ep> <“-on”/“-off”> Turn the specified light device(s) on or off 

moveToLevel <addrMode> <addr> <ep> <level> 
<transitionTime> <onOff> 

Send the Move To Level (with On/Off) command 

move <addrMode> <addr> <ep> <rate> <onOff> Send Move (with On/Off) command 

step <addrMode> <addr> <ep> <mode> <stepSize> 
<transitionTime> <onOff> 

Send Step (with On/Off) command 

stop <addrMode> <addrMode> <addr> <ep> 
<onOff> 

Send Stop (with On/Off) command 

Table 6-6. Additional Serial Console Commands Supported by the Thermostat Device 

Command Syntax Description 
setOccupancy <0- UnOccupied / 1- Occupied> Sets the Occupancy state either to Occupied / UnOccupied 

clusterAttrInitDefault <ClusterID> Initializes all attributes to default values 

setOccupancyState <state> Sets the Occupancy state wither to Occupied or UnOccupied 

setOccupancySensorType <SensorType> Sets the Occupancy Sensor Type 

triggerAlarm <clusterId> <alarmCode> 
<Raise/Clear> 

Triggers Alarm State either to Raise /Clear with the 
AlarmCode 

setAlarmMask <clusterId> <alarmMask> Sets the AlarmMask 

readAttribute <addrMode> <addr> <ep> 
<clusterId> <attrId> 

Read value of specified attribute on specified cluster from 
remote device 

writeAttribute <addrMode> <addr> <ep> 
<clusterId> <attrId> <type> <attrValue> 
<attrSize> 

Send Write Attribute command for specified attribute and 
cluster 

 

 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

40 

Table 6-7. Additional Serial Console Commands Supported by the ACE Device 

Command syntax Description 
IASACEArmCommand <addrMode> <addr> <ep> 
<ArmMode> <Arm/Code> <ZoneId> 

Sends IAS ACE Arm command to the CI (CIE) along with 
Arm mode with its code to the zoneId 

IASACEBypassCommand <addrMode> <addr> <ep> 
<zone_numbers> <zone_id1> <zone_id2> 
<zone_id3> <arm_code_code> 

Sends IAS ACE Bypass command with thte list of zoneIds 
along with the code to the CI (CIE) 

IASACEEmergencyCommand <addrMode> <addr> <ep>   Sends IAS ACE Emergency command to the CI (CIE) 

IASACEFireCommand <addrMode> <addr> <ep>   Sends IAS ACE Fire command to the CI (CIE) 

IASACEPanicCommand <addrMode> <addr> <ep>   Sends IAS ACE Panic command to the CI (CIE) 

IASACEGetZoneIdMapCommand <addrMode> <addr> 
<ep>    

Sends IAS ACE GetZoneIdMap command to the CI (CIE) 

IASACEGetZoneIdInformationCommand <addrMode> 
<addr> <ep> <zone_id> 

Sends IAS ACE GetZoneIdInformation Command to get the 
complete information of the zoneId 

IASACEGetPanelStatusCommand <addrMode> <addr> 
<ep> 

Sends IAS ACE GetPanel Status Command to the CI (CIE) 
to get the Panel’s status 

IASACEGetZoneStatusCommand <addrMode> <addr> 
<ep> <starting_zone_id> <max_number_zoneids> 
<zonestatus_maskflag> <zonestatus_mask>  

Sends IAS ACE GeZone Status Command to the CI (CIE) to 
get the Zone Status. The Command would list the starting 
zoneId with the maximum number to read from there. 

ZoneEnrollReqCmd <addrMode> <addr> <ep> 
<zonetype> <manuf_code> 

Sends IAS Zone Enroll Request Command to the CI (CIE) as 
part of Zone Enrollment. 

ZoneStatusChangeNotifiCmd <addrMode> <addr> 
<ep> <zonestatus> <ext_status> 

Sends IAS Zone StatusChange, a notification to the CI (CIE) 

ZoneStatusChange <Device_Spec_Bits> To change the internal zone status to trigger a change 
notification to the CI (CIE) 

GetByPassZoneList <addrMode> <addr> <ep> Sends IAS ACE GetByPassZone list which were already 
bypassed and part of the bypass table 

6.5 Over-the-Air Firmware Update 
Nodes in a ZHA network can be updated with new firmware over the air. For this purpose, standard Over-the-Air 
Upgrade (OTAU) cluster is used.  

This section gives an overview on how to configure HADevice application with OTA support and how to perform OTA on 
remote devices. For more details on OTAU refer to [24]. 

In HADevice application Combined Interface device acts as OTAU server that provides new firmware images to other 
devices in the network. PC Bootloader GUI application [12] provides an example of the user interface for controlling 
OTAU process. Note however that this GUI application is meant only for demo purposes. 

To demonstrate OTAU procedure the HADevice reference application shall be compiled with application (see 0) and 
ConfigServer stack parameters properly set in the application configuration.h file. 

6.5.1 OTAU Server Configuration 
In HADevice application Combined Interface device acts as OTAU server. 

First of all, the APP_USE_OTAU flag shall be set to 1 to enable use of OTAU cluster and corresponding services (image 
storage driver, etc.). If OTAU is enabled, the combined interface device is by default configured to act as an OTAU 
server with #define OTAU_SERVER enabled and #define OTAU_CLIENT disabled. 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

41 

Serial console and logging need to be enabled by setting APP_DEVICE_EVENTS_LOGGING and APP_ENABLE_CONSOLE 
parameters to 1. Additionally APP_USE_ISD_CONSOLE_TUNNELING shall be set to 1 to combine serial console support 
with simultaneous operation of Image Storage Driver (ISD) on the same connection to the PC. 

For more details on OTAU configuration in application and stack, see [24]. 

6.5.2 OTAU Client Configuration 
At least one device shall be compiled as an OTAU client. 

Same as for the OTAU server the APP_USE_OTAU flag shall be set to 1 to enable use of OTAU cluster and 
corresponding services (flash driver, etc.). If OTAU is enabled, a non-combined interface device is by default configured 
to act as an OTAU client with #define OTAU_CLIENT enabled and #define OTAU_SERVER disabled. 

If real external flash is used on the board then in order to be able to switch to downloaded firmware the device shall be 
programmed with an OTA bootloader [12] configured to support corresponding flash memory. If application is 
configured to use fake flash memory (APP_USE_FAKE_OFD_DRIVER set to 1) then presence of OTA bootloader is 
optional as firmware image won’t be stored on external memory anyway. 

HW configuration of external flash memory (used to store application images during OTAU) is described in platform-
specific appendices: B.1.4. 

For more details on OTAU configuration in application and stack, see [24]. 

6.5.3 OTAU Procedure 
Comined Interface device shall be first connected via a serial interface to a PC. Using serial console commands the 
user shall bring Combined Interface interface and other HA devices into the same network as described in Section 6.1. 

After that PC Bootloader GUI application [12] shall be started. Procedure on how to use it for uploading firmware to the 
devices is described in [24].   



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

42 

7. WSNDemo Application 

7.1 Overview 
The network and radio frequency performance of the hardware components is demonstrated with the WSNDemo 
application, which is based on the Atmel BitCloud API. This application consists of the embedded firmware, which 
supports functions for coordinator, router, and end device, and the GUI visualization application, WSNMonitor, which is 
run on a PC. In WSNDemo, the nodes communicate based on a proprietary messaging protocol. 

The SDK includes the WSNMonitor PC application in binary format (described in Section 7.4), and the WSNDemo 
embedded application is available in binary format and source code. 

The source code for the WSNDemo application can be modified and extended, making it possible to develop WSN 
applications for a variety of application scenarios. 

End devices, routers, and the coordinator devices emulate the sensor data reading for light and temperature sensors, 
and forward collected data to the WSNMonitor application for visualization. 

End devices follow a duty cycle (that is, the microcontroller and radio transceiver are put to sleep periodically) and wake 
up to transmit data to the coordinator. Using the serial connection, the coordinator transmits the received packets, along 
with its own sensor data (or emulated sensor data), to the WSNMonitor application. Those transmitted values are 
displayed on WSNMonitor panes as temperature, light, and battery level measurements. 

WSNMonitor also visualizes network topology by drawing a tree of nodes that have joined the network. For each of the 
nodes, parameters like node address, node sensor information, and link quality data are displayed. 

RSSI indicates a link’s current condition and is measured in dBm. The RSSI resolution is 3dBm. LQI, a numeric 
parameter defined within the 0 to 255 range, is used to measure the link quality. Larger values mean a better link, while 
values close to zero indicate a poor connection. 

In WSNDemo, the number of routers and end devices is limited only by the network parameter settings. 

7.2 Launching the Demo 
To start WSNDemo, proceed as follows: 

1. Assemble devices as instructed in Section 3.3. 
2. Program devices with firmware images. One node shall be programmed as coordinator, others as routers or 

end devices. 
 The pre-built firmware images are located in the \Evaluation Tools\WSNDemo (Embedded) directory. 

Note: Prebuilt firmware images are built for 8MHz frequency. 

Note: Before programming, make sure the fuse bits are installed correctly (see Section B.3.1). 
3. Connect the coordinator node to the PC using the serial interface. 
4. Run WSNMonitor (see Section 7.4). 

Use the following setting for the serial connection of the WSNMonitor: 
BAUD RATE:  38400 

PARITY:  None 

DATA BITS:  8 

STOP BITS:  1 

FLOW CONTROL: None (Hardware for the Xplained-PRO boards) 
5. Observer coordinator node in the WSNMonitor. 
6. Power on the rest of the nodes and observe them displayed in the WSNMonitor. 
7. Select any router node and click on the bulb icon next to it, observe the device to blink its LEDs. 

For demonstration of over-the-air upgrade functionality, see Section 7.8. 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

43 

7.3 Network Startup 
The coordinator organizes the wireless network automatically. Upon starting, every node informs the network of its role. 

When the coordinator is powered on, it switches to an active state even though no child node is present. This is normal, 
and indicates that the coordinator is ready and the child nodes can join the network with the coordinator’s extended 
PAN ID. By default, the coordinator uses extended PAN ID 0xAAAAAAAAAAAAAAAA, which is recognized by all routers. A 
short PAN ID is chosen at random. The extended PAN ID can be modified by the user through the application’s 
configuration.h file. 

If the coordinator is absent or has not been turned on, the routers and end devices will remain in the network search 
mode. In this mode, routers scan the channels specified in the channel mask in search of a network with the specified 
extended PAN ID. 

By default, the channel mask for all application images provided with the SDK contains a single channel. In rare cases, 
if the frequency corresponding to the radio channel is busy, the coordinator node may stay in the network search mode. 
If this happens, it may become necessary to change the application’s channel mask to select another channel by 
changing the application’s configuration.h file and recompiling the application. 

Network health can be monitored through the WSNMonitor application described in the next section. 

7.4 WSNMonitor 
WSNMonitor is a PC counterpart to the WSNDemo embedded application, and can be used to display the ZigBee 
network topology and other information about a wireless sensor network. A typical WSNMonitor screen is shown in 
Figure 7-1. It contains topology, sensor data, node data panes, and application toolbars. 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

44 

Figure 7-1. WSNMonitor GUI 

 

The topology pane displays the network topology in real time, which helps the user monitor the formation of and 
dynamic changes in the network while nodes join, send data across, or leave the network. The network topology is 
constructed on the basis of next-hop information for each of the nodes, and each link is also tipped with RSSI and LQI 
values. Each of the nodes displayed is depicted by an icon, with the node’s address or name below and sensor 
readings to the right of the icon, if required by settings. 

The sensor data pane displays data coming from onboard sensors of the selected node (see Section 7.7). It is 
presented in graph and table form. Other parameters can be observed for each node in table form. The node data pane 
includes a sensor selection combo-box, which is used to switch between sensor types. 

By default in the topology pane, nodes are labeled with their short addresses. However, another title can be assigned to 
any desired node by a double click. If “Cancel” is pressed in the opened window, the node’s title is set back to the short 
address. 

7.5 Identifying Nodes 
When a user clicks a node in the topology pane a button that can be used to identify the node appears under the node’s 
icon. When the user clicks this button WSNMonitor sends a command, which is delivered to the coordinator through the 
serial connection and wirelessly to the target node. The target node, receiving the command, blinks with its LED for 
several seconds. 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

45 

7.6 Node Timeouts 
The Window/Preferences menu of WSNMonitor contains a number of parameters used to control application 
behavior. Timeouts are used to tune visualization of coordinator, routers, and end devices as the nodes disappear from 
the network each time a connection is lost, power is down, or a reset has occurred. A node timeout corresponds to the 
time the WSNMonitor application waits for a packet from a particular node before assuming that the node is no longer 
part of the network. Note that this value does not correspond to the frequency with which data are transmitted by each 
type of device. To get smooth topology visualization, setting timeouts to 20 seconds is recommended for coordinator 
and router, and 30 seconds is recommended for an end device. Assuming a default application configuration, these 
timeouts cover three periods between sending a packet, and so at least three packets would need to be lost before a 
node is removed from the WSNMonitor topology pane. 

Figure 7-2. WSNMonitor Preferences Menu 

 

7.7 Sensor Data Visualization 
Each board sends temperature/light/battery sensor readings (or emulated values) to the coordinator, which in turn 
sends it to the PC. WSNMonitor displays the readings from onboard sensors next to a node icon inside the topology 
pane. A corresponding option can be selected in the node/link parameters from the quick settings toolbar. 

The user can select any node in the topology pane to monitor the node’s activity and see the node data in one of three 
different forms: 

• Text table 
• Chart 

The onboard sensor’s data displayed next to each node in the topology pane. These values are also tipped with arrows 
indicating whether the value increased or decreased in relation to the previous sample. 

A given node is selected when it is clicked on and a dashed frame is visible around it. 

The same values are shown on the sensor data pane, enabling the user to observe how the values change over a 
period of time. 

The sensor data pane includes a sensor selection combo-box. Use the button on the sensor control toolbar to display 
the desired types of sensor data. 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

46 

7.8 Over-the-Air Upgrade 
Over-the-Air demonstration requires one WSNDemo device (most commonly network coordinator) programmed with an 
application image supporting OTAU server functionality and at least one device programmed as an OTAU client. 

Atmel devices serving as OTAU clients shall be connected with an external flash device as described in corresponding 
platform-specific Sections (see Section 3.3 for references). 

The user should configure and install devices as follows: 

1. Configure and compile the WSNDemo application with APP_USE_OTAU defined as 1, and definition of 
OTAU_CLIENT uncommented, in the configuration.h file. Load this application image to the board with a 
an external flash device connected: 
a. Program the embedded bootloader image file from the Serial Bootloader package [12] that corresponds 

for the target platform. 
b. The application image should be converted to *.srec format and installed using the Bootloader PC tool 

from the Serial Bootloader package. The device is now able to perform as an OTA client, as defined in [24]. 
The above process should be repeated for every node that the user intends to upgrade over the air. 

2. Configure and compile the WSNDemo application with APP_USE_OTAU defined as 1, and definition of 
OTAU_SERVER uncommented, in the configuration.h file. Load this application image to the board selected 
to serve as an OTAU server, following steps 1.a and 1.b. 

3. Once the images are programmed and WSNDemo devices are joined to the network, follow instructions given 
in [24] to update the firmware over the air. 

Note: When coordinator acts as OTA the server network activity cannot be monitored on the WSNMonitor as the 
same serial interface will be used for communication with the OTA bootloader tool. 

 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

47 

Appendix A. SAMR21 Specifics 
BitCloud supports ATSAMR21-XPRO [34] development board with ATSAMR21G18A. BitCloud reference applications 
can be compiled for different boards’ configurations by selecting corresponding value for BSP_SUPPORT parameter in 
application configuration.h file. Setting this parameter to BOARD_FAKE will disable all board-specific peripherals and 
can be used for custom boards. 

A.1 Hardware Setup 

A.1.1 Required Hardware 
Make sure that all necessary hardware is available: 

• two or more ATSAMR21-XPRO boards [33] each with an external 2.4GHz antenna and a Micro-USB cable 
or 

• two or more custom boards with ATSAMR21G18A or ATSAMR21E18A devices and one Atmel JTAGICE3 [22]. 

A.1.2 ATSAMR21 Xplained PRO Setup 
The SAM R21 Xplained Pro contains the Atmel Embedded Debugger (EDBG) for on-board debugging. The EDBG is a 
composite USB device of three interfaces; a debugger, Virtual COM Port, and Data Gateway Interface (DGI). In 
conjunction with Atmel Studio, the EDBG debugger interface can program and debug the ATSAMR21G18A. On the 
SAMR21 Xplained PRO, the SWD interface is connected between the EDBG and the ATSAMR21G18A. The Virtual 
COM Port is connected to a UART port on ATSAMR21G18A and provides an easy way to communicate with the target 
application through simple terminal software. This subsection contains only brief instructions. Detailed hardware 
description for this kit is given in corresponding user guide [34]. 

To assemble a device: 
1. Attach an antenna to the SMA connector on ATSAMR21-XPRO. 
2. Connect the Micro-USB cable to the EDBG USB section on ATSAMR21-XPRO to power up (see Figure 7-3). 

Figure 7-3. ATSAMR21 – Xplained PRO Setup 

 

 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

48 

Note: To properly support on-board peripherals such as LEDs, buttons, and serial connection present on 
ATSAMR21-XPRO BitCloud applications shall be configured with the following defines selected in the 
application’s configuration.h file: 

#define BSP_SUPPORT BOARD_SAMR21_XPRO 

#define APP_INTERFACE APP_INTERFACE_USART 

#define APP_USART_CHANNEL USART_CHANNEL_0 

A.1.3 OTAU Hardware Setup 
To demonstrate OTA upgrade functionality, the pins of the external flash memory device must be connected to the 
ATSAMR21 pins as shown in Table A-1. More information on the OTA upgrade can be found in [24].The possible 
configurations of M25P40 and AT25DF041A Flash variants are mentioned in Table A-1. 

Table A-1. External Flash and MCU Pin Assignment 

External Flash Pins – AT25DF041A External Flash Pins – M25P40 ATSAMR21 Pins 

CS S# PA14 (Pin23) 

SO Q PA15 (Pin24) 

WP W# n/a 

SI D PA08 (Pin15) 

SCK C PA09 (Pin16) 

HOLD HOLD n/a 
 

A.2 Pre-built Firmware Images 
BitCloud SDK for SAMR21 devices provides precompiled firmware images for supported Atmel development boards 
(see Section 1.3). The images are located in corresponding application folders present in ./Evaluation 
Tools/directory. The user can load them onto the board as described in Section A.3. 

A.3 Programming the Boards 
Firmware images can be loaded to the boards by using the following methods: programming using JTAG/EDBG either 
in IAR Embedded Workbench (see Section A.3.2) or Atmel Studio (see Section A.3.3), and programming with Serial 
Bootloader (see Section A.3.4). 

A.3.1 Extended (MAC) Address Assignment 
For the proper communication ZigBee require unique 64-bit MAC address assigned for each device. A node is not able 
to join any ZigBee network unless its extended address is non-zero and smaller than 0xFFFFFFFFFFFFFFFA. 

In BitCloud the CS_UID parameter defines such address and by default a compile time is set to invalid value 0x0. It is 
the responsibility of the application to obtain the correct value and assign it to the CS_UID parameter. 

Reference applications provided by Atmel assign the MAC address as follows. If CS_UID is set to zero at compile time, 
the application attempts to load the MAC address from a dedicated board-specific source for the UID value using API of 
the BSP component. This can be external EEPROM, or specially programmed user page of the chip. If such address 
cannot be obtained, then MAC address is kept as 0. Hence for custom boards applications shall be updated to assign 
valid MAC address to the node. 

For SAMR21-XPRO the CS_UID should be set to a non-zero value from the application. 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

49 

A.3.2 Programming with IAR Embedded Workbench 

A.3.2.1 Precompiled Images 
When using IAR Embedded Workbench to program precompiled images provided with the SDK, the user first needs to 
create a project containing the precompiled image. 

1. Start IAR Embedded Workbench for ARM [19]. 
2. Select File > New > Workspace. 
3. Select Project > Create New Project… 
4. In the Create New Project dialog, select Externally build executable in Project templates: 
5. Select a name for the project, and click Save. 
6. Follow the instructions in readme.txt. 
7. Once the project is set up, select Project > Options. 
8. In the General options category, set Target -> Device as Atmel ATSAMR21G18A or Atmel 

ATSAMR21E18A, depending on the target device. 
9. In Debugger category > Setup tab select in the Driver drop-down CMSIS DAP if EDBG is used or JTAGICE3 

when programming via JTAG. 
10. Click OK button. 
11. Select Project > Download and debug. 
12. Once the debugging session has started, click Stop debugging. 

The image is now installed on the device. 

A.3.2.2 Application Workspace 
1. Open target application project in the IAR Embedded Workbench for ARM [19]. 

This can be done either by double-clicking on the workspace file (for example, HADevice.eww) or by opening 
such file directly in the IAR Workspace using File > Open > Workspace. 

2. Select the desired application configuration (for example, 
All_StdlinkSec_SamR21_Atsamr21b18a_Rf233_8Mhz) from the drop-down box in the Workspace pane. 

3. Select Project > Options. Then in Debugger category > Setup tab select in the Driver drop-down menu 
CMSIS DAP if EDBG is used or JTAGICE3 when programming via JTAG. Click OK button. 

4. Select Project > Download and debug. 
5. Once the debugging session has started, click Stop debugging. 

The image is now installed on the device. 

Note: Using a JTAG/EDBG to program the microcontroller will erase the embedded bootloader, if present. As a 
result, loading of application images with Serial Bootloader will become inoperable until the embedded 
bootloader is loaded to the device again. 

A.3.3 Programming with Atmel Studio 
1. In Atmel Studio, open the Tools > Device Programming… dialog. 
2. From the Tool drop-down menu select the programming tool (for example JTAGICE 3/EDBGATMLXXXX). 
3. Select the right device (ATSAMR21G18A) in the Device drop-down menu and select the Interface as SWD. 
4. Press Read button in the Device Signature field to verify that connection with the device is correct. 
5. Click on the Program tab. 
6. In the Flash section of the dialog, select the precompiled .hex file to be programmed. 
7. Click Program. 

The image is now installed on the device. 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

50 

A.3.4 Programming with Serial Bootloader 
Programming using Serial Bootloader requires that the embedded bootloader code is loaded to the device via 
JTAG/EDBG. Firmware images for the embedded bootloader as well as the Bootloader PC tool, which is needed to load 
the application image from a PC to the device, are included in the Atmel Serial Bootloader software package available 
for downloading from the Atmel website. 

Images that shall be loaded to device via JTAG may be found under the \Embedded_Bootloader_images\ATSAMR21 
directory in the package: 

1. Install and run the Bootloader PC tool from the command line or use the GUI. Specify the target image file 
in .srec format and the COM port, and launch the firmware upload (see [12]). 

2. Perform a hardware reset on the board by using the reset button, if requested. 
3. The Bootloader PC tool indicates the operation progress. Once the upload is successfully completed, the 

board will restart automatically. If an upload fails, the Bootloader PC tool will indicate the reason. In rare 
cases, the booting process can fail due to communication errors between the board and the PC. If this 
happens, attempt booting again. If booting fails, the program recently written to the board will be corrupted, 
but the board can be reprogrammed again as the embedded bootloader should remain intact. 

Warning: Using JTAG/EDBG to program the microcontroller will erase the embedded bootloader, making the 
loading of application images with Serial Bootloader impossible until the embedded bootloader 
firmware is reprogrammed to the device. 

A.4 Reserved Hardware Resources 

Table A-2. Hardware Resources Reserved by the Stack on ATSAMR21 

Resource Description 

Processor main clock 16/24/48 MHz from XOSC32K Oscillator 

Processor main clock 4/8 MHz from internal RC Oscillator 

PA08, PA09, PA14, PA15 External DataFlash, when OTAU functionality is used 

Timer/counter 3 System Timer 

Timer/counter 4 Mac Timer Implementation - Rtimer 

Flash Bootloader: 8KB. Required if OTAU is used. Can be disabled otherwise. 
NVM area:  16KB. Configurable via application linker scripts. 
FW image:  Application dependent. 
EEPROM:   Emulated in Flash. Part of it is used when OTAU is supported. More 
details see [24]. 

 
  



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

51 

Appendix B. ATmegaRFR2 Specifics 
BitCloud supports out of the box two different ATmegaRFR2 development boards with ATmega256RFR2 SoC: 
AT256RFR2-EK [15] and AT256RFR2-XPRO [17].The instructions below will highlight the differences between the two 
platform configurations, where present. It is also possible to compile applications for custom boards without relying on 
any board-specific peripherals. 

BitCloud reference applications can be compiled for different boards’ configurations by selecting corresponding value 
for BSP_SUPPORT parameter in application configuration.h file. Setting this parameter to BOARD_FAKE will disable all 
board-specific peripherals and can be used for custom boards. 

B.1 Hardware Setup 

B.1.1 Required Hardware 
Make sure that all necessary hardware is available: 

• one or more AT256RFR2-EK kits [15] and one Atmel JTAGICE3 [22] 
or 

• two or more AT256RFR2-XPRO [17] boards, each with an external 2.4GHz antenna and a Micro-USB cable 
or 

• two or more custom boards with ATmega256RFR2 or ATmega2564RFR2 devices and one Atmel JTAGICE3 
[22]. 

B.1.2 AT256RFR2-EK Setup 
This subsection contains only brief instructions. Detailed hardware description for this kit is given in corresponding user 
guide [16]. 

Radio Controller Board (RCB) with ATmega256RFR2 is used as a base board. Depending on the application RCB 
might be used as a standalone, mount to a Key Remote Control board or to a Sensor Terminal Board (STB). 

To assemble a device: 
1. Attach an antenna to the SMA connector on RCB. 
2. Insert two AAA batteries into the RCB if it will be used in standalone mode or on top of Key Remote Control 

board. Do not use batteries if the STB board is powered by USB. 
3. Attach RCB on top of a Key Remote Control board or STB board. 
4. Power on the device by shifting the red button at the right side of the RCB (see Figure 7-4). 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

52 

Figure 7-4. Assembled RCB Hosted on a Key Remote Control Board 

 

5. To use serial output, attach the serial cable, connected to a PC, to the port marked EXT on a Key Remote 
Control board as shown on Figure 7-5, or use the USB connection on the STB board. 

Figure 7-5. Serial Cable attached to a Key Remote Control Board 

 

Note: Different board setups available in 256RFR2-EK provide application with access to different types of 
peripherals such as LEDs, buttons, LCD and serial connection. BitCloud applications shall be configured 
differently for each board configuration tos properly support such peripherals. This is done via selection of 
the following defines in the application’s configuration.h file: 
 For an RCB mounted on a Key Remote Board: 
  #define BSP_SUPPORT BOARD_RCB_KEY_REMOTE 

#define APP_INTERFACE APP_INTERFACE_USART 

  #define APP_USART_CHANNEL USART_CHANNEL_0 

 For an RCB mounted on an STB: 
  #define BSP_SUPPORT BOARD_RCB 

#define APP_INTERFACE APP_INTERFACE_USBFIFO 

 For a standalone RCB: 
 #define BSP_SUPPORT BOARD_RCB 

#define APP_INTERFACE APP_INTERFACE_USART 

 #define APP_USART_CHANNEL USART_CHANNEL_1 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

53 

B.1.3 AT256RFR2-XPRO Setup 
Detailed hardware description for the 256RFR2 Xplained Pro board is given in corresponding user guide [18]. 

Note: Due to board-specific control, Flow control of the COM port setting on the PC shall be set to Hardware 
to enable serial communication between the Xplained Pro board with BitCloud application and a PC (for 
serial terminal and PC GUI applications such as WSNMonitor or SLRemote). Even though configuration in 
the embedded application firmware is not using HW flow control for serial communication. 

Note: To properly support on-board peripherals such as LEDs, buttons and serial connection present on 
AT256RFR2-XPRO BitCloud applications shall be configured with following defines selected in 
application’s configuration.h file: 

#define BSP_SUPPORT BOARD_ATMEGA256RFR2_XPRO 

#define APP_INTERFACE APP_INTERFACE_USART 

#define APP_USART_CHANNEL USART_CHANNEL_0 

B.1.4 OTAU Hardware Setup 
To demonstrate OTA upgrade functionality, the pins of the external flash memory device (by default AT25DF041A is 
supported) must be connected to the ATmega256RFR2 pins, as shown in Table B-1. More information on the OTA 
upgrade can be found in [24]. 

Table B-1. External Flash and MCU Pin Assignment 

External Flash Pins ATmega256RFR2 Pins 

CS PE3 (pin49) 

SO PE0 (pin46) 

WP n/a 

SI PE1 (pin47) 

SCK PE2 (pin48) 

HOLD n/a 

B.2 Pre-built Firmware Images 
BitCloud SDK for megaRF devices provides precompiled firmware images for supported Atmel development boards 
(see Section 1.3). The images are located in corresponding application folders present in ./Evaluation 
Tools/directory. The user can load them onto the board as described in Section B.3. 

B.3 Programming the Boards 
Firmware images can be loaded to the boards using the following methods: programming using JTAG/EDBG either in 
IAR Embedded Workbench (see Section B.3.3) or Atmel Studio (see Section B.3.4), and programming with Serial 
Bootloader (see Section B.3.5). Before programming; make sure that the fuse bits are configured correctly, as 
described in Section B.3.1. 

B.3.1 Setting Fuse Bits 
Table B-2 presents the fuse bit configuration for ATmega256(4)RFR2 devices running BitCloud applications. It also 
describes some use cases when certain fuse bits require values different from the default ones. Based on own 
application-specific requirements, the fuse bits can be changed as well. See device datasheet [9] for detailed fuse bits 
description. 

Note: Modifying fuse bit settings cannot be done with the Serial Bootloader tool. 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

54 

Table B-2. Fuse Bit Settings for the ATmega256(4)RFR2 Device 

Option Value for 8MHz Value for 16MHz Comments 

BODLEVEL 1V8 1V8 Can be changed according to application-specific 
requirements. 

OCDEN Disabled Disabled Can be changed during application development. Must 
be disabled for final products. 

JTAGEN Enabled Enabled Must be enabled for JTAG access. 

SPIEN Enabled Enabled Must be enabled SPI programming. 

WDTON Disabled Disabled Can be changed according to application-specific 
requirements. 

EESAVE Disabled Disabled Can be changed according to application-specific 
requirements. 

BOOTSZ Boot Flash size=4096 
words start 
address=$1F000 

Boot Flash size=4096 
words start 
address=$1F000 

Specifies section size in words (two bytes) reserved in 
flash memory for the embedded bootloader. 
 
Applied only if BOOTRST fuse is enabled. 
 
Must be set to Boot Flash size=4096 words 
start address=$1F000, if Atmel bootloader or OTA is 
used on the device. 
For more information see [12]. 

BOOTRST Disabled Disabled Shall be enabled if device needs to be programmed with 
Serial Bootloader or if OTAU support is required. Can be 
disabled in other cases. 
For more information see [12]. 

CKDIV8 Enabled Disabled  

CKOUT Disabled Disabled  

SUT_CKSEL Int. RC Osc.; Start-up 
time: 
6 CK + 65ms 

Transceiver Oscillator; 
Startup time: 
16K CK + 65ms 

Can be changed according to application-specific 
requirements, but external clock source shall not be used 
by sleeping devices. 

Resulting bytes: 

Ext 0xFE 0xFE  

High 0x19 0x19  

Low 0x62 0xF7  

B.3.2 Extended (MAC) Address Assignment 
For the proper communication ZigBee require unique 64-bit MAC address assigned for each device. A node is not able 
to join any ZigBee network unless its extended address is non-zero and smaller than 0xFFFFFFFFFFFFFFFA. 

In BitCloud the CS_UID parameter defines such address and by default at compile time is set to invalid value 0x0. It is 
responsibility of the application to obtain the correct value and assign it to the CS_UID parameter. 

Reference applications provided by Atmel assign the MAC address as follows. If CS_UID is set to zero at compile time, 
then the application attempts to load the MAC address from a dedicated board-specific source for the UID value using 
API of the BSP component. This can be external EEPROM, or specially programmed user page of the chip. If such 
address cannot be obtained, then MAC address is kept as 0. Hence for custom boards applications shall be updated to 
assign valid MAC address to the node. 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

55 

B.3.3 Programming with IAR Embedded Workbench 

B.3.3.1 Loading Precompiled Images 
When using IAR Embedded Workbench to program precompiled images provided with the SDK, the user first needs to 
create a project containing the precompiled image. 

1. Start IAR Embedded Workbench for AVR [20]. 
2. Select File > New > Workspace. 
3. Select Project > Create New Project… 
4. In the Create New Project dialog, select Externally build executable in Project templates: 
5. Select a name for the project, and click Save. 
6. Follow the instructions in readme.txt. 
7. Once the project is set up, select Project > Options. 
8. In the General options category, set Processor Configuration to ATmega256RFR2 or 

ATmega2564RFR2. 
9. In Debugger category > Setup tab select JTAGICE3 in the Driver drop-down menu. 
10. Click OK button. 
11. From the menu select JTAGICE 3 > Fuse Handler. 
12. Click Read Fuses, and make sure that the device fuses are set as specified in Section B.3.1. 
13. If fuses are set incorrectly, select the correct fuse settings, and click Program fuses. 
14. Select Project > Download and debug. 
15. Once the debugging session has started, click Stop debugging. 

The image is now installed on the board. 

B.3.3.2 Programming from Application Workspace 
1. Open target application project in the IAR Embedded Workbench for AVR [20]. 

This can be done either by double-clicking on the workspace file (for example, HADevice.eww) or by opening 
such file directly in the IAR Workspace using File > Open > Workspace. 

2. Select the desired application configuration (for example, All_StdlinkSec_MegaRf_ ATmega256RF2_ 
_8Mhz_Iar) from the drop-down box in the Workspace pane. 

3. Select Project > Options. Then in Debugger category > Setup tab select JTAGICE3 in the Driver drop-
down menu. Click OK button. 

4. From the menu select JTAGICE 3 > Fuse Handler. 
5. Click Read Fuses, and make sure that the device fuses are set as specified in Section B.3.1. 
6. If fuses are set incorrectly, select the correct fuse settings, and click Program fuses. Then press Close 

button. 
7. Select Project > Download and debug. 
8. Once the debugging session has started, click Stop debugging. 

The image is now installed on the device. 

Note: Using a JTAG to program the microcontroller will erase the embedded bootloader, if present. As a result, 
loading of application images with Serial Bootloader will become inoperable until the embedded bootloader 
is loaded to device again. 

B.3.4 Programming with Atmel Studio 
1. In Atmel Studio, open the Tools > Device Programming… dialog. 
2. From the Tool drop-down menu select the programming tool (for example JTAGICE 3). 
3. Select the right device (ATmega256RFR2/ATmega2564RFR2) in the Device drop-down menu. 
4. Press Read button in the Device Signature field to verify that connection with the device is correct. 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

56 

5. Click on the Fuses tab and make sure that the device fuses are set as specified in Section B.3.1. 
6. If fuses are set incorrectly, select the correct fuse settings, and click Program. 
7. Click on the Program tab. 
8. In the Flash section of the dialog, select the precompiled .hex file to be programmed. 
9. Click Program. 

The image is now installed on the device. 

B.3.5 Programming with Serial Bootloader 
Programming using Serial Bootloader requires that the embedded bootloader code is loaded to the device via JTAG. 
Firmware images for the embedded bootloader as well as the Bootloader PC tool, which is needed to load the 
application image from a PC to the device, are included in the Atmel Serial Bootloader software package available for 
downloading from the Atmel website. 

Images that shall be loaded to device via JTAG may be found under the 
\Embedded_Bootloader_images\Atmega256rfr2 directory in the package. 

The fuse bits should be configured properly; namely, the BOOTRST fuse should be enabled as described in Section 
B.3.1. 

If the embedded bootloader is loaded connect with a serial interface to a PC ensuring pin connections as shown in 
Table B-3. If bootloader image corresponding to the supported Atmel development board (Table 1-1) is used then such 
mapping is guaranteed already. 

Table B-3. Host UART and MCU Pin Connections 

UART Pin on Host Device ATmega256RFR2 MCU Pin 

RXD PD2 

TXD PD3 

GND D_GND 

 
1. Install and run the Bootloader PC tool from the command line or use the GUI. Specify the target image file 

in .srec format and the COM port, and launch the firmware upload (see [12]). 
2. Perform a hardware reset on the board by using the reset button, if requested. 
3. The Bootloader PC tool indicates the operation progress. Once the upload is successfully completed, the 

board will restart automatically. If an upload fails, the Bootloader PC tool will indicate the reason. In rare 
cases, the booting process can fail due to communication errors between the board and the PC. If this 
happens, attempt booting again. If booting fails, the program recently written to the board will be corrupted, 
but the board can be reprogrammed again as the embedded bootloader should remain intact. 

Warning: Using JTAG to program the microcontroller will erase the embedded bootloader, making the loading of 
application images with Serial Bootloader impossible until the embedded bootloader firmware is 
reprogrammed to the device. 

B.4 Reserved Hardware Resources 

Table B-4. Hardware Resources Reserved by the Stack on ATmega256RFR2 

Resource Description 

Processor main clock 8/16MHz from internal RC oscillator 

TRX24 Radio 

ATmega ports PG3, PG4 Asynchronous timer interface (optional – can be disabled) 



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

57 

Resource Description 

Timer/counter 2 Asynchronous timer (optional – can be disabled via HAL) 

Timer/counter 4 System timer 

External IRQ4 Wake-up on DTR (optional – can be enabled) 

PE0..PE2, PG5 External DataFlash, when OTAU functionality is used 

EEPROM Part of EEPROM is used when OTAU is supported. More details see in [24] 

Flash Bootloader: 8KB. Required if OTAU is used. Can be disabled otherwise. 
                            Configurable via fuse bits (see Section). 
NVM area:  16KB. Configurable via application linker scripts. 
FW image:  Application dependent. 

 
  



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

58 

8. References 
[1] BitCloud Software Development Kit  
[2] AVR2052: BitCloud Quick Start Guide (this document) 
[3] BitCloud API Reference (available in BitCloud SDK) 
[4] AVR2050: BitCloud Developer’s Guide 
[5] IEEE Std 802.15.4™-2006 Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) 

Specifications for Low-Rate Wireless Personal Area Networks (WPANs) 
[6] ZigBee PRO specification (05-3474r20) 
[7] ZigBee Cluster Library specification (07-5123r04) 
[8] ZigBee Home Automation Profile Specification (05-3520-29) 
[9] Atmega256RFR2 device 
[10] Atmega2564RFR2 device 
[11] MinGW C/C++ Compiler 
[12] AVR2054: Serial Bootloader User Guide 
[13] Java Runtime Environment 
[14] Jython 
[15] 256RFR2-EK kit 
[16] AVR10002: ATmega256RFR2 Evaluation Kit – User Guide 
[17] 256RFR2-XPRO: ATmega256RFR2 Xplained Pro Evaluation Kit 
[18] ATmega256RFR2 Xplained Pro User Guide 
[19] IAR Embedded Workbench for Atmel ARM 
[20] IAR Embedded Workbench for Atmel AVR 
[21] IAR Embedded Workbench IDE User Guide 
[22] JTAGICE3 
[23] AT02597: ZigBee PRO Packet Analysis with Sniffer 
[24] AVR2058: BitCloud OTAU User Guide 
[25] Atmel Studio download 
[26] Atmel Studio archive 
[27] Atmel Studio online help 
[28] AT02698: ZAppSI User Guide 
[29] ZigBee Light Link Profile specification (11-0037-10) 
[30] AT03663: Power Consumption of ZigBee End Devices 
[31] ATSAMR21G18A device 
[32] ATSAR21E18A device 
[33] SAMR21-XPRO: SAMR21 Xplained Pro Evaluation Kit 
[34] ATSAMR21 Xplained PRO User Guide 
[35] MSYS Extension for Atmel Studio 
[36] AT08550: ZigBee Attribute Reporting  

 

 

  



 
 

AVR2052: BitCloud SDK Quick Start Guide [APPLICATION NOTE] 
8200Q−MCU−02/2015 

59 

9. Revision History 
Doc. Rev. Date Comments 
Q 02/2015 Updated for BitCloud SDK 3.2.0. Description of new device types, existing device types  

as part of ZHA reference application along with minor improvements throughout 
document. 

P 08/2014 Updated for BitCloud SDK 3.1.0. Description of SAMR21-specifics is added. Minor 
improvements through all the document. 

O 03/2014 Updated for BitCloud SDK 3.0.0. Merged with AVR2055 BitCloud Profile Suite Quick 
Start Guide. 

N 05/2012 Updated for BitCloud SDK 1.14.0. 
 
 
 
 
 
 
 
 
 

 

 



 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    
Atmel Corporation 
1600 Technology Drive 
San Jose, CA 95110 
USA 
Tel: (+1)(408) 441-0311 
Fax: (+1)(408) 487-2600 
www.atmel.com  

Atmel Asia Limited 
Unit 01-5 & 16, 19F 
BEA Tower, Millennium City 5 
418 Kwun Tong Road 
Kwun Tong, Kowloon 
HONG KONG 
Tel: (+852) 2245-6100 
Fax: (+852) 2722-1369 

Atmel Munich GmbH 
Business Campus 
Parkring 4 
D-85748 Garching b. Munich 
GERMANY 
Tel: (+49) 89-31970-0 
Fax: (+49) 89-3194621 

Atmel Japan G.K. 
16F Shin-Osaki Kangyo Bldg. 
1-6-4 Osaki, Shinagawa-ku 
Tokyo 141-0032 
JAPAN 
Tel:  (+81)(3) 6417-0300 
Fax:  (+81)(3) 6417-0370 

 
 

   

© 2015 Atmel Corporation. All rights reserved.  /  Rev.: 8200Q−MCU−02/2015 

Atmel®, Atmel logo and combinations thereof, AVR®, BitCloud®, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel 
Corporation in U.S. and other countries. Windows® is a registered trademark of Microsoft Corporation in U.S. and or other countries. ARM® and Cortex® are 
registered trademarks of ARM Ltd. Other terms and product names may be trademarks of others. 

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this 
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES 
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, 
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF 
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no 
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time 
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, 
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. 

 



X-ON Electronics
 
Largest Supplier of Electrical and Electronic Components
 
Click to view similar products for Zigbee Development Tools (802.15.4) category:
 
Click to view products by  Atmel manufacturer:  
 
Other Similar products are found below :  

76000956  ATZB-X-212B-XPRO  SKY66114-11-EK1  SKY66403-11EK1  WRL-14549  ATREB212BSMA-EK  ATZB-X-212B-USB  XBIB-

CU-TH  XK3-Z8S-WZM  XKA2C-Z7T-U  IS.OMB-001  MIKROE-4277  ENWC9B01AQEF  RBK-ZW500-E2  RBK-ZW500-H2  RBK-

ZW500-U2  KIT-15936  CC2538DK  CC2538EMK  

https://www.x-on.com.au/category/embedded-solutions/engineering-tools/rf-wireless-development-tools/zigbee-development-tools-802154
https://www.x-on.com.au/manufacturer/atmel
https://www.x-on.com.au/mpn/digiinternational/76000956
https://www.x-on.com.au/mpn/atmel/atzbx212bxpro
https://www.x-on.com.au/mpn/skyworks/sky6611411ek1
https://www.x-on.com.au/mpn/skyworks/sky6640311ek1
https://www.x-on.com.au/mpn/sparkfun/wrl14549
https://www.x-on.com.au/mpn/atmel/atreb212bsmaek
https://www.x-on.com.au/mpn/atmel/atzbx212busb
https://www.x-on.com.au/mpn/digiinternational/xbibcuth
https://www.x-on.com.au/mpn/digiinternational/xbibcuth
https://www.x-on.com.au/mpn/digiinternational/xk3z8swzm
https://www.x-on.com.au/mpn/digiinternational/xka2cz7tu
https://www.x-on.com.au/mpn/industrialshields/isomb001
https://www.x-on.com.au/mpn/mikroe/mikroe4277
https://www.x-on.com.au/mpn/panasonic/enwc9b01aqef
https://www.x-on.com.au/mpn/siliconlabs/rbkzw500e2
https://www.x-on.com.au/mpn/siliconlabs/rbkzw500h2
https://www.x-on.com.au/mpn/siliconlabs/rbkzw500u2
https://www.x-on.com.au/mpn/siliconlabs/rbkzw500u2
https://www.x-on.com.au/mpn/sparkfun/kit15936
https://www.x-on.com.au/mpn/texasinstruments/cc2538dk
https://www.x-on.com.au/mpn/texasinstruments/cc2538emk

