DATA SHEET

74ABT16374B
 16-bit D-type flip-flop; positive-edge trigger (3-State)

Product data
Supersedes data of 2004 Mar 01

DESCRIPTION

The 74ABT16374B high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive.

The 74ABT16374B has two 8-bit, edge triggered registers, with each register coupled to eight 3-State output buffers. The two sections of each register are controlled independently by the clock (nCP) and Output Enable (nOE) control gates.
Each register is fully edge triggered. The state of each D input, one set-up time before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's Q output.

The 3-State output buffers are designed to drive heavily loaded 3-State buses, MOS memories, or MOS microprocessors. Each active-LOW Output Enable (nOE) controls all eight 3-State buffers for its register independent of the clock operation.

When n $\overline{O E}$ is LOW, the stored data appears at the outputs for that register. When n $\overline{O E}$ is HIGH, the outputs for that register are in the high-impedance "OFF" state, which means they will neither drive nor load the bus.

FEATURES

- Two 8-bit positive edge triggered registers
- Live insertion/extraction permitted
- Power-up 3-State
- Power-up reset
- Multiple V_{CC} and GND pins minimize switching noise
- 3-State output buffers
- Output capability: +64 mA/-32 mA
- Latch-up protection exceeds 500 mA per JEDEC Std 17
- ESD protection exceeds 2000 V per MIL STD 883 Method 3015 and 200 V per Machine Model

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{GND}=0 \mathrm{~V}$	TYPICAL	UNIT
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay nCP to nQx	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\begin{aligned} & 2.6 \\ & 2.2 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Input capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}	4	pF
Cout	Output capacitance	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}} ; 3$-State	7	pF
ICCz	Quiescent supply current	Outputs disabled; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	500	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCL }}$		Outputs LOW; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	8	mA

ORDERING INFORMATION

$T_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Type number	Package	Description	Version
	Name	plastic quad flat package; 52 leads (lead length 1.6 mm); body $10 \times 10 \times 2.0 \mathrm{~mm}$	
74ABT16374BB	QFP52	SOT379-1	
74ABT16374BDGG	TSSOP48	plastic thin shrink small outline package; 48 leads; body width 6.1 mm	SOT362-1
74ABT16374BDL	SSOP48	plastic shrink small outline package; 48 leads; body width 7.5 mm	SOT370-1

PIN CONFIGURATION

TSSOP48 and SSOP48 pinning

QFP52 pinning

PIN DESCRIPTION

PIN NUMBER		SYMBOL	FUNCTION
TSSOP and SSOP	QFP52		
$\begin{aligned} & 47,46,44,43,41,40,38,37 \\ & 36,35,33,32,30,29,27,26 \end{aligned}$	$\begin{aligned} & 44,43,41,40,38,37,35,34 \\ & 32,31,29,28,26,25,23,22 \end{aligned}$	$\begin{aligned} & \hline \text { 1D0 - 1D7 } \\ & \text { 2D0 - 2D7 } \end{aligned}$	Data inputs
$\begin{gathered} 2,3,5,6,8,9,11,12 \\ 13,14,16,17,19,20,22,23 \end{gathered}$	$\begin{gathered} 48,49,51,52,2,3,5,6 \\ 8,9,11,12,14,15,17,18 \end{gathered}$	$\begin{aligned} & 1 Q 0-1 Q 7 \\ & 2 Q 0-2 Q 7 \end{aligned}$	Data outputs
1, 24	47, 19	$1 \overline{\mathrm{OE}, 2 \overline{O E}}$	Output enable inputs (active-LOW)
48, 25	45, 21	1CP, 2CP	Clock pulse inputs (active rising edge)
$4,10,15,21,28,34,39,45$	$\begin{gathered} 4,7,10,16,20,24,30,33, \\ 36,42,46,50 \end{gathered}$	GND	Ground (0 V)
7, 18, 31, 42	1, 13, 27, 39	V_{CC}	Positive supply voltage

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS			INTERNAL REGISTER	OUTPUTS	OPERATING MODE
nOE	nCP	nDx		nQ0 - nQ7	
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	\uparrow	!	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Load and read register
L	1	X	NC	NC	Hold
$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{H} \end{aligned}$	\uparrow	$\begin{gathered} \mathrm{X} \\ \mathrm{nDx} \end{gathered}$	$\begin{aligned} & \hline \mathrm{NC} \\ & \mathrm{nDx} \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & \mathrm{z} \end{aligned}$	Disable outputs

[^0]
ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V_{CC}	DC supply voltage		-0.5 to +7.0	V
I_{IK}	DC input diode current	$\mathrm{V}_{\mathrm{I}}<0 \mathrm{~V}$	-18	mA
$\mathrm{~V}_{\mathrm{I}}$	DC input voltage 3		-1.2 to +7.0	V
I_{OK}	DC output diode current $^{\mathrm{V}_{\text {OUT }}}$	DC output voltage ${ }^{3}$	$\mathrm{~V}_{\mathrm{O}}<0 \mathrm{~V}$	-50
$\mathrm{I}_{\text {OUT }}$	DC output current	output in Off or HIGH state	-0.5 to +5.5	mA
	Storage temperature range	output in LOW state	128	mA
	output in HIGH state	-64	mA	

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed $150^{\circ} \mathrm{C}$.
3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT
		MIN	MAX	
V_{CC}	DC supply voltage	4.5	5.5	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IH}	HIGH-level input voltage	2.0	-	V
V_{IL}	LOW-level Input voltage	-	0.8	V
I_{OH}	HIGH-level output current	-	-32	mA
I_{OL}	LOW-level output current	-	64	mA
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input transition rise or fall rate	0	10	$\mathrm{~ns} / \mathrm{V}$
$\mathrm{T}_{\mathrm{amb}}$	Operating free-air temperature range	-40	+85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
V_{IK}	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{IK}}=-18 \mathrm{~mA}$	-	-0.9	-1.2	-	-1.2	V
V_{OH}	HIGH-level output voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}	2.5	2.9	-	2.5	-	V
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}	3.0	3.4	-	3.0	-	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$	2.0	2.4	-	2.0	-	V
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}	-	0.42	0.55	-	0.55	V
$\mathrm{V}_{\text {RST }}$	Power-up output voltage ${ }^{3}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}	-	0.13	0.55	-	0.55	V
II	Input leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	-	0.01	± 1	-	± 1	$\mu \mathrm{A}$
IOFF	Power-off leakage current	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}$ or $\mathrm{V}_{1} \leq 4.5 \mathrm{~V}$	-	± 5.0	± 100	-	± 100	$\mu \mathrm{A}$
IPU/PD	Power-up/down 3-State output current ${ }^{4}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \mathrm{V} \overline{\mathrm{OE}}=\mathrm{GND} \end{aligned}$	-	± 5.0	± 50	-	± 50	$\mu \mathrm{A}$
$\mathrm{l}_{\text {OZH }}$	3-State output HIGH current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$	-	0.5	10	-	10	$\mu \mathrm{A}$
$\mathrm{l}_{\text {OzL }}$	3-State output LOW current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$	-	-0.5	-10	-	-10	$\mu \mathrm{A}$
ICEX	Output HIGH leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}	-	5.0	50	-	50	$\mu \mathrm{A}$
10	Output current ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-50	-70	-180	-50	-180	mA
ICCH	Quiescent supply current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {; Outputs HIGH; }$ $\mathrm{V}_{1}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}}$	-	0.5	2	-	2	mA
$\mathrm{I}_{\text {CCL }}$		$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {; Outputs LOW; } \\ \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \\ \hline \end{array}$	-	8	19	-	19	mA
Iccz		$\mathrm{V}_{C C}=5.5 \mathrm{~V} \text {; Outputs 3-State; }$ $\mathrm{V}_{1}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}}$	-	0.5	2	-	2	mA
$\Delta_{\text {l }}$	Additional supply current per input pin ${ }^{2}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; one input at 3.4 V , other inputs at V_{CC} or GND	-	5	100	-	100	$\mu \mathrm{A}$

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
2. This is the increase in supply current for each input at 3.4 V .
3. For valid test results, data must not be loaded into the flip-flops (or latches) after applying the power.
4. This parameter is valid for any V_{Cc} between 0 V and 2.1 V with a transition time of up to 10 msec . From $\mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ a transition time of up to $100 \mu \mathrm{sec}$ is permitted.
5. Unused pins at V_{CC} or GND .

AC CHARACTERISTICS

$\mathrm{GND}=0 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$

SYMBOL	PARAMETER	WAVEFORM	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40 \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	1	180	260	-	-	-	MHz
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay nCP to nQx	1	$\begin{aligned} & \hline 1.7 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 3.9 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pZH}} \\ & \mathrm{t}_{\mathrm{PZLL}} \end{aligned}$	Output enable time to HIGH and LOW level	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \hline 2.4 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 4.6 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pHz}} \\ & \mathrm{t}_{\mathrm{pLL}} \\ & \hline \end{aligned}$	Output disable time from HIGH and LOW level	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 26 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.4 \end{aligned}$	ns

16-bit D-type flip-flop; positive-edge trigger (3-State)

AC SET-UP REQUIREMENTS

GND $=0 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$

SYMBOL	PARAMETER	WAVEFORM	LIMITS			UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \end{gathered}$		$\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=-40 \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{aligned}$	
			MIN	TYP	MIN	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Set-up time, HIGH or LOW nDx to nCP	2	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, HIGH or LOW nDx to nCP	2	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline-0.1 \\ & -0.3 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	nCP pulse width HIGH or LOW	1	2.8 2.8	$\begin{aligned} & 1.2 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.8 \end{aligned}$	ns

AC WAVEFORMS

Waveform 1. Propagation Delay, Clock Input to Output, Clock Pulse Width, and Maximum Clock Frequency

NOTE: The shaded areas indicate when the input is permitted to change for predictable output performance.

Waveform 2. Data Set-up and Hold Times

Waveform 3. 3-State Output Enable Time to HIGH Level and Output Disable Time from HIGH Level

Waveform 4. 3-State Output Enable Time to LOW Level and Output Disable Time from LOW Level

16-bit D-type flip-flop; positive-edge trigger (3-State)

TEST CIRCUIT AND WAVEFORM

DEFINITIONS

$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\text {OUT }}$ of

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	t_{W}	t_{R}	t_{F}
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$	$\boldsymbol{\theta}$
mm	2.8	0.4	2.35	0.25	0.3	0.22	16.00	7.6	0.635	10.4	1.4	1.0	1.2	0.25	0.18	0.1	0.85	8^{0}
2.20	0.2	0.2	0.13	15.75	7.4	0.63	10.1	1.4	0.6	1.0	0.25	0^{0}						

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT370-1		MO-118			$\begin{aligned} & -9-12-27 \\ & 03-02-19 \end{aligned}$

16-bit D-type flip-flop; positive-edge trigger (3-State)

detail X

DIMENSIONS (mm are the original dimensions).

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(2)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	\mathbf{Z}	θ
mm	1.2	0.15	1.05	0.25	0.28	0.2	12.6	6.2	0.5	8.3	1	0.8	0.50	0.25	0.08	0.1	0.8	
0.05	0.85	0.17	0.1	12.4	6.0	0.4	8^{0}											
0°																		

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT362-1		MO-153		\square	$\begin{aligned} & -99-12-27 \\ & 03-02-19 \end{aligned}$

detail X

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\mathbf{m a x}^{2}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{D}}$	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}_{\mathbf{D}}^{(1)}$	$\mathbf{Z}_{\mathbf{E}}^{(1)}$	$\boldsymbol{\theta}$
mm	2.45	0.45	2.10	0.25	0.38	0.23	10.1	10.1	0.65	13.45	13.45	1.6	0.95	0.2	0.12	0.1	1.24	1.24	7^{0}
0.25	1.95	0.25	0.22	0.13	9.9	9.9	0.65	12.95	12.95	1.9	0.65	0.2	0.95	0°					

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT379-1	135E04	MS-022		- ¢	$\begin{aligned} & -00-01-19 \\ & 03-02-25 \end{aligned}$

REVISION HISTORY

Rev	Date	Description
-4	20040308	Product data (9397 750 13014). Supersedes data of 2004 Mar 01 (9397 750 12988). Modifications: \bullet Add type number 74ABT16374BB, QFP52 pin configuration, and SOT379-1 package outline.
-3	20040301	Product data (9397 750 12988); 853-1752 ECN 01-A15430 of 27 January 2004. Replaces data sheet 74ABT_H16374B_2 of 1998 Feb 27 (9397 750 03496).
-2	19980227	Product specification (9397 750 03496); ECN 853-1752 19027 of 27 February 1998. Supersedes data of 1995 Sep 28.
-1	19950928	

Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definitions
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products-including circuits, standard cells, and/or software-described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit
http://www.semiconductors.philips.com.

Fax: +31 402724825
For sales offices addresses send e-mail to:
sales.addresses@www.semiconductors.philips.com.
© Koninklijke Philips Electronics N.V. 2004
All rights reserved. Printed in U.S.A.
Date of release: 03-04
Document order number:
939775013014

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Flip Flops category:

Click to view products by NXP manufacturer:

Other Similar products are found below :
5962-8955201EA MC74HC11ADTG MC10EP29MNG MC74HC11ADTR2G NLV14013BDTR2G NLV14027BDG NLX1G74MUTCG 703557B 746431H 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA M38510/06102BFA M38510/06101B2A NLV74HC74ADR2G TC4013BP(N,F) NLV14013BDG NLV74AC32DR2G NLV74AC74DR2G MC74HC73ADG CY74FCT16374CTPACT MC74HC11ADR2G 74LVT74D,118 74VHCT9273FT(BJ) MM74HC374WM 74ALVCH162374PAG TC7WZ74FK,LJ(CT CD54HCT273F HMC853LC3TR HMC723LC3CTR MM74HCT574MTCX MM74HCT273WM SN74LVC74APW SN74LVC74AD MC74HC73ADTR2G MC74HC11ADG SN74ALVTH16374GR M74HCT273B1R M74HC377RM13TR M74HC374RM13TR M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74AUP1G74DC,125 74VHC374FT(BJ) 74VHC9273FT(BJ) NLV14013BCPG

[^0]: H = HIGH voltage level
 h = HilGH voltage level one set-up time prior to the HIGH-to-LOW E transition
 L = LOW voltage level
 I = LOW voltage level one set-up time prior to the HIGH-to-LOW E transition
 NC= No change
 X = Don't care
 Z $=$ High-impedance "off" state
 $\uparrow=$ LOW-to-HIGH clock transition
 $\uparrow=$ Not a LOW-to-HIGH clock transition

