QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; GND $=0 \mathrm{~V}$	TYPICAL	UNIT
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay CPn to Qn, Qn	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	ns
tosth toshl	Output to Output skew		0.5	ns
$\mathrm{Clin}^{\text {d }}$	Input capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}	3	pF
Icc	Total supply current	Outputs disabled; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	50	$\mu \mathrm{A}$

PIN CONFIGURATION

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
$1,2,3,4,10$, $11,12,13$	RDn, Dn, CPn, $\overline{\text { SDn }}$	Data inputs
$5,6,8,9$	Qn, $\overline{\text { Qn }}$	Data outputs
7	GND	Ground (0V)
14	V $_{\mathrm{CC}}$	Positive supply voltage

LOGIC SYMBOL

DESCRIPTION

The 74ABT74 is a dual positive edge-triggered D-type flip-flop featuring individual data, clock, set, and reset inputs; also true and complementary outputs. Set (SD) and reset (RD) are asynchronous active low inputs and operate independently of the clock input. When set and reset are inactive (high), data at the D input is transferred to the Q and $\overline{\mathrm{Q}}$ outputs on the low-to-high transition of the clock. Data must be stable just one setup time prior to the low-to-high transition of the clock for predictable operation. Clock triggering occurs at a voltage level and is not directly related to the transition time of the positive-going pulse. Following the hold time interval, data at the D input may be changed without affecting the levels of the output.

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

[^0]SF00048

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
14-Pin Plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mathrm{ABT74} \mathrm{~N}$	$74 \mathrm{ABT74} \mathrm{~N}$	SOT27-1
14-Pin plastic SO	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mathrm{ABT74} \mathrm{D}$	$74 \mathrm{ABT74} \mathrm{D}$	SOT108-1
14-Pin Plastic SSOP Type II	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mathrm{ABT74} \mathrm{DB}$	$74 \mathrm{ABT74} \mathrm{DB}$	SOT337-1
14-Pin Plastic TSSOP Type I	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mathrm{ABT74} \mathrm{PW}$	$74 \mathrm{ABT74PW}$ DH	SOT402-1

FUNCTION TABLE

INPUTS				OUTPUTS		OPERATING MODE	
S SD	RD	CP	D	Q	Q		
L	H	X	X	H	L	Asynchronous set	
H	L	X	X	L	H	Asynchronous reset	
L	L	X	X	H	H	Undetermined*	
H	H	\uparrow	h	H	L	Load "1"	
H	H	\uparrow	I	L	H	Load "0"	
H	H		X	NC	NC	Hold	

NOTES:

H = High voltage level
$\mathrm{h}=$ High voltage level one setup time prior to low-to-high clock transition
$\mathrm{L}=$ Low voltage level
। = Low voltage level one setup time prior to low-to-high clock transition
$\mathrm{NC}=$ No change from the previous setup
X = Don't care
$\uparrow=$ Low-to-high clock transition
$\uparrow=$ Not low-to-high clock transition

* = This setup is unstable and will change when either set or reset return to the high level.

ABSOLUTE MAXIMUM RATINGSㄹ, ${ }^{2}$

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V_{CC}	DC supply voltage	-0.5 to +7.0	V	
I_{IK}	DC input diode current	$\mathrm{V}_{\mathrm{I}}<0$	-18	mA
$\mathrm{~V}_{\mathrm{I}}$	DC input voltage ${ }^{3}$		-1.2 to +7.0	V
$\mathrm{I}_{\text {OK }}$	DC output diode current	$\mathrm{V}_{\mathrm{O}}<0$	-50	mA
$\mathrm{~V}_{\text {OUT }}$	DC output voltage ${ }^{3}$	output in Off or High state	-0.5 to +5.5	V
$\mathrm{I}_{\text {OUT }}$	DC output current	output in Low state	40	mA
$\mathrm{~T}_{\text {stg }}$	Storage temperature range	-65 to 150	${ }^{\circ} \mathrm{C}$	

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed $150^{\circ} \mathrm{C}$.
3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT
		MIN	MAX	
V_{CC}	DC supply voltage	4.5	5.5	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IH}	High-level input voltage	2.0		V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage		0.8	V
I_{OH}	High-level output current		-15	mA
I_{OL}	Low-level output current		20	mA
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input transition rise or fall rate	0	10	$\mathrm{~ns} / \mathrm{V}$
$\mathrm{T}_{\mathrm{amb}}$	Operating free-air temperature range	-40	+85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
V_{IK}	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{IK}}=-18 \mathrm{~mA}$		-0.9	-1.2		-1.2	V
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}	2.5	2.9		2.5		V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}		0.35	0.5		0.5	V
I	Input leakage current	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or 5.5 V		± 0.01	± 1.0		± 1.0	$\mu \mathrm{A}$
IOFF	Power-off leakage current	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}$ or $\mathrm{V}_{\mathrm{I}} \leq 4.5 \mathrm{~V}$		± 5.0	± 100		± 100	$\mu \mathrm{A}$
$I_{\text {CEX }}$	Output High leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		5.0	50		50	$\mu \mathrm{A}$
Io	Output current ${ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-50	-75	-180	-50	-180	mA
I_{CC}	Quiescent supply current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=$ GND or V_{CC}		2	50		50	$\mu \mathrm{A}$
$\Delta_{\text {l }} \mathrm{C}$	Additional supply current per input pin ${ }^{2}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; One data input at 3.4 V , other inputs at V_{CC} or GND		0.25	500		500	$\mu \mathrm{A}$

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
2. This is the increase in supply current for each input at 3.4 V .
3. For valid test results, data must not be loaded into the flip-flop or latch after applying the power.

AC ELECTRICAL CHARACTERISTICS

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$

SYMBOL	PARAMETER	WAVEFORM	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	1	180	250		150		MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CPn to Qn, Qn	1	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 4.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{tPLH}^{t_{\text {PHL }}} \end{aligned}$	Propagation delay Sn, Rn to Qn, Qn	3	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 6.2 \\ & 5.2 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{OSH}} \\ & \mathrm{t}_{\mathrm{OSLH}}{ }^{1} \end{aligned}$	Output to Output skew An or Bn to Yn	4		0.5	0.6		0.6	ns

NOTE:

1. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tosLh); parameter guaranteed by design.

AC SETUP REQUIREMENTS

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$

SYMBOL	PARAMETER	WAVEFORM	LIMITS			UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{gathered}$	
			MIN	TYP	MIN	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{su}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{su}}(\mathrm{~L}) \end{aligned}$	Setup time, high or low Dn to CPn	1	$\begin{aligned} & 2.6 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$	$\begin{aligned} & \hline 2.6 \\ & 2.4 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{th}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, high or low Dn to CPn	1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} \hline-1.4 \\ -1.4 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CPn pulse width, high or low	1	$\begin{aligned} & 1.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.1 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\text { SDn, }}$ RDn pulse width, low	3	2.0	1.3	2.2	ns
$\mathrm{t}_{\text {rec }}$	Recovery time $\overline{\mathrm{S}} \mathrm{Dn}, \overline{\mathrm{R}} \mathrm{Dn}$ to CPn	2	2.1	1.4	2.4	ns

AC WAVEFORMS

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{GND}$ to 3.0 V
The shaded areas indicate when the input is permitted to change for predictable output performance

Waveform 1. Propagation delay for data to output, data setup time and hold times, and clock width, and maximum clock frequency

Waveform 2. Recovery time for set or reset to clock

Waveform 3. Propagation delay for set and reset to output, set and reset pulse width

Waveform 4. Common edge skew

Dual D-type flip-flop

TEST CIRCUIT AND WAVEFORMS

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Flip-Flops category:
Click to view products by NXP manufacturer:
Other Similar products are found below :
NLV74HC74ADTR2G NLV74HC11ADR2G NTE74LS76A 74LCX16374MTDX MM74HC74AMX 74LVX74MTCX SN74HC273DWR SN74LVC74ADR SN74HC574PWR SN74HC273NSR 74AHC74D. 112 74AUP1G74DC.125 74HC112D.652 74HC574D.652 74HCT173D.652 74HCT174D.652 74HCT374D.652 74AHC574D.118 74HC174D.652 74HC273D.652 74HC374D.652 74HC74D.653 74HC74PW. 112 74HC107D.652 74HC574D.653 HEF4013BT. 653 HEF4027BT. 652 74HC107PW. 112 74HC73PW.112 74HCT74PW. 112 74LV74PW. 112 74HC173PW. 112 74HC174PW. 112 74HC175PW. 112 74HC377DB. 118 74HC574PW. 112 74HC73D.652 74HCT175D.652 74LVC1G74DP. 125 74LVC74APW. 112 74VHC174FT(BJ) 74VHC273FT(BJ) 74VHCT574AFT(BJ) 74HCT273DB.118 $\underline{74 H C 107 D B .112}$ 74HC112PW. 112 74HCT74DB. 112 74LVC1G80GV. 125 74LVC1G175GV. 125 74LVC1G79GV. 125

[^0]: $\mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 14$
 GND $=\operatorname{Pin} 7$

