2-input NAND gate Rev. 04 — 11 July 2007

1. General description

The 74HC1G00 and 74HCT1G00 are high speed Si-gate CMOS devices. They provide a 2-input NAND function.

The HC device has CMOS input switching levels and supply voltage range 2 V to 6 V.

The HCT device has TTL input switching levels and supply voltage range 4.5 V to 5.5 V.

The standard output currents are half those of the 74HC00 and 74HCT00.

2. Features

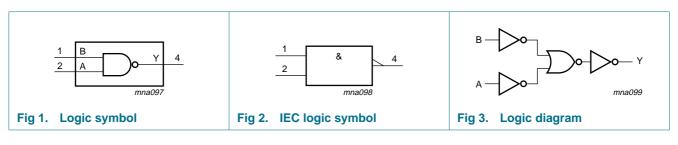
- Symmetrical output impedance
- High noise immunity
- Low power dissipation
- Balanced propagation delays
- SOT353-1 and SOT753 package options

3. Ordering information

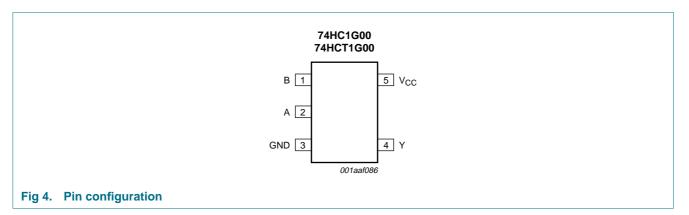
Table 1. Ordering information

Type number	Package						
	Temperature range	Name	Description	Version			
74HC1G00GW	–40 °C to +125 °C	TSSOP5	plastic thin shrink small outline package; 5 leads;	SOT353-1			
74HCT1G00GW			body width 1.25 mm				
74HC1G00GV	–40 °C to +125 °C SC-74A		plastic surface-mounted package; 5 leads	SOT753			
74HCT1G00GV							

4. Marking


Table 2.Marking codes

Type number	Marking
74HC1G00GW	НА
74HCT1G00GW	ТА
74HC1G00GV	H00
74HCT1G00GV	Т00


2-input NAND gate

5. Functional diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3.	Pin description	
Symbol	Pin	Description
В	1	data input
А	2	data input
GND	3	ground (0 V)
Y	4	data output
V _{CC}	5	supply voltage

7. Functional description

Table 4.Function table

H = *HIGH* voltage level; *L* = *LOW* voltage level

Input		Output
Α	В	Y
L	L	Н
L	Н	Н
н	L	Н
Н	Н	L

74HC_HCT1G00_4

2-input NAND gate

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). [1]

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7.0	V
I _{IK}	input clamping current	V_{I} < -0.5 V or V_{I} > V_{CC} + 0.5 V	-	±20	mA
I _{OK}	output clamping current	$V_{\rm O}$ < –0.5 V or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5 V	-	±20	mA
lo	output current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$	-	±12.5	mA
I _{CC}	supply current		-	25	mA
I _{GND}	ground current		-25	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C$ to +125 $^{\circ}C$	[2] _	200	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] Above 55 °C the value of P_{tot} derates linearly with 2.5 mW/K.

9. Recommended operating conditions

Table 6. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	7	74HC1G00			74HCT1G00		
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage	'	2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	0	-	V _{CC}	V
Vo	output voltage		0	-	V_{CC}	0	-	V_{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C
$\Delta t / \Delta V$	input transition rise	$V_{CC} = 2.0 V$	-	-	625	-	-	-	ns/V
	and fall rate	$V_{CC} = 4.5 V$	-	-	139	-	-	139	ns/V
		$V_{CC} = 6.0 V$	-	-	83	-	-	-	ns/V

10. Static characteristics

Table 7. Static characteristics

Voltages are referenced to GND (ground = 0 V). All typical values are measured at T_{amb} = 25 °C.

0				-					
Symbol	Parameter	Conditions	-40	–40 °C to +85 °C			–40 °C to +125 °C		
			Min	Тур	Max	Min	Max		
For type	74HC1G00								
V _{IH}	HIGH-level input	$V_{CC} = 2.0 V$	1.5	1.2	-	1.5	-	V	
voltage	voltage	$V_{CC} = 4.5 V$	3.15	2.4	-	3.15	-	V	
		$V_{CC} = 6.0 V$	4.2	3.2	-	4.2	-	V	
V _{IL}	LOW-level input	$V_{CC} = 2.0 V$	-	0.8	0.5	-	0.5	V	
voltage	voltage	$V_{CC} = 4.5 V$	-	2.1	1.35	-	1.35	V	
		$V_{CC} = 6.0 V$	-	2.8	1.8	-	1.8	V	

2-input NAND gate

Symbol	Parameter	Conditions	-40	–40 °C to +85 °C			–40 °C to +125 °C	
			Min	Тур	Max	Min	Max	
V _{он}	HIGH-level output	$V_{I} = V_{IH}$ or V_{IL}						
	voltage	$I_{O} = -20 \ \mu\text{A}; \ V_{CC} = 2.0 \ \text{V}$	1.9	2.0	-	1.9	-	V
		$I_{O} = -20 \ \mu\text{A}; \ V_{CC} = 4.5 \ \text{V}$	4.4	4.5	-	4.4	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 6.0 \ V$	5.9	6.0	-	5.9	-	V
		I_{O} = -2.0 mA; V_{CC} = 4.5 V	4.13	4.32	-	3.7	-	V
		$I_{O} = -2.6 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.63	5.81	-	5.2	-	V
V _{OL}	LOW-level output	$V_{I} = V_{IH} \text{ or } V_{IL}$						
	voltage	$I_{O} = 20 \ \mu A; \ V_{CC} = 2.0 \ V$	-	0	0.1	-	0.1	V
		$I_{O} = 20 \ \mu A; \ V_{CC} = 4.5 \ V$	-	0	0.1	-	0.1	V
		$I_{O} = 20 \ \mu A; \ V_{CC} = 6.0 \ V$	-	0	0.1	-	0.1	V
		I_{O} = 2.0 mA; V_{CC} = 4.5 V	-	0.15	0.33	-	0.4	V
		I_{O} = 2.6 mA; V_{CC} = 6.0 V	-	0.16	0.33	-	0.4	V
l _i	input leakage current	$V_{I} = V_{CC}$ or GND; $V_{CC} = 6.0 V$	-	-	1.0	-	1.0	μΑ
сс	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0$ V	-	-	10	-	20	μA
Cı	input capacitance		-	1.5	-	-	-	pF
For type	74HCT1G00							
/ _{IH}	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	1.6	-	2.0	-	V
VIL	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	1.2	0.8	-	0.8	V
∕ _{он}	HIGH-level output	$V_I = V_{IH} \text{ or } V_{IL}$						
	voltage	$I_O = -20 \ \mu\text{A}; \ V_{CC} = 4.5 \ \text{V}$	4.4	4.5	-	4.4	-	V
		I_{O} = -2.0 mA; V_{CC} = 4.5 V	4.13	4.32	-	3.7	-	V
∕ _{OL}	LOW-level output	$V_I = V_{IH} \text{ or } V_{IL}$						
	voltage	$I_{O} = 20 \ \mu A; \ V_{CC} = 4.5 \ V$	-	0	0.1	-	0.1	V
		I_{O} = 2.0 mA; V_{CC} = 4.5 V	-	0.15	0.33	-	0.4	V
I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 V$	-	-	1.0	-	1.0	μΑ
сс	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = V_{CC} \text{ or } GND; \ I_{O} = 0 \ A; \\ V_{CC} = 5.5 \ V \end{array}$	-	-	10	-	20	μA
2l ^{CC}	additional supply current	per input; V _{CC} = 4.5 V to 5.5 V; V _I = V _{CC} - 2.1 V; I _O = 0 A	-	-	500	-	850	μA
C _I	input capacitance		-	1.5	-	-	-	pF

Table 7. Static characteristics ... continued

2-input NAND gate

11. Dynamic characteristics

Table 8. Dynamic characteristics

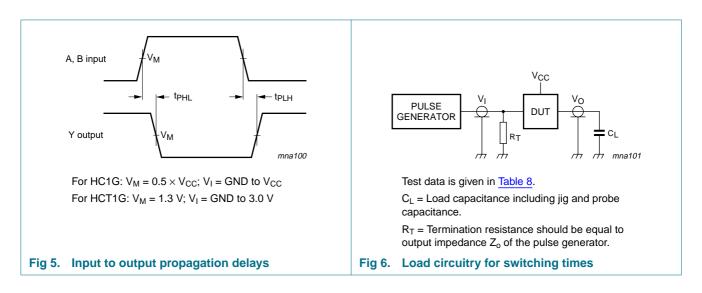
GND = 0 V; $t_r = t_f \le 6.0$ ns; All typical values are measured at $T_{amb} = 25 \degree C$. For test circuit see Figure 6

		21	umo						
Symbol	Parameter	Conditions		–40 °C to +85		5 °C	–40 °C to +125 °C		Unit
			-	Min	Тур	Max	Min	Max	1
For type	74HC1G00	'							
t _{pd}	propagation delay	A and B to Y; see Figure 5	<u>[1]</u>						
		$V_{CC} = 2.0 \text{ V}; \text{ C}_{L} = 50 \text{ pF}$		-	25	115	-	135	ns
		$V_{CC} = 4.5 \text{ V}; \text{ C}_{L} = 50 \text{ pF}$		-	9	23	-	27	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		-	7	-	-	-	ns
		$V_{CC} = 6.0 \text{ V}; \text{ C}_{L} = 50 \text{ pF}$		-	8	20	-	23	ns
C _{PD}	power dissipation capacitance	$V_I = GND$ to V_{CC}	[2]	-	19	-	-	-	pF
For type	e 74HCT1G00								
t _{pd}	propagation delay	A and B to Y; see Figure 5	<u>[1]</u>						
		$V_{CC} = 4.5 \text{ V}; \text{ C}_{L} = 50 \text{ pF}$		-	12	24	-	27	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		-	10	-	-	-	ns
C _{PD}	power dissipation capacitance	$V_{\rm I}$ = GND to $V_{\rm CC}-$ 1.5 V	[2]	-	21	-	-	-	pF

 $\label{eq:tpd} [1] \quad t_{pd} \text{ is the same as } t_{PLH} \text{ and } t_{PHL}.$

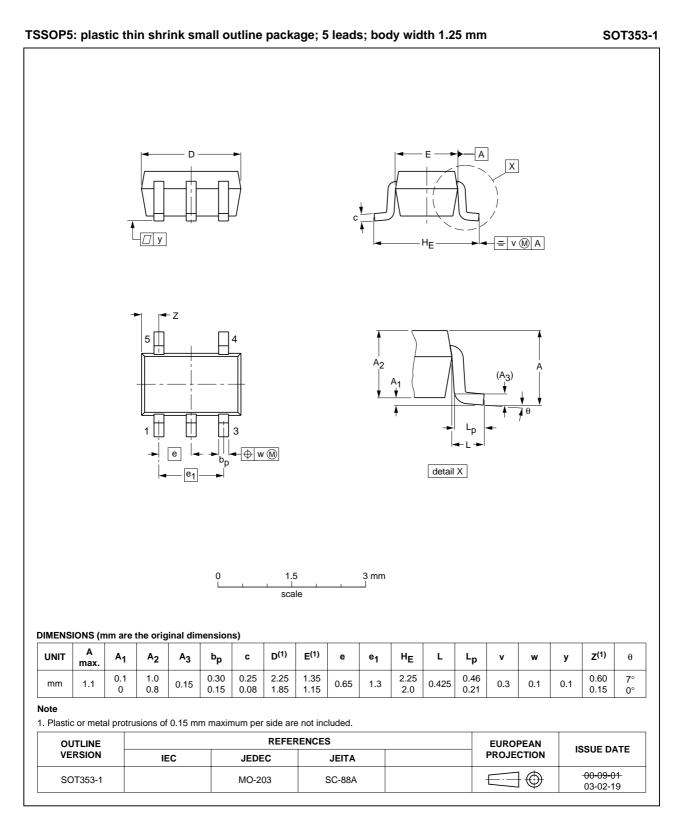
[2] C_{PD} is used to determine the dynamic power dissipation P_D (µW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:


 f_i = input frequency in MHz; f_o = output frequency in MHz

 C_L = output load capacitance in pF

V_{CC} = supply voltage in Volts


 $\Sigma~(C_L \times V_{CC}{}^2 \times f_o)$ = sum of outputs

12. Waveforms

2-input NAND gate

13. Package outline

Fig 7. Package outline SOT353-1 (TSSOP5)

2-input NAND gate

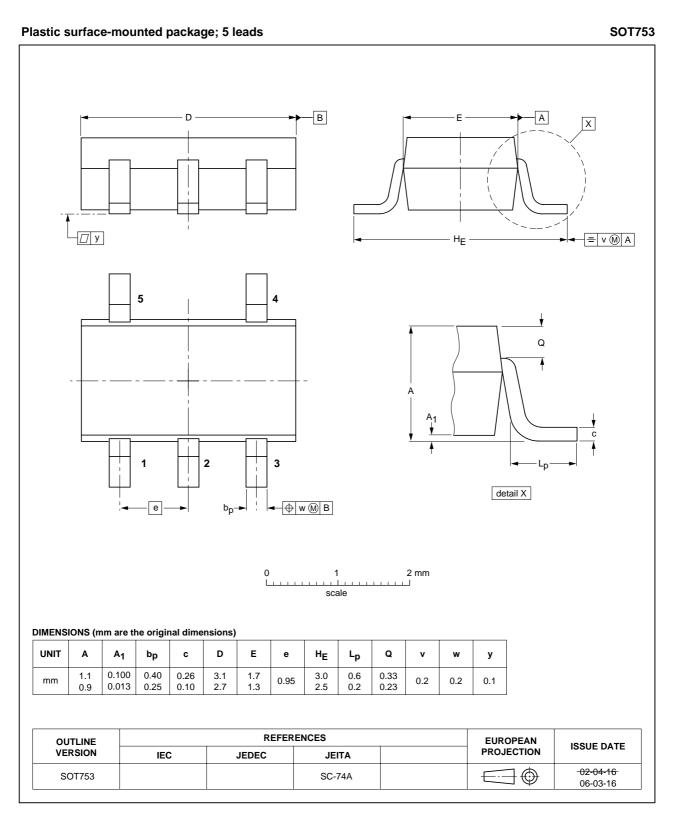


Fig 8. Package outline SOT753 (SC-74A)

14. Abbreviations

Table 9.	Abbreviations		
Acronym	Description		
DUT	Device Under Test		
TTL	Transistor-Transistor Logic		

15. Revision history

Table 10.Revision history

	-			
Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT1G00_4	20070711	Product data sheet	-	74HC_HCT1G00_3
Modifications:		t of this data sheet has been re of NXP Semiconductors.	edesigned to comply v	with the new identity
	 Legal texts 	s have been adapted to the ne	w company name whe	ere appropriate.
	 Package S 	OT353 changed to SOT353-1	in Section 3 and Sect	tion 13.
	 Quick refe 	rence data and Soldering sect	ions removed.	
	Section 2	"Features" updated.		
74HC_HCT1G00_3	20020515	Product specification	-	74HC_HCT1G00_2
74HC_HCT1G00_2	20010302	Product specification	-	74HC_HCT1G00_1
74HC_HCT1G00_1	19980730	Preliminary specification	-	-

16. Legal information

16.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

16.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

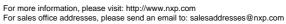
For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

NXP Semiconductors

74HC1G00; 74HCT1G00

2-input NAND gate


18. Contents

1	General description 1
2	Features 1
3	Ordering information 1
4	Marking 1
5	Functional diagram 2
6	Pinning information 2
6.1 6.2	Pinning
7	Functional description 2
8	Limiting values 3
9	Recommended operating conditions 3
10	Static characteristics 3
11	Dynamic characteristics 5
12	Waveforms 5
13	Package outline 6
14	Abbreviations8
15	Revision history 8
16	Legal information 9
16.1	Data sheet status 9
16.2	Definitions9
16.3	Disclaimers
16.4	Trademarks9
17	Contact information 9
18	Contents 10

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2007.

All rights reserved.

Date of release: 11 July 2007 Document identifier: 74HC_HCT1G00_4

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by NXP manufacturer:

Other Similar products are found below :

5962-8769901BCA 74HC85N NL17SG08P5T5G NL17SG32DFT2G NLU1G32AMUTCG NLV7SZ58DFT2G NLVHC1G08DFT1G NLVVHC1G14DTT1G NLX2G08DMUTCG NLX2G08MUTCG MC74HCT20ADR2G 091992B 091993X 093560G 634701C 634921A NL17SG32P5T5G NL17SG86DFT2G NLU1G32CMUTCG NLV14001UBDR2G NLVVHC1G132DTT1G NLVVHC1G86DTT1G NLX1G11AMUTCG NLX1G97MUTCG 746427X 74AUP1G17FW5-7 74LS38 74LVC1G08Z-7 74LVC32ADTR2G 74LVC1G125FW4-7 74LVC08ADTR2G MC74HCT20ADTR2G NLU1G08CMX1TCG NLV14093BDTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G NLV17SZ126DFT2G NLV27WZ17DFT2G NLV74HC02ADR2G NLV74HC08ADR2G NLVVHC1GT32DFT1G 74HC32S14-13 74LS133 74LVC1G32Z-7 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 M38510/06202BFA NLV74HC08ADTR2G NLV74HC14ADR2G