INTEGRATED CIRCUITS

DATA SHEET

74ALVT162240

16-bit inverting buffer/driver with 30Ω termination resistors (3-State)

Product specification Replaces data sheet of 1997 May 02 IC23 Data Handbook

2.5V/3.3V 16-bit inverting buffer/driver with 30 Ω termination resistors (3-State)

74ALVT162240

FEATURES

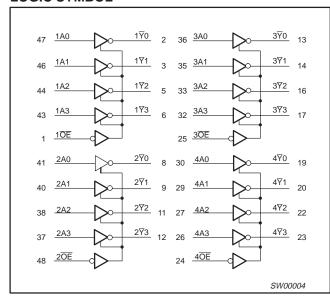
- 16-bit bus interface
- 5V I/O compatibile
- 3-State buffers
- Output capability: +12mA/-12mA
- TTL input and output switching levels
- Input and output interface capability to systems at 5V supply
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- ullet Outputs include series resistance of 30Ω making external termination resistors unnecessary
- Power-up 3-State
- No bus current loading when output is tied to 5V bus
- ESD protection exceeds 2000V per MIL STD 883 Method 3015 and 200V per Machine Model

DESCRIPTION

The 74ALVT162240 is a high-performance BiCMOS product designed for V_{CC} operation at 2.5V or 3.3V with I/O compatibility up to 5V.

This device is an inverting 16-bit buffer that is ideal for driving bus lines. The device features four Output Enables (1ŌE, 2ŌE, 3ŌE, 4ŌE), each controlling four of the 3-State outputs.

The 74ALVT162240 is designed with 30Ω series resistance in both the pull-up and pull-down output structures. This design reduces line noise in applications such as memory address drivers, clock drivers, and bus receivers/transmitters.

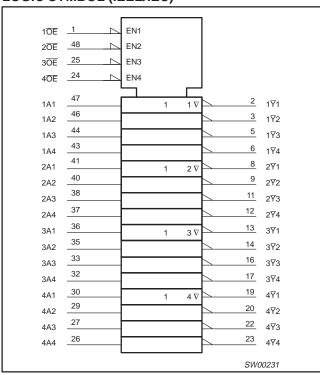

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	TYPI	UNIT		
STWBOL	FARAWIETER	T _{amb} = 25°C	2.5V	3.3V	J	
t _{PLH} t _{PHL}	Propagation delay nAx to nYx	C _L = 50pF	3.7 2.3	2.6 2.2	ns	
C _{IN}	Input capacitance DIR, OE	$V_I = 0V \text{ or } V_{CC}$	3	3	pF	
C _{Out}	Output capacitance	$V_{I/O} = 0V \text{ or } V_{CC}$	9	9	pF	
I _{CCZ}	Total supply current	Outputs disabled	100	100	μΑ	

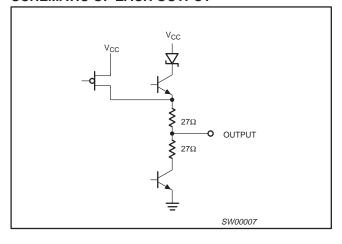
ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
48-Pin Plastic SSOP Type III	-40°C to +85°C	74ALVT162240 DL	AV162240 DL	SOT370-1
48-Pin Plastic TSSOP Type II	-40°C to +85°C	74ALVT162240 DGG	AV162240 DGG	SOT362-1

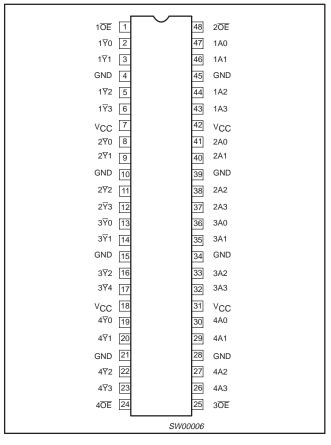
LOGIC SYMBOL


PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
47, 46, 44, 43, 41, 40, 38, 37, 36, 35, 33, 32, 30, 29, 27, 26	1A0 - 1A3 2A0 - 2A3 3A0 - 3A3 4A0 - 4A3	Data inputs
2, 3, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 22, 23	1\overline{\bar{Y}}0 - 1\overline{\bar{Y}}3 2\overline{\bar{Y}}0 - 2\overline{\bar{Y}}3 3\overline{\bar{Y}}0 - 3\overline{\bar{Y}}3 4\overline{\bar{Y}}0 - 4\overline{\bar{Y}}3	Data outputs
1, 48 25, 24	1 <u>0E</u> , 2 <u>0E</u> , 3 <u>0E</u> , 4 <u>0E</u>	Output enables
4, 10, 15, 21, 28, 34, 39, 45	GND	Ground (0V)
7, 18, 31, 42	V _{CC}	Positive supply voltage


2.5V/3.3V 16-bit inverting buffer/driver with 30Ω termination resistors (3-State)

74ALVT162240


LOGIC SYMBOL (IEEE/IEC)

SCHEMATIC OF EACH OUTPUT

PIN CONFIGURATION

FUNCTION TABLE

INP	OUTPUTS	
nOE	nAx	n₹x
L	L	Н
L	Н	L
Н	X	Z

H = High voltage level

L = Low voltage level

X = Don't care

Z = High Impedance "off" state

ABSOLUTE MAXIMUM RATINGS^{1, 2}

SYMBOL	PARAMETER CONDITIONS		RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +4.6	V
I _{IK}	DC input diode current	V _I < 0	-50	mA
VI	DC input voltage ³		-0.5 to +7.0	V
I _{OK}	DC output diode current	V _O < 0	-50	mA
V _{OUT}	DC output voltage ³	Output in Off or High state	-0.5 to +7.0	V
	DC output ourrent	Output in Low state	128	A
IOUT	DC output current	Output in High state	-64	mA
T _{stg}	Storage temperature range		-65 to +150	°C

2.5V/3.3V 16-bit inverting buffer/driver with 30Ω termination resistors (3-State)

74ALVT162240

NOTES:

- 1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- 2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.
- 3. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	2.5V RANGE LIMITS		3.3V RANGE LIMITS		UNIT
STWIBOL	FARAWETER	MIN	MAX	MIN	MAX	ONIT
V _{CC}	DC supply voltage	2.3	2.7	3.0	3.6	V
V _I	Input voltage	0	5.5	0	5.5	V
V _{IH}	High-level input voltage	1.7		2.0		V
V _{IL}	Input voltage		0.7		0.8	V
I _{OH}	High-level output current		-8		-12	mA
I _{OL}	Low-level output current		12		12	mA
Δt/Δν	Input transition rise or fall rate; Outputs enabled		10		10	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	-40	+85	°C

DC ELECTRICAL CHARACTERISTICS (3.3V \pm 0.3V RANGE)

				LIMITS			
SYMBOL	MBOL PARAMETER TEST CONDITIONS		TEST CONDITIONS		Temp = -40°C to -		UNIT
				MIN	TYP ¹	MAX	
V _{IK}	Input clamp voltage	$V_{CC} = 3.0V; I_{IK} = -18mA$			-0.85	-1.2	V
V _{OH}	High-level output voltage	$V_{CC} = 3.0V; I_{OH} = -12mA$		2.0	2.5	2.5	V
V _{OL}	Low-level output voltage	$V_{CC} = 3.0V; I_{OL} = 12mA$			0.5	0.8	V
		$V_{CC} = 3.6V$; $V_I = V_{CC}$ or GND	Control pins		0.1	±1	
		$V_{CC} = 0 \text{ or } 3.6V; V_I = 5.5V$	Control pins		0.1	10	
I _I	Input leakage current	$V_{CC} = 3.6V; V_I = 5.5V$			0.1	10	μΑ
		$V_{CC} = 3.6V; V_{I} = V_{CC}$	Data pins ⁴		0.5	1	
		V _{CC} = 3.6V; V _I = 0	1 1		0.1	-5	
I _{OFF}	Off current	$V_{CC} = 0V; V_{I} \text{ or } V_{O} = 0 \text{ to } 4.5V$			0.1	±100	μΑ
	Bus Hold current	$V_{CC} = 3.0V; V_I = 0.8V$		75	130		
I _{HOLD}	Data inputs ⁵	$V_{CC} = 3.0V; V_I = 2.0V$		-75	-140		μΑ
	Data iriputs	$V_I = 0V \text{ to } 3.6V; V_{CC} = 3.6V$		±500			
I _{EX}	Current into an output in the High state when V _O > V _{CC}	V _O = 5.5V; V _{CC} = 3.0V			10	125	μА
I _{PU/PD}	Power up/down 3-State output current ³	$V_{CC} \le 1.2V$; $V_O = 0.5V$ to V_{CC} ; $V_I = GNE$ OE/OE = Don't care	or V _{CC} ;		1	±100	μΑ
I _{OZH}	3-State output High current	$V_{CC} = 3.6V; V_O = 3.0V; V_I = V_{IL} \text{ or } V_{IH}$			0.5	5	μΑ
I _{OZL}	3-State output Low current	$V_{CC} = 3.6V; V_O = 0.5V; V_I = V_{IL} \text{ or } V_{IH}$			0.5	- 5	μΑ
I _{CCH}		$V_{CC} = 3.6V$; Outputs High, $V_I = GND$ or V_{CC} , $I_O = 0$			0.05	0.1	
I _{CCL}	Quiescent supply current	$V_{CC} = 3.6V$; Outputs Low, $V_I = GND$ or V_{CC} , $I_O = 0$			3.6	5.5	mA
I _{CCZ}]	$V_{CC} = 3.6V$; Outputs Disabled; $V_I = GND$ or V_{CC} , $I_O = 0^5$			0.06	0.1	
Δl _{CC}	Additional supply current per input pin ²	V_{CC} = 3V to 3.6V; One input at V_{CC} -0.6 Other inputs at V_{CC} or GND	V,		0.1	0.4	mA

NOTES:

- 1. All typical values are at $V_{CC} = 3.3V$ and $T_{amb} = 25^{\circ}C$. 2. This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND
- 3. This parameter is valid for any V_{CC} between 0V and 1.2V with a transition time of up to 10msec. From V_{CC} = 1.2V to V_{CC} = 3.3V \pm 0.3V a transition time of 100 μ sec is permitted. This parameter is valid for $T_{amb} = 25$ °C only.
- Unused pins at V_{CC} or GND.
- 5. I_{CCZ} is measured with outputs pulled up to V_{CC} or pulled down to ground.

2.5V/3.3V 16-bit inverting buffer/driver with 30Ω termination resistors (3-State)

74ALVT162240

6. This is the bus hold overdrive current required to force the input to the opposite logic state.

AC CHARACTERISTICS (3.3V \pm 0.3V RANGE)

GND = 0V; $t_R = t_F = 2.5$ ns; $C_L = 50$ pF; $R_L = 500\Omega$; $T_{amb} = -40$ °C to +85°C.

SYMBOL	SYMBOL PARAMETER		V _C	UNIT		
			MIN	TYP ¹	MAX	
t _{PLH} t _{PHL}	Propagation delay nAx to nBx or nBx to nAx	1	1.0 1.0	2.6 2.2	4.3 3.2	ns
t _{PZH} t _{PZL}	Output enable time to High and Low level	2	1.5 1.5	3.3 2.5	5.2 3.7	ns
t _{PHZ} t _{PLZ}	Output disable time from High and Low Level	2	1.5 1.5	3.0 2.4	4.4 3.6	ns

DC ELECTRICAL CHARACTERISTICS (2.5V \pm 0.2V RANGE)

					LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS		Temp = -40°C to		+85°C	UNIT
				MIN	TYP ¹	MAX	1
V _{IK}	Input clamp voltage	$V_{CC} = 2.3V; I_{IK} = -18mA$			-0.85	-1.2	V
V _{OH}	High-level output voltage	$V_{CC} = 2.3V; I_{OH} = -8mA$		1.7			V
V _{OL}	Low-level output voltage	$V_{CC} = 2.3V; I_{OL} = 12mA$			0.5	0.7	V
		$V_{CC} = 2.7V$; $V_I = V_{CC}$ or GND	Control ping		0.1	±1	
		$V_{CC} = 0 \text{ or } 2.7V; V_I = 5.5V$	Control pins		0.1	10	1
II	Input leakage current	$V_{CC} = 2.7V; V_I = 5.5V$			0.1	10	μΑ
	$V_{CC} = 2.7V; V_1 = V_{CC}$ Data pins ⁴	Data pins ⁴		0.1	1	1	
		$V_{CC} = 2.7V; V_I = 0$	1		0.1	-5	1
I _{OFF}	Off current	$V_{CC} = 0V$; V_{I} or $V_{O} = 0$ to 4.5V			0.1	±100	μΑ
	Bus Hold current	$V_{CC} = 2.5V; V_I = 0.7V$			90		^
HOLD	Data inputs ⁶	$V_{CC} = 2.5V; V_I = 1.7V$			-10		μΑ
I _{EX}	Current into an output in the High state when V _O > V _{CC}	V _O = 5.5V; V _{CC} = 2.3V			10	125	μА
I _{PU/PD}	Power up/down 3-State output current ³	$V_{CC} \le 1.2V$; $V_O = 0.5V$ to V_{CC} ; $V_I = GND$ or V_{CC} ; $OE/OE = Don't$ care			1	±100	μА
I _{OZH}	3-State output High current	$V_{CC} = 2.7V$; $V_{O} = 2.3V$; $V_{I} = V_{IL}$ or V_{IH}			0.5	5	μΑ
I _{OZL}	3-State output Low current	$V_{CC} = 2.7V; V_{O} = 0.5V; V_{I} = V_{IL} \text{ or } V_{IH}$			0.5	- 5	μΑ
I _{CCH}		$V_{CC} = 2.7V$; Outputs High, $V_I = GND$ or V_{CC} , $I_O = 0$			0.04	0.1	
I _{CCL}	Quiescent supply current	$V_{CC} = 2.7V$; Outputs Low, $V_I = GND$ or V_{CC} , $I_O = 0$			2.6	4.5	mΑ
I _{CCZ}	1	$V_{CC} = 2.7V$; Outputs Disabled; $V_I = GND$ or V_{CC} , $I_O = 0^5$			0.04	0.1	1
ΔI_{CC}	Additional supply current per input pin ²	V_{CC} = 2.3V to 2.7V; One input at V_{CC} -0. Other inputs at V_{CC} or GND	.6V,		0.1	0.4	mA

- 1. All typical values are at $V_{CC} = 2.5V$ and $T_{amb} = 25^{\circ}C$.
- This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND
 This parameter is valid for any V_{CC} between 0V and 1.2V with a transition time of up to 10msec. From V_{CC} = 1.2V to V_{CC} = 2.5V ± 0.2V a transition time of 100μsec is permitted. This parameter is valid for T_{amb} = 25°C only.
- Unused pins at V_{CC} or GND.
- 5. I_{CCZ} is measured with outputs pulled up to V_{CC} or pulled down to ground.
- 6. Not guaranteed.

^{1.} All typical values are at $V_{CC} = 3.3V$ and $T_{amb} = 25$ °C.

2.5V/3.3V 16-bit inverting buffer/driver with 30Ω termination resistors (3-State)

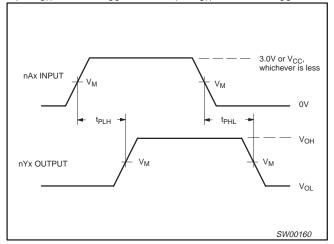
74ALVT162240

AC CHARACTERISTICS (2.5V \pm 0.2V RANGE)

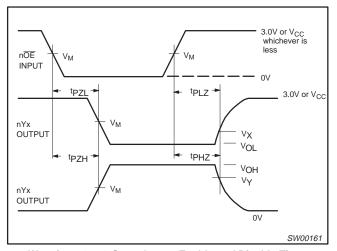
GND = 0V; $t_R = t_F = 2.5$ ns; $C_L = 50$ pF; $R_L = 500\Omega$; $T_{amb} = -40$ °C to +85°C.

	PARAMETER			UNIT		
SYMBOL		WAVEFORM	V _C			
			MIN	TYP ¹	MAX	
t _{PLH} t _{PHL}	Propagation delay nAx to nBx or nBx to nAx	1	1.0 1.0	3.7 2.3	5.4 3.5	ns
t _{PZH} t _{PZL}	Output enable time to High and Low level	2	1.5 1.5	4.5 3.1	6.8 4.9	ns
t _{PHZ} t _{PLZ}	Output disable time from High and Low Level	2	1.5 1.0	2.8 2.0	4.4 3.3	ns

NOTE:

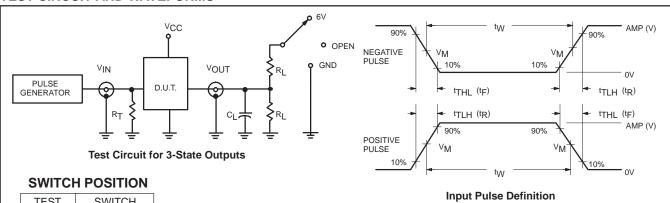

^{1.} All typical values are at V_{CC} = 2.5V and T_{amb} = 25°C.

2.5V/3.3V 16-bit inverting buffer/driver with 30Ω termination resistors (3-State)


74ALVT162240

AC WAVEFORMS

 $\begin{array}{l} V_M = 1.5 V \text{ at } V_{CC} \geq 3.0 V, \ V_M = V_{CC}/2 \text{ at } V_{CC} \leq 2.7 V \\ V_X = V_{OL} + 0.3 V \text{ at } V_{CC} \geq 3.0 V, \ V_X = V_{OL} + 0.150 V \text{ at } V_{CC} \leq 2.7 V \\ V_Y = V_{OH} - 0.3 V \text{ at } V_{CC} \geq 3.0 V, \ V_Y = V_{OH} - 0.150 V \text{ at } V_{CC} \leq 2.7 V \end{array}$



Waveform 1. Input (nAx) to Output ($n\overline{Y}x$) Propagation Delays

Waveform 2. 3-State Output Enable and Disable Times

TEST CIRCUIT AND WAVEFORMS

TEST	SWITCH
t _{PHZ} /t _{PZH}	GND
t _{PLZ} /t _{PZL}	6V or V _{CC} x 2
t _{PLH} /t _{PHL}	open

DEFINITIONS

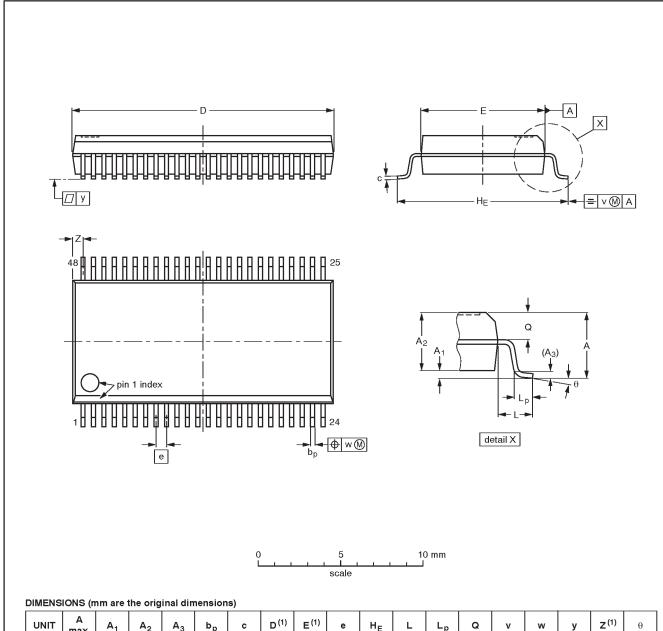
 R_L = Load resistor; see AC CHARACTERISTICS for value.

 C_L = Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.

 R_T = Termination resistance should be equal to Z_{OUT} of pulse generators.

EA MILV	INPUT PULSE REQUIREMENTS						
FAMILY	Amplitude	Rep. Rate	t _W	t _R	t _F		
74ALVT16	3.0V or V _{CC} whichever is less	≤10MHz	500ns	≤2.5ns	≤2.5ns		

SW00232


1998 Feb 13 7

16-bit inverting buffer/driver with 30Ω termination resistors (3-State)

74ALVT162240

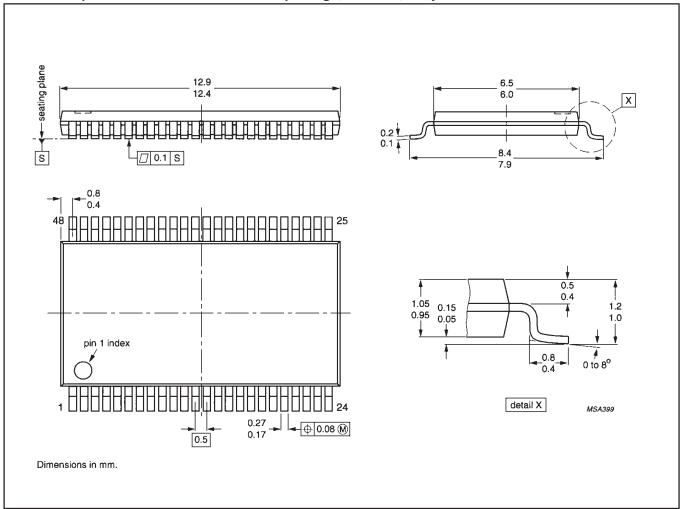
SSOP48: plastic shrink small outline package; 48 leads; body width 7.5 mm

SOT370-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2.8	0.4 0.2	2.35 2.20	0.25	0.3 0.2	0.22 0.13	16.00 15.75	7.6 7.4	0.635	10.4 10.1	1.4	1.0 0.6	1.2 1.0	0.25	0.18	0.1	0.85 0.40	8° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT370-1		MO-118AA				93-11-02 95-02-04

16-bit inverting buffer/driver with 30Ω termination resistors (3-State)

74ALVT162240

TSSOP48: plastic thin shrink small outline package; 48 leads; body width 6.1mm

SOT362-1

16-bit inverting buffer/driver with 30Ω termination resistors (3-State)

74ALVT162240

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

^[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Date of release: 05-96

Document order number: 9397-750-03616

Let's make things better.

Philips Semiconductors

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

5962-9217601MSA 634810D 875140G HEF4022BP HEF4043BP NL17SG125DFT2G NL17SZ126P5T5G NLU1GT126CMUTCG
NLU3G16AMX1TCG NLV27WZ125USG MC74HCT365ADTR2G BCM6306KMLG 54FCT240CTDB Le87401NQC Le87402MQC
028192B 042140C 051117G 070519XB 065312DB 091056E 098456D NL17SG07DFT2G NL17SG17DFT2G NL17SG34DFT2G
NL17SZ07P5T5G NL17SZ125P5T5G NLU1GT126AMUTCG NLV27WZ16DFT2G 5962-8982101PA 5962-9052201PA 74LVC07ADR2G
MC74VHC1G125DFT1G NL17SH17P5T5G NL17SZ125CMUTCG NLV17SZ07DFT2G NLV37WZ17USG NLVHCT244ADTR2G
NC7WZ17FHX 74HCT126T14-13 NL17SH125P5T5G NLV14049UBDTR2G NLV37WZ07USG 74VHC541FT(BE) RHFAC244K1
74LVC1G17FW4-7 74LVC1G126FZ4-7 BCM6302KMLG 74LVC1G07FZ4-7 74LVC1G125FW4-7