Low-power dual 2-input NOR gate Rev. 7 — 4 February 2013

Product data sheet

General description 1.

The 74AUP2G02 provides a dual 2-input NOR function.

Schmitt trigger action at all inputs makes the circuit tolerant to slower input rise and fall times across the entire V_{CC} range from 0.8 V o 3.6 V.

This device ensures a very low static and dynamic power consumption across the entire V_{CC} range from 0.8 V to 3.6 V.

This device is fully specified for partial power-down applications using IOFF. The IOFF circuitry disables the output, preventing a damaging backflow current through the device when it is powered down.

2. **Features and benefits**

- Wide supply voltage range from 0.8 V to 3.6 V
- High noise immunity
- Complies with JEDEC standards:
 - JESD8-12 (0.8 V to 1.3 V)
 - JESD8-11 (0.9 V to 1.65 V)
 - JESD8-7 (1.2 V to 1.95 V)
 - JESD8-5 (1.8 V to 2.7 V)
 - JESD8-B (2.7 V to 3.6 V)
- ESD protection:
 - HBM JESD22-A114F Class 3A exceeds 5000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- Low static power consumption; $I_{CC} = 0.9 \mu A$ (maximum)
- Latch-up performance exceeds 100 mA per JESD78B Class II
- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10 % of V_{CC}
- I_{OFF} circuitry provides partial power-down mode operation
- Multiple package options
- Specified from –40 °C to +85 °C and –40 °C to +125 °C

Low-power dual 2-input NOR gate

3. Ordering information

Table 1. Ordering information									
Type number	Package								
	Temperature range	Name	Description						
74AUP2G02DC	–40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package; 8 leads; body width 2.3 mm	SOT765-1					
74AUP2G02GT	–40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 1 \times 1.95 \times 0.5 mm	SOT833-1					
74AUP2G02GF	–40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body $1.35 \times 1 \times 0.5$ mm	SOT1089					
74AUP2G02GD	–40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 3 \times 2 \times 0.5 mm	SOT996-2					
74AUP2G02GM	–40 °C to +125 °C	XQFN8	plastic, extremely thin quad flat package; no leads; 8 terminals; body 1.6 \times 1.6 \times 0.5 mm	SOT902-2					
74AUP2G02GN	–40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body $1.2 \times 1.0 \times 0.35$ mm	SOT1116					
74AUP2G02GS	–40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.35 \times 1.0 \times 0.35 mm	SOT1203					

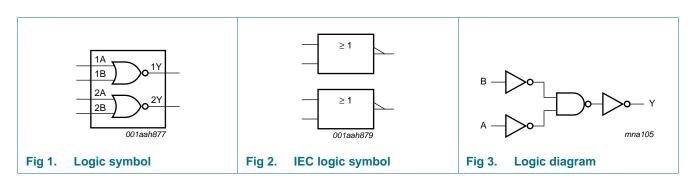

4. Marking

Table 2.Marking codes

5	
Type number	Marking code ^[1]
74AUP2G02DC	p02
74AUP2G02GT	p02
74AUP2G02GF	рВ
74AUP2G02GD	p02
74AUP2G02GM	p02
74AUP2G02GN	рВ
74AUP2G02GS	рВ

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.


5. Functional diagram

Low-power dual 2-input NOR gate

Pinning information 6.

6.1 Pinning

Transparent top view Pin configuration SOT996-2

Pin configuration SOT902-2 Fig 7.

Transparent top view

6.2 Pin description

001aaj300

Symbol	Pin		Description	
	SOT765-1, SOT833-1, SOT1089, SOT996-2, SOT1116 and SOT1203	SOT902-2		
1A, 2A	1, 5	7, 3	data input	
1B, 2B	2, 6	6, 2	data input	
GND	4	4	ground (0 V)	
1Y, 2Y	7, 3	1, 5	data output	
V _{CC}	8	8	supply voltage	
74AUP2G02	All information provided	in this document is subject to I	egal disclaimers.	© NXP B.V. 2013. All rights reserved.

Fig 6.

001aae473

7. Functional description

Table 4.	Function table ^[1]		
Input			Output
nA		nB	nY
L		L	н
L		Н	L
Н		L	L
Н		Н	L

[1] H = HIGH voltage level; L = LOW voltage level.

8. Limiting values

Table 5.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+4.6	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
VI	input voltage		<u>[1]</u> –0.5	+4.6	V
I _{OK}	output clamping current	V _O < 0 V	-50	-	mA
Vo	output voltage	Active mode and Power-down mode	<u>[1]</u> –0.5	+4.6	V
Ι _Ο	output current	$V_{O} = 0 V$ to V_{CC}	-	±20	mA
I _{CC}	supply current		-	+50	mA
I _{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \text{ °C to } +125 \text{ °C}$	[2] _	250	mW

[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For VSSOP8 packages: above 110 °C the value of P_{tot} derates linearly with 8.0 mW/K. For XSON8 and XQFN8 packages: above 118 °C the value of P_{tot} derates linearly with 7.8 mW/K.

9. Recommended operating conditions

Table 6.	Operating conditions				
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		0.8	3.6	V
VI	input voltage		0	3.6	V
Vo	output voltage	Active mode	0	V _{CC}	V
		Power-down mode; $V_{CC} = 0 V$	0	3.6	V
T _{amb}	ambient temperature		-40	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	$V_{CC} = 0.8 V \text{ to } 3.6 V$	0	200	ns/V

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 2	5 °C					
VIH	HIGH-level input voltage	$V_{CC} = 0.8 V$	$0.70\times V_{CC}$	-	-	V
		$V_{CC} = 0.9 V$ to 1.95 V	$0.65 \times V_{CC}$	-	-	V
		V_{CC} = 2.3 V to 2.7 V	1.6	-	-	V
		V_{CC} = 3.0 V to 3.6 V	2.0	-	-	V
V _{IL}	LOW-level input voltage	$V_{CC} = 0.8 V$	-	-	$0.30\times V_{CC}$	V
		$V_{CC} = 0.9 V$ to 1.95 V	-	-	$0.35 \times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-	-	0.9	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = –20 $\mu A;$ V_{CC} = 0.8 V to 3.6 V	$V_{CC}-0.1$	-	-	V
		$I_0 = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.75 \times V_{CC}$	-	-	V
		$I_0 = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	1.11	-	-	V
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.32	-	-	V
		I_{O} = -2.3 mA; V_{CC} = 2.3 V	2.05	-	-	V
		$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.9	-	-	V
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.72	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.6	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = 20 $\mu A;$ V_{CC} = 0.8 V to 3.6 V	-	-	0.1	V
		$I_0 = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	-	-	$0.3 \times V_{CC}$	V
		$I_{O} = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	-	-	0.31	V
		I_{O} = 1.9 mA; V_{CC} = 1.65 V	-	-	0.31	V
		I_{O} = 2.3 mA; V_{CC} = 2.3 V	-	-	0.31	V
		$I_{O} = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.44	V
		I_{O} = 2.7 mA; V_{CC} = 3.0 V	-	-	0.31	V
		I_{O} = 4.0 mA; V_{CC} = 3.0 V	-	-	0.44	V
I	input leakage current	V_{I} = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.1	μΑ
OFF	power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.2	μΑ
∆l _{OFF}	additional power-off leakage current	V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC} = 0$ V to 0.2 V	-	-	±0.2	μΑ
СС	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \; A; \\ V_{CC} = 0.8 \; V \; to \; 3.6 \; V \end{array}$	-	-	0.5	μA
Δl _{CC}	additional supply current		<u>[1]</u> -	-	40	μΑ
CI	input capacitance	V_{CC} = 0 V to 3.6 V; V _I = GND or V _{CC}	-	0.8	-	pF
Co	output capacitance	$V_{O} = GND; V_{CC} = 0 V$	-	1.7	-	pF

Low-power dual 2-input NOR gate

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
-	40 °C to +85 °C					
VIH	HIGH-level input voltage	V _{CC} = 0.8 V	$0.70 \times V_{CC}$	-	-	V
		$V_{CC} = 0.9 \text{ V}$ to 1.95 V	$0.65 \times V_{CC}$	-	-	V
		V_{CC} = 2.3 V to 2.7 V	1.6	-	-	V
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	2.0	-	-	V
/ _{IL}	LOW-level input voltage	$V_{CC} = 0.8 V$	-	-	$0.30\times V_{CC}$	V
		$V_{CC} = 0.9 V$ to 1.95 V	-	-	$0.35\times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-	-	0.9	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = –20 $\mu\text{A};$ V_{CC} = 0.8 V to 3.6 V	$V_{CC}-0.1$	-	-	V
		$I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.7\times V_{CC}$	-	-	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	1.03	-	-	V
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.30	-	-	V
		$I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.97	-	-	V
		$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.85	-	-	V
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.67	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.55	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_O = 20 $\mu A;V_{CC}$ = 0.8 V to 3.6 V	-	-	0.1	V
		I_{O} = 1.1 mA; V_{CC} = 1.1 V	-	-	$0.3\times V_{CC}$	V
		I_{O} = 1.7 mA; V_{CC} = 1.4 V	-	-	0.37	V
		I_{O} = 1.9 mA; V_{CC} = 1.65 V	-	-	0.35	V
		I_{O} = 2.3 mA; V_{CC} = 2.3 V	-	-	0.33	V
		I_{O} = 3.1 mA; V_{CC} = 2.3 V	-	-	0.45	V
		I_{O} = 2.7 mA; V_{CC} = 3.0 V	-	-	0.33	V
		I_{O} = 4.0 mA; V_{CC} = 3.0 V	-	-	0.45	V
I	input leakage current	V_{I} = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.5	μΑ
OFF	power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.5	μΑ
\l _{OFF}	additional power-off leakage current	V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC} = 0$ V to 0.2 V	-	-	±0.6	μA
СС	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \; A; \\ V_{CC} = 0.8 \; V \; to \; 3.6 \; V \end{array}$	-	-	0.9	μA
∆l _{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A};$ $V_{CC} = 3.3 \text{ V}$	<u>[1]</u> -	-	50	μA

Table 7. Static characteristics ... continued

Low-power dual 2-input NOR gate

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = –	40 °C to +125 °C					
V _{IH}	HIGH-level input voltage	$V_{CC} = 0.8 V$	$0.75\times V_{CC}$	-	-	V
		$V_{CC} = 0.9 V$ to 1.95 V	$0.70\times V_{CC}$	-	-	V
		V_{CC} = 2.3 V to 2.7 V	1.6	-	-	V
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	2.0	-	-	V
V _{IL}	LOW-level input voltage	$V_{CC} = 0.8 V$	-	-	$0.25\times V_{CC}$	V
		$V_{CC} = 0.9 V$ to 1.95 V	-	-	$0.30\times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-	-	0.9	V
√ _{он}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_O = –20 $\mu\text{A};~V_{CC}$ = 0.8 V to 3.6 V	$V_{CC}-0.11$	-	-	V
		$I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.6\times V_{CC}$	-	-	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	0.93	-	-	V
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.17	-	-	V
		$I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.77	-	-	V
		$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.67	-	-	V
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.40	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.30	-	-	V
/ _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_O = 20 $\mu\text{A};V_{CC}$ = 0.8 V to 3.6 V	-	-	0.11	V
		I_{O} = 1.1 mA; V_{CC} = 1.1 V	-	-	$0.33 \times V_{CC}$	V
		I_{O} = 1.7 mA; V_{CC} = 1.4 V	-	-	0.41	V
		I_{O} = 1.9 mA; V_{CC} = 1.65 V	-	-	0.39	V
		I_{O} = 2.3 mA; V_{CC} = 2.3 V	-	-	0.36	V
		I_{O} = 3.1 mA; V_{CC} = 2.3 V	-	-	0.50	V
		I_{O} = 2.7 mA; V_{CC} = 3.0 V	-	-	0.36	V
		I_{O} = 4.0 mA; V_{CC} = 3.0 V	-	-	0.50	V
I	input leakage current	V_{I} = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.75	μΑ
OFF	power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.75	μΑ
\l _{OFF}	additional power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 0.2 \text{ V}$	-	-	±0.75	μA
СС	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \; A; \\ V_{CC} = 0.8 \; V \; to \; 3.6 \; V \end{array}$	-	-	1.4	μA
∕l ^{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A};$ $V_{CC} = 3.3 \text{ V}$	<u>[1]</u> -	-	75	μA

Table 7. Static characteristics ... continued

[1] One input at V_{CC} – 0.6 V, other input at V_{CC} or GND.

11. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9.

Symbol	Parameter	Conditions		T _{amb} = 25 °C			T _{amb} = -40 °C to +125 °C			Unit
				Min	Typ <mark>[1]</mark>	Max	Min	Max (85 °C)	Max (125 °C)	
C _L = 5 pl	F							1		
pd	propagation delay	nA, nB to nY; see Figure 8	[2]							
		$V_{CC} = 0.8 V$		-	17.0	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V		2.5	5.1	10.8	2.1	12.1	13.4	ns
		V_{CC} = 1.4 V to 1.6 V		1.6	3.7	6.7	1.4	7.8	8.6	ns
		V_{CC} = 1.65 V to 1.95 V		1.3	3.0	5.3	1.1	6.2	6.9	ns
		V_{CC} = 2.3 V to 2.7 V		1.0	2.4	3.9	0.9	4.6	5.1	ns
		V_{CC} = 3.0 V to 3.6 V		1.0	2.2	3.4	0.8	4.0	4.4	ns
C _L = 10	ρF									
t _{pd} p	propagation delay	nA, nB to nY; see Figure 8	[2]							
		$V_{CC} = 0.8 V$		-	20.4	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V		2.4	6.0	12.8	2.2	14.3	15.8	ns
		V_{CC} = 1.4 V to 1.6 V		1.9	4.3	7.9	1.7	9.2	10.2	ns
		V_{CC} = 1.65 V to 1.95 V		1.6	3.6	6.2	1.5	7.3	8.1	ns
		V_{CC} = 2.3 V to 2.7 V		1.4	3.0	4.7	1.2	5.6	6.2	ns
		V_{CC} = 3.0 V to 3.6 V		1.3	2.7	4.2	1.2	5.0	5.5	ns
C _L = 15	ρF									
pd	propagation delay	nA, nB to nY; see Figure 8	[2]							
		$V_{CC} = 0.8 V$		-	23.9	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V		3.4	6.8	14.6	3.1	16.4	18.1	ns
		V_{CC} = 1.4 V to 1.6 V		2.3	4.8	8.9	2.0	10.4	11.5	ns
		V_{CC} = 1.65 V to 1.95 V		1.9	4.0	7.0	1.7	8.3	9.2	ns
		V_{CC} = 2.3 V to 2.7 V		1.7	3.4	5.4	1.5	6.3	7.0	ns
		V_{CC} = 3.0 V to 3.6 V		1.6	3.2	4.8	1.4	5.7	6.3	ns
C _L = 30	ρF									
pd	propagation delay	nA, nB to nY; see Figure 8	[2]							
		$V_{CC} = 0.8 V$		-	34.2	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V		4.6	9.0	19.9	4.1	22.4	24.7	ns
		V_{CC} = 1.4 V to 1.6 V		3.4	6.4	11.8	2.9	13.9	15.3	ns
		V_{CC} = 1.65 V to 1.95 V		2.6	5.3	9.3	2.3	11.1	12.3	ns
		V_{CC} = 2.3 V to 2.7 V		2.4	4.5	7.1	2.1	8.5	9.4	ns
		V_{CC} = 3.0 V to 3.6 V		2.3	4.2	6.4	2.1	7.7	8.5	ns

74AUP2G02 Product data sheet

Low-power dual 2-input NOR gate

Conditions $T_{amb} = -40 \text{ °C to } +125 \text{ °C}$ Symbol Parameter T_{amb} = 25 °C Unit Typ[1] Min Max Min Max Max (85 °C) (125 °C) C_L = 5 pF, 10 pF, 15 pF and 30 pF [3] $f_i = 1 MHz;$ power dissipation CPD $V_I = GND$ to V_{CC} capacitance $V_{CC} = 0.8 V$ 2.6 pF _ ---- $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$ 2.7 _ _ -_ _ pF $V_{CC} = 1.4 \text{ V}$ to 1.6 V 2.8 --_ pF -- $V_{CC} = 1.65 \text{ V}$ to 1.95 V 2.9 pF ----- $V_{CC} = 2.3 \text{ V}$ to 2.7 V 3.3 -_ pF --- $V_{CC} = 3.0 \text{ V}$ to 3.6 V 3.8 -pF ---

Dynamic characteristics ... continued Table 8.

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9.

[1] All typical values are measured at nominal V_{CC}.

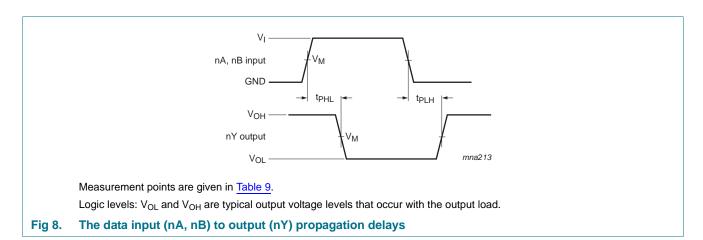
[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $\mathsf{P}_{\mathsf{D}} = \mathsf{C}_{\mathsf{P}\mathsf{D}} \times \mathsf{V}_{\mathsf{C}\mathsf{C}}{}^2 \times \mathsf{f}_i \times \mathsf{N} + \Sigma(\mathsf{C}_{\mathsf{L}} \times \mathsf{V}_{\mathsf{C}\mathsf{C}}{}^2 \times \mathsf{f}_o) \text{ where:}$

 f_i = input frequency in MHz;

 f_0 = output frequency in MHz;


 C_1 = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_0)$ = sum of the outputs.

12. Waveforms

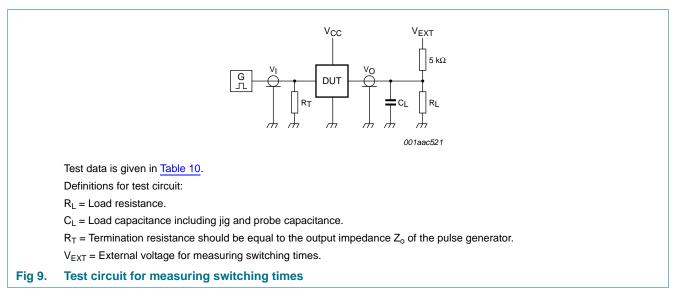


Table 9. **Measurement points**

Supply voltage	Output	Input				
V _{cc}	V _M	V _M	VI	$t_r = t_f$		
0.8 V to 3.6 V	$0.5 imes V_{CC}$	$0.5 imes V_{CC}$	V _{CC}	\leq 3.0 ns		

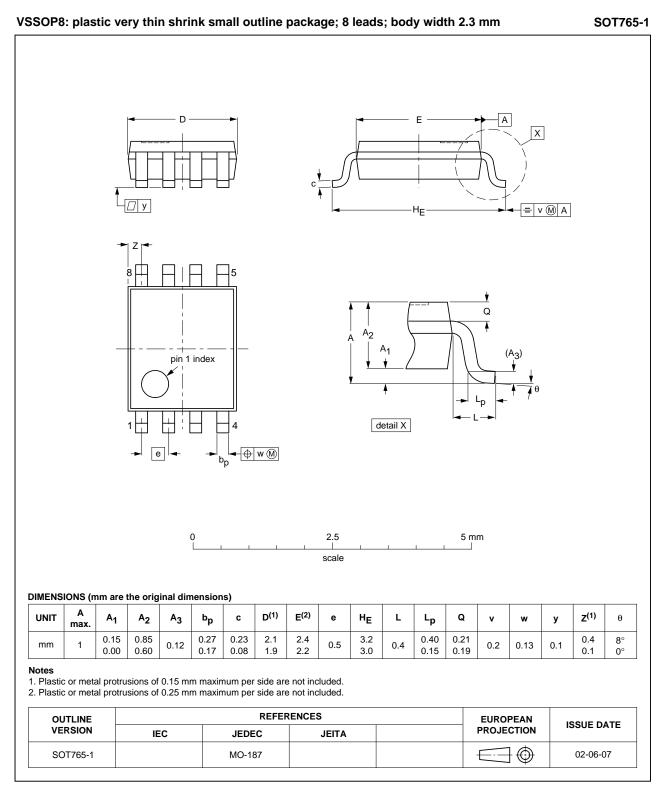
74AUP2G02 Product data sheet © NXP B.V. 2013. All rights reserved

Low-power dual 2-input NOR gate

Table 10. Test data

Supply voltage	Load	V _{EXT}			
V _{cc}	CL	R _L [1]	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
0.8 V to 3.6 V	5 pF, 10 pF, 15 pF and 30 pF	5 k Ω or 1 M Ω	open	GND	$2 \times V_{CC}$

[1] $R_L = 5 k\Omega$ when measuring enable and disable times.


 R_L = 1 M Ω when measuring propagation delays, set-up and hold times and pulse width.

NXP Semiconductors

74AUP2G02

Low-power dual 2-input NOR gate

13. Package outline

Fig 10. Package outline SOT765-1 (VSSOP8)

All information provided in this document is subject to legal disclaimers.

Low-power dual 2-input NOR gate

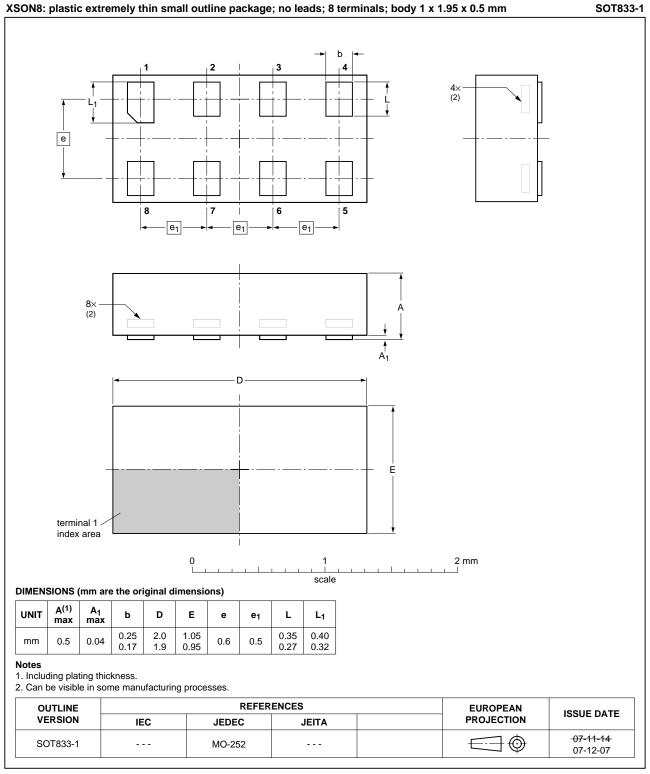
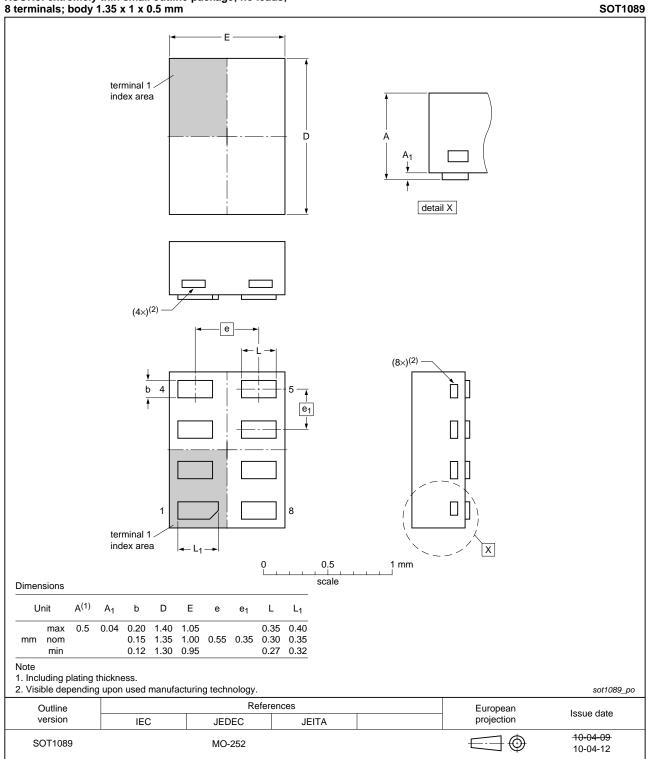
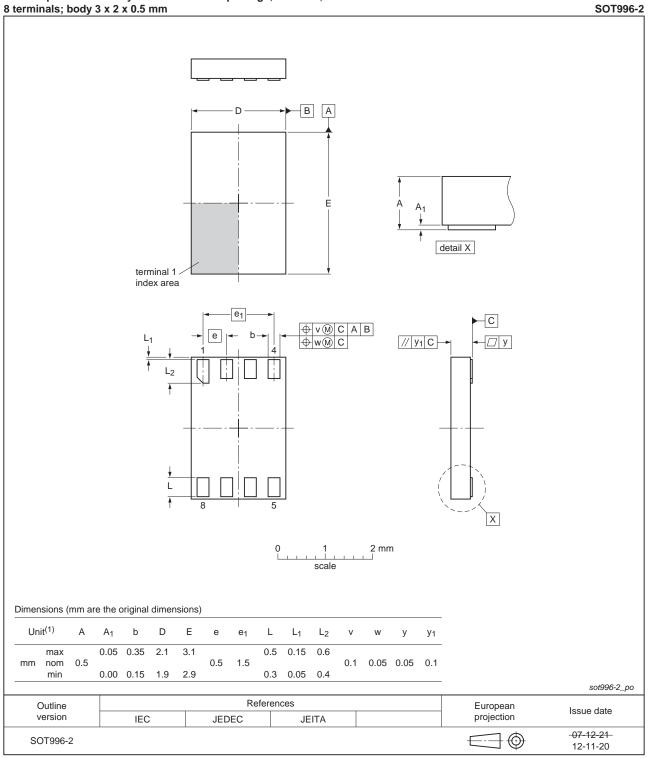



Fig 11. Package outline SOT833-1 (XSON8)

All information provided in this document is subject to legal disclaimers.

Low-power dual 2-input NOR gate

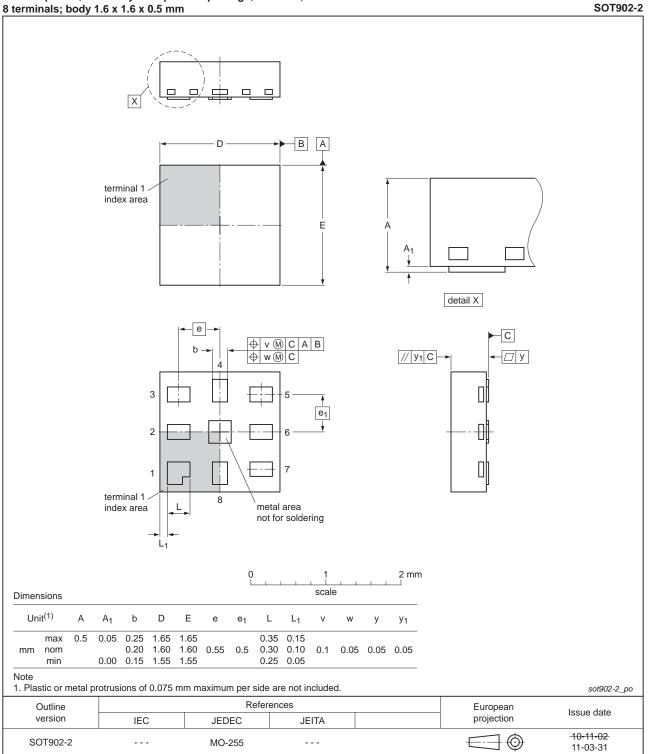


XSON8: extremely thin small outline package; no leads; 8 terminals; body 1.35 x 1 x 0.5 mm

Fig 12. Package outline SOT1089 (XSON8)

All information provided in this document is subject to legal disclaimers.

Low-power dual 2-input NOR gate

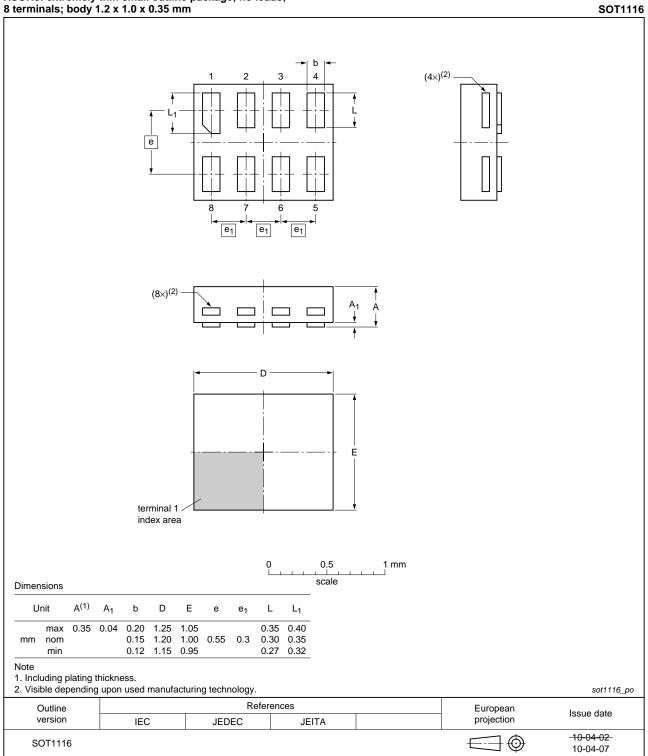


XSON8: plastic extremely thin small outline package; no leads;

Fig 13. Package outline SOT996-2 (XSON8)

All information provided in this document is subject to legal disclaimers.

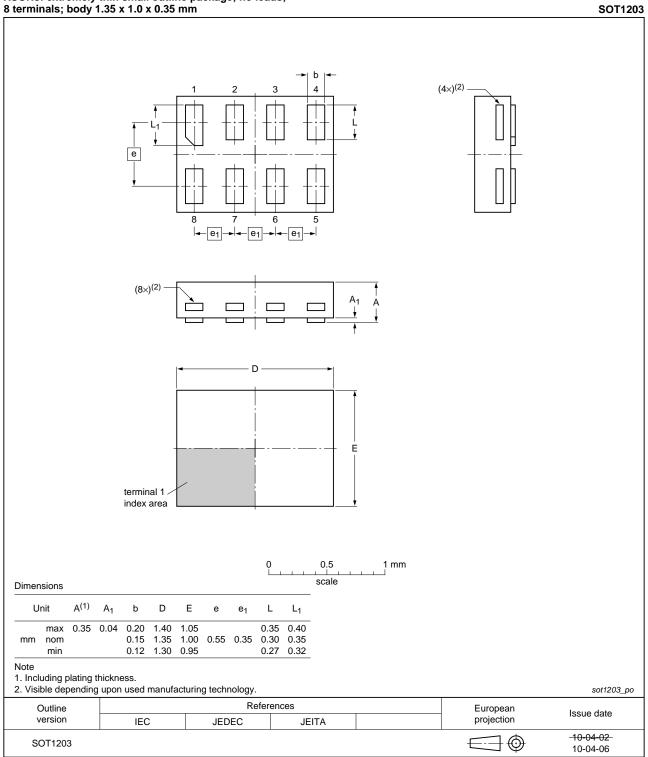
Low-power dual 2-input NOR gate



XQFN8: plastic, extremely thin quad flat package; no leads; 8 terminals; body 1.6 x 1.6 x 0.5 mm

Fig 14. Package outline SOT902-2 (XQFN8)

All information provided in this document is subject to legal disclaimers.


Low-power dual 2-input NOR gate

XSON8: extremely thin small outline package; no leads; 8 terminals; body 1.2 x 1.0 x 0.35 mm

Fig 15. Package outline SOT1116 (XSON8)

Low-power dual 2-input NOR gate

XSON8: extremely thin small outline package; no leads; 8 terminals; body 1.35 x 1.0 x 0.35 mm

Fig 16. Package outline SOT1203 (XSON8)

All information provided in this document is subject to legal disclaimers.

Low-power dual 2-input NOR gate

14. Abbreviations

Table 11. Abbreviations			
Acronym	Description		
CDM	Charged Device Model		
DUT	Device Under Test		
ESD	ElectroStatic Discharge		
HBM	Human Body Model		
MM	Machine Model		

15. Revision history

Table 12. Revision history						
Document ID	Release date	Data sheet status	Change notice	Supersedes		
74AUP2G02 v.7	20130204	Product data sheet	-	74AUP2G02 v.6		
Modifications: • For type number 74AUP2G02GD XSON8U has changed to XSON8.						
74AUP2G02 v.6	20120803	Product data sheet	-	74AUP2G02 v.5		
74AUP2G02 v.5	20111202	Product data sheet	-	74AUP2G02 v.4		
74AUP2G02 v.4	20101109	Product data sheet	-	74AUP2G02 v.3		
74AUP2G02 v.3	20081211	Product data sheet	-	74AUP2G02 v.2		
74AUP2G02 v.2	20080319	Product data sheet	-	74AUP2G02 v.1		
74AUP2G02 v.1	20060828	Product data sheet	-	-		

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

© NXP B.V. 2013. All rights reserved.

Low-power dual 2-input NOR gate

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

74AUP2G02

20 of 21

Low-power dual 2-input NOR gate

18. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 2
4	Marking
5	Functional diagram 2
6	Pinning information 3
6.1	Pinning 3
6.2	Pin description 3
7	Functional description 4
8	Limiting values 4
9	Recommended operating conditions 4
10	Static characteristics 5
11	Dynamic characteristics 8
12	Waveforms 9
13	Package outline 11
14	Abbreviations
15	Revision history 18
16	Legal information 19
16.1	Data sheet status 19
16.2	Definitions 19
16.3	Disclaimers
16.4	Trademarks 20
17	Contact information 20
18	Contents 21

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2013.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 4 February 2013 Document identifier: 74AUP2G02

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by NXP manufacturer:

Other Similar products are found below :

5962-8769901BCA 74HC85N NL17SG08P5T5G NL17SG32DFT2G NLU1G32AMUTCG NLV7SZ58DFT2G NLVHC1G08DFT1G NLVVHC1G14DTT1G NLX2G08DMUTCG NLX2G08MUTCG MC74HCT20ADR2G 091992B 091993X 093560G 634701C 634921A NL17SG32P5T5G NL17SG86DFT2G NLU1G32CMUTCG NLV14001UBDR2G NLVVHC1G132DTT1G NLVVHC1G86DTT1G NLX1G11AMUTCG NLX1G97MUTCG 746427X 74AUP1G17FW5-7 74LS38 74LVC1G08Z-7 74LVC32ADTR2G 74LVC1G125FW4-7 74LVC08ADTR2G MC74HCT20ADTR2G NLU1G08CMX1TCG NLV14093BDTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G NLV17SZ126DFT2G NLV27WZ17DFT2G NLV74HC02ADR2G NLV74HC08ADR2G NLVVHC1GT32DFT1G 74HC32S14-13 74LS133 74LVC1G32Z-7 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 M38510/06202BFA NLV74HC08ADTR2G NLV74HC14ADR2G