DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC58 Dual AND-OR gate

File under Integrated Circuits, IC06

FEATURES

- Output capability: standard
- ICC category: SSI

GENERAL DESCRIPTION

The 74 HC 58 is a high-speed Si -gate CMOS device and is pin compatible with low power Schottky TTL (LSTTL). It is specified in compliance with JEDEC standard no. 7A.

The " 58 " provides two sections of AND-OR gates. One section contains a 2 -wide, 3-input (1A to 1F) AND-OR gate and the second section contains a 2 -wide, 2 -input (2A to 2D) AND-OR gate.

QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=15^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
			HC	
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	```propagation delay 1n to 1Y 2n to 2Y```	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\begin{gathered} 11 \\ 9 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
C_{1}	input capacitance		3.5	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per gate	notes 1 and 2	18	pF

Notes

1. $C_{P D}$ is used to determine the dynamic power dissipation $\left(P_{D}\right.$ in $\left.\mu W\right)$:

$$
P_{D}=C_{P D} \times V_{C C}^{2} \times f_{i}+\sum\left(C_{L} \times V_{C C}^{2} \times f_{o}\right) \text { where: }
$$

$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of outputs
2. For HC the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

Dual AND-OR gate

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
$1,12,13,9,10,11$	1 A to 1 F	data inputs
$2,3,4,5$	2 A to 2D	data inputs
8,6	$1 \mathrm{Y}, 2 \mathrm{Y}$	data outputs
7	GND	ground (0 V)
14	V $_{\text {CC }}$	positive supply voltage

Fig. 4 Functional diagram.

Fig. 5 Logic diagram.

INPUTS				OUTPUT
2A	2B	2C	2D	2Y
L	X	L	X	L
L	X	X	L	L
X	L	L	X	L
X	L	X	L	L
X	X	H	H	H
H	H	X	X	H

Note

1. $\mathrm{H}=\mathrm{HIGH}$ voltage level

L = LOW voltage level
X = don't care

Dual AND-OR gate

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: standard
I CC category: SSI

AC CHARACTERISTICS FOR 74HC

$G N D=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	Tamb ${ }^{\circ}{ }^{\circ} \mathrm{C}$)							UNIT	TEST CONDITIONS	
		74HC								V_{Cc} (V)	WAVEFORMS
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay 1A,1B,1C,1D,1E, 1 F to 1 Y		$\begin{array}{\|l\|} \hline 36 \\ 13 \\ 10 \end{array}$	$\begin{aligned} & 115 \\ & 23 \\ & 20 \end{aligned}$		$\begin{aligned} & \hline 145 \\ & 29 \\ & 25 \end{aligned}$		$\begin{aligned} & 175 \\ & 35 \\ & 30 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 6
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $2 \mathrm{~A}, 2 \mathrm{~B}, 2 \mathrm{C}, 2 \mathrm{D} \text { to } 2 \mathrm{Y}$		$\begin{aligned} & 30 \\ & 11 \\ & 9 \end{aligned}$	$\begin{aligned} & \hline 100 \\ & 20 \\ & 17 \end{aligned}$		$\begin{aligned} & 125 \\ & 25 \\ & 21 \end{aligned}$		$\begin{aligned} & \hline 150 \\ & 30 \\ & 26 \\ & \hline \end{aligned}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 6
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 6

AC WAVEFORMS

Fig. 6 Waveforms showing the input ($n A, n B, n C, n D, 1 E, 1 F$) to output ($n Y$) propagation delays and the output transition times.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Logic Gates category:

Click to view products by NXP manufacturer:

Other Similar products are found below :
5962-8769901BCA 74HC85N NL17SG08P5T5G NL17SG32DFT2G NLU1G32AMUTCG NLV7SZ58DFT2G NLVHC1G08DFT1G NLVVHC1G14DTT1G NLX2G08DMUTCG NLX2G08MUTCG MC74HCT20ADR2G 091992B 091993X 093560G 634701C 634921A NL17SG32P5T5G NL17SG86DFT2G NLU1G32CMUTCG NLV14001UBDR2G NLVVHC1G132DTT1G NLVVHC1G86DTT1G NLX1G11AMUTCG NLX1G97MUTCG 746427X 74AUP1G17FW5-7 74LS38 74LVC1G08Z-7 74LVC32ADTR2G 74LVC1G125FW4-7 74LVC08ADTR2G MC74HCT20ADTR2G NLU1G08CMX1TCG NLV14093BDTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G NLV17SZ126DFT2G NLV27WZ17DFT2G NLV74HC02ADR2G NLV74HC08ADR2G NLVVHC1GT32DFT1G 74HC32S14-13 74LS133 74LVC1G32Z-7 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 M38510/06202BFA NLV74HC08ADTR2G NLV74HC14ADR2G

