PFR Series Polypropylene Film/Foil, Radial

Overview

The PFR Series is a capacitor with polypropylene film and metal foil electrodes, encapsulated in self-extinguishing resin in a box of material meeting the requirements of UL 94 V–0.

Applications

Typical applications include high speed applications requiring low losses at high frequencies and high dV/dt, such as electrical ballasts, televisions, video and telecommunications.

Benefits

Rated voltage: 63 – 1,000 VDC
Rated voltage: 40 – 250 VAC

Capacitance range: 0.0001 – 0.022 μF

· Lead spacing: 5 mm

Capacitance tolerance: ±1%, ±2%, ±2.5%, ±5%, ±10%

Climatic category: 55/100/56, IEC 60068–1

Tape and reel packaging in accordance with IEC 60286–2

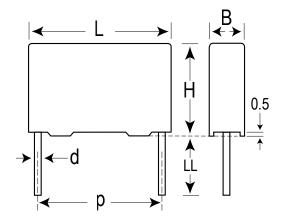
· RoHS Compliant and lead-free terminations

• Category temperature range of -55°C to +100°C

Legacy Part Number System

PFR	5	101	J	63	J11	L4	BULK
Series	Lead Spacing (mm)	Capacitance Code (pF)	Capacitance Tolerance	Rated Voltage (VDC)	Size Code	Lead Length	Packaging
Polypropylene Film/Foil	5 (Standard)	First two digits represent significant figures. Third digit specifies number of zeros.	F = ±1% G = ±2% H = ±2.5% J = ±5% K = ±10%	63 = 63 100 = 100 250 = 250 400 = 400 630 = 630 1000 = 1000	See Dimension Table	Letter "L" followed by lead length in mm	See Ordering Options Table

New KEMET Part Number System

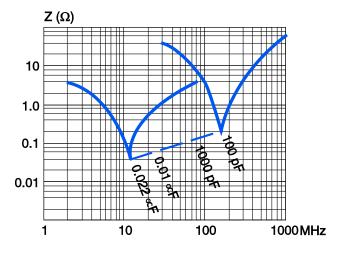

F	411	J	Н	101	J	063	С
Capacitor Class	Series	Lead Spacing (mm)	Size Code	Capacitance Code (pF)	Capacitance Tolerance	Rated Voltage (VDC)	Packaging
F = Film	Polypropylene Film/Foil	J = 5.0	See Dimension Table	First two digits represent significant figures. Third digit specifies number of zeros.	F = ±1% G = ±2% H = ±2.5% J = ±5% K = ±10%	063 = 63 100 = 100 250 = 250 400 = 400 630 = 630 1K0 = 1000	See Ordering Options Table

Ordering Options Table

Lead Spacing Nominal (mm)	Type of Leads and Packaging	Lead Length (mm)	KEMET Lead and Packaging Code	Legacy Lead and Packaging Code
	Standard Lead and Packaging Options			
	Bulk (Bag) – Short Leads	4 +1/-0	С	Bulk
	Tape & Reel (Standard Reel)	H ₀ = 18.5 +/-0.5	L	TR18
5	Other Lead and Packaging Options			
	Ammo Pack	H ₀ = 16.5 +/-0.5	Q	TA16
	Ammo Pack	H ₀ = 18.5 +/-0.5	R	TA18
	Tape & Reel (Large Reel)	H ₀ = 18.5 +/-0.5	Р	LR18

Dimensions - Millimeters

KEMET Size Legacy Size		р		В		Н		L		d	
Code	Code	Nominal	Tolerance								
JH	J11	5	-0.4	4.5	Maximum	6	Maximum	7.2	Maximum	0.5	+/-0.05
JK	J12	5	-0.4	5.5	Maximum	7	Maximum	7.2	Maximum	0.5	+/-0.05
JR	J13	5	-0.4	6.5	Maximum	8	Maximum	7.2	Maximum	0.5	+/-0.05


Note: See Ordering Options Table for lead length (LL) options.

Performance Characteristics

63	100	250	400	630	1000						
40	63	160	220	250	250						
0.0001 - 0.022	0.0001 - 0.01	0.0001 - 0.0068	0.0001 - 0.0068	0.0001 - 0.0047	0.0001 - 0.001						
In accordance with	IEC E12 series										
±1%, ±2%, ±2.5%	±1%, ±2%, ±2.5%, ±5%, ±10%										
-55°C to +100°C. A	-55°C to +100°C. An operating temperature up to +105°C is allowed under certain conditions. Please consult KEMET for details										
IEC 60068-1, 55/1	IEC 60068–1, 55/100/56										
Maximum 0.3% aft	Maximum 0.3% after a 2 year storage period at a temperature of +10°C to +40°C and a relative humidity of 40% to 60%										
-200 (+50, -100) pp	om/°C at 1 kHz										
Approximately 6 nl	H/cm for the total leng	th of capacitor windin	g and the leads								
		Maximum Va	lues at +23°C								
	C ≤ 0.001 µF	0.001 µF < C	≤ 0.0047 µF	C > 0.0	047 μF						
1 kHz	0.0004	0.0	004	0.00	004						
10 kHz	0.0004	0.0	005	0.0	007						
100 kHz	100 kHz 0.0005 0.0007 –										
Measured at +20°0	C, according to IEC 60	0384–13									
Minimum value bet	tween terminals 100,0	000 ΜΩ									
	40 0.0001 – 0.022 In accordance with ±1%, ±2%, ±2.5% -55°C to +100°C. Adetails IEC 60068–1, 55/1 Maximum 0.3% aft -200 (+50, -100) pp Approximately 6 nl 1 kHz 10 kHz 100 kHz Measured at +20°C	40 63 0.0001 − 0.022 0.0001 − 0.01 In accordance with IEC E12 series ±1%, ±2%, ±2.5%, ±5%, ±10% -55°C to +100°C. An operating temperal details IEC 60068−1, 55/100/56 Maximum 0.3% after a 2 year storage percentage of the storage of the st	40 63 160 0.0001 – 0.022 0.0001 – 0.01 0.0001 – 0.0068 In accordance with IEC E12 series ±1%, ±2%, ±2.5%, ±5%, ±10% -55°C to +100°C. An operating temperature up to +105°C is a details IEC 60068–1, 55/100/56 Maximum 0.3% after a 2 year storage period at a temperature -200 (+50, -100) ppm/°C at 1 kHz Approximately 6 nH/cm for the total length of capacitor windin Maximum Val C ≤ 0.001 μF 0.001 μF 0.001 μF < C 1 kHz 0.0004 0.00	40 63 160 220 0.0001 – 0.022 0.0001 – 0.01 0.0001 – 0.0068 0.0001 – 0.0068 In accordance with IEC E12 series ±1%, ±2%, ±2.5%, ±5%, ±10% -55°C to +100°C. An operating temperature up to +105°C is allowed under certain details IEC 60068–1, 55/100/56 Maximum 0.3% after a 2 year storage period at a temperature of +10°C to +40°C at -200 (+50, -100) ppm/°C at 1 kHz Approximately 6 nH/cm for the total length of capacitor winding and the leads Maximum Values at +23°C $C ≤ 0.001 μF 0.001 μF < C ≤ 0.0047 μF$ $1 kHz 0.0004 0.0005$ $100 kHz 0.0005 0.0007$ Measured at +20°C, according to IEC 60384–13	40 63 160 220 250 0.0001 − 0.022 0.0001 − 0.01 0.0001 − 0.0068 0.0001 − 0.0068 0.0001 − 0.0047 In accordance with IEC E12 series ±1%, ±2%, ±2.5%, ±5%, ±10% -55°C to +100°C. An operating temperature up to +105°C is allowed under certain conditions. Please codetails IEC 60068−1, 55/100/56 Maximum 0.3% after a 2 year storage period at a temperature of +10°C to +40°C and a relative humidity -200 (+50, -100) ppm/°C at 1 kHz Approximately 6 nH/cm for the total length of capacitor winding and the leads Maximum Values at +23°C $C ≤ 0.001 μF $						

Resonance Frequencies

Environmental Test Data

Test	IEC Publication	Procedure	Requirements
Voltage Proof	60384–1 Clause 4.6	1.6 x V _R after 60 seconds	The capacitors must withstand the voltage without breakdowns or flashovers and without decreased insulation resistance below the value in each detail specification. No visible damage
	Clause 4.6 2.3	2 x V _R (minimum 400 VDC to case) after 60 seconds	As above
Vibration	60068–2–6 Test Fc	6 hours with 10 – 500 Hz and 0.75 mm amplitude or 98 m/s ² depending on frequency	No visible damage tan $\delta \le 1.2 \text{ x}$ stated value at 100 kHz Δ C/C $\le \pm 0.5 \%$
Bump	60068–2–29 Test Eb	4,000 bumps with 390 m/s ² mounted on PCB	Δ C/C ≤ ±0.5% tan δ ≤ 1.2 x stated value at 100 kHz Insulation resistance: ≥ 100,000 M Ω for C _R ≤ 0.33 μ F ≥ 30,000 M Ω • μ F for C _R > 0.33 μ F
Resistance to Soldering Heat	60068–2–20 Method 1A	Solder bath at + 260°C ±5°C with screening	Immersion of the terminations into the solder bath shall be completed in a time not exceeding 1 second and the terminations shall remain immersed to the specified depth for $10 + 1$ second and then be withdrawn. Δ C/C \leq ±0.5% tan δ increase $<$ 0.001 No visible damage
Climatic Sequence	60384–1 Paragraph 4:21	60068–2.2 dry heat 16 hours 60068–2–34 damp heat, one cycle 60068–2–1 Test Aa 2 hours	Insulation resistance: $\geq 100,000 \text{ M}\Omega \text{ for } C_R \leq 0.33 \mu\text{F}$ $\geq 30,000 \text{ M}\Omega \cdot \mu\text{F for } C_R > 0.33 \mu\text{F}$ $\Delta \text{ C/C} \leq \pm 0.5\%$ $\tan \delta \leq 1.2 \text{ x stated value at } 100 \text{ kHz}$
Damp Heat Steady State	60068-2-3 Test Ca	+40°C and 90 – 95% RH	56 days no visible damage Insulation resistance: \geq 50,000 MΩ for $C_R \leq$ 0.33 μF \geq 15,000 MΩ • μF for $C_R >$ 0.33 μF Δ C/C ≤ ±1% tanδ ≤ 1.2 x stated value at 100 kHz
Endurance, AC		1,000 hours at +85°C and 1.25 x V_R AC	No visible damage $ \Delta \text{ C/C} \leq \pm 3\% $ $ \tan \delta \leq 1.5 \text{ x stated value at } 100 \text{ kHz} $ Insulation resistance: $ \geq 100,000 \text{ M}\Omega \text{ for } \text{C}_{\text{R}} \leq 0.33 \mu\text{F} $ $ \geq 30,000 \text{ M}\Omega \cdot \mu\text{F for } \text{C}_{\text{R}} > 0.33 \mu\text{F} $
Charge and Discharge	60384–17 Paragraph 4.13	10,000 pulses and with (2 x) dV/dt according to detail specification	tan δ (100 kHz) \leq 2 x stated value (100 kHz) Δ C/C \leq ±0.5% Insulation resistance: \geq 50,000 M Ω for C _R \leq 0.33 μ F \geq 15,000 M Ω • μ F for C _R > 0.33 μ F

Environmental Compliance

All KEMET pulse capacitors are RoHS Compliant.

Table 1 – Ratings & Part Number Reference

		0 1/1	Max Dimensions in mn		in more		D. C. 14		N 1/====	
VDC	VAC	Cap Value		1		Lead	dV/dt	Size Code	New KEMET	Legacy Part
		(µF)	В	Н	L	Spacing (p)	(V/µs)	(New/Legacy)	Part Number	Number
63 63	40 40	0.00010 0.00015	4.5 4.5	6.0 6.0	7.2 7.2	5 5	1000 1000	JH/J11 JH/J11	F411JH101(1)063(2) F411JH151(1)063(2)	PFR5101(1)63J11L4(2) PFR5151(1)63J11L4(2)
63	40	0.00013	4.5	6.0	7.2	5	1000	JH/J11	F411JH221(1)063(2)	PFR5131(1)63J11L4(2)
63	40	0.00033	4.5	6.0	7.2	5	1000	JH/J11	F411JH331(1)063(2)	PFR5331(1)63J11L4(2)
63	40	0.00047	4.5	6.0	7.2	5	1000	JH/J11	F411JH471(1)063(2)	PFR5471(1)63J11L4(2)
63	40	0.00068	4.5	6.0	7.2	5	1000	JH/J11	F411JH681(1)063(2)	PFR5681(1)63J11L4(2)
63	40	0.0010	4.5	6.0	7.2	5	1000	JH/J11	F411JH102(1)063(2)	PFR5102(1)63J11L4(2)
63	40	0.0015	4.5	6.0	7.2	5	1000	JH/J11	F411JH152(1)063(2)	PFR5152(1)63J11L4(2)
63 63	40 40	0.0022 0.0033	4.5 4.5	6.0 6.0	7.2 7.2	5 5	1000 1000	JH/J11 JH/J11	F411JH222(1)063(2) F411JH332(1)063(2)	PFR5222(1)63J11L4(2) PFR5332(1)63J11L4(2)
63	40	0.0033	4.5	6.0	7.2	5	1000	JH/J11	F411JH472(1)063(2)	PFR5472(1)63J11L4(2)
63	40	0.0068	4.5	6.0	7.2	5	1000	JH/J11	F411JH682(1)063(2)	PFR5682(1)63J11L4(2)
63	40	0.010	5.5	7.0	7.2	5	1000	JK/J12	F411JK103(1)063(2)	PFR5103(1)63J12L4(2)
63	40	0.015	6.5	8.0	7.2	5	1000	JR/J13	F411JR153(1)063(2)	PFR5153(1)63J13L4(2)
63	40	0.020	6.5	8.0	7.2	5	1000	JR/J13	F411JR203(1)063(2)	PFR5203(1)63J13L4(2)
63	40	0.022	6.5	8.0	7.2	5	1000	JR/J13	F411JR223(1)063(2)	PFR5223(1)63J13L4(2)
100 100	63 63	0.00010 0.00015	4.5 4.5	6.0 6.0	7.2 7.2	5 5	1000 1000	JH/J11 JH/J11	F411JH101(1)100(2) F411JH151(1)100(2)	PFR5101(1)100J11L4(2) PFR5151(1)100J11L4(2)
100	63	0.00015	4.5 4.5	6.0	7.2	5 5	1000	JH/J11	F411JH221(1)100(2)	PFR5151(1)100J11L4(2)
100	63	0.00033	4.5	6.0	7.2	5	1000	JH/J11	F411JH331(1)100(2)	PFR5331(1)100J11L4(2)
100	63	0.00047	4.5	6.0	7.2	5	1000	JH/J11	F411JH471(1)100(2)	PFR5471(1)100J11L4(2)
100	63	0.00068	4.5	6.0	7.2	5	1000	JH/J11	F411JH681(1)100(2)	PFR5681(1)100J11L4(2)
100	63	0.0010	4.5	6.0	7.2	5	1000	JH/J11	F411JH102(1)100(2)	PFR5102(1)100J11L4(2)
100	63	0.0015	4.5	6.0	7.2	5	1000	JH/J11	F411JH152(1)100(2)	PFR5152(1)100J11L4(2)
100	63	0.0022	4.5	6.0	7.2 7.2	5	1000	JH/J11 JK/J12	F411JH222(1)100(2)	PFR5222(1)100J11L4(2)
100 100	63 63	0.0033 0.0047	5.5 5.5	7.0 7.0	7.2	5 5	1000 1000	JK/J12 JK/J12	F411JK332(1)100(2) F411JK472(1)100(2)	PFR5332(1)100J12L4(2) PFR5472(1)100J12L4(2)
100	63	0.0068	6.5	8.0	7.2	5	1000	JR/J13	F411JR682(1)100(2)	PFR5682(1)100J13L4(2)
100	63	0.010	6.5	8.0	7.2	5	1000	JR/J13	F411JR103(1)100(2)	PFR5103(1)100J13L4(2)
250	160	0.00010	4.5	6.0	7.2	5	1000	JH/J11	F411JH101(1)250(2)	PFR5101(1)250J11L4(2)
250	160	0.00015	4.5	6.0	7.2	5	1000	JH/J11	F411JH151(1)250(2)	PFR5151(1)250J11L4(2)
250	160	0.00022	4.5	6.0	7.2	5	1000	JH/J11	F411JH221(1)250(2)	PFR5221(1)250J11L4(2)
250 250	160 160	0.00033 0.00047	4.5 4.5	6.0 6.0	7.2 7.2	5 5	1000 1000	JH/J11 JH/J11	F411JH331(1)250(2) F411JH471(1)250(2)	PFR5331(1)250J11L4(2) PFR5471(1)250J11L4(2)
250	160	0.00047	4.5	6.0	7.2	5	1000	JH/J11	F411JH681(1)250(2)	PFR5471(1)250311L4(2) PFR5681(1)250J11L4(2)
250	160	0.0010	4.5	6.0	7.2	5	1000	JH/J11	F411JH102(1)250(2)	PFR5102(1)250J11L4(2)
250	160	0.0015	4.5	6.0	7.2	5	1000	JH/J11	F411JH152(1)250(2)	PFR5152(1)250J11L4(2)
250	160	0.0022	4.5	6.0	7.2	5	1000	JH/J11	F411JH222(1)250(2)	PFR5222(1)250J11L4(2)
250	160	0.0033	5.5	7.0	7.2	5	1000	JK/J12	F411JK332(1)250(2)	PFR5332(1)250J12L4(2)
250	160	0.0047	6.5	8.0	7.2	5	1000	JR/J13	F411JR472(1)250(2)	PFR5472(1)250J13L4(2)
250 400	160 220	0.0068 0.00010	6.5 4.5	8.0 6.0	7.2 7.2	5 5	1000 1000	JR/J13	F411JR682(1)250(2)	PFR5682(1)250J13L4(2)
400	220	0.00010	4.5 4.5	6.0	7.2	5 5	1000	JH/J11 JH/J11	F411JH101(1)400(2) F411JH151(1)400(2)	PFR5101(1)400J11L4(2) PFR5151(1)400J11L4(2)
400	220	0.00013	4.5	6.0	7.2	5	1000	JH/J11	F411JH221(1)400(2)	PFR5221(1)400J11L4(2)
400	220	0.00033	4.5	6.0	7.2	5	1000	JH/J11	F411JH331(1)400(2)	PFR5331(1)400J11L4(2)
400	220	0.00047	4.5	6.0	7.2	5	1000	JH/J11	F411JH471(1)400(2)	PFR5471(1)400J11L4(2)
400	220	0.00068	4.5	6.0	7.2	5	1000	JH/J11	F411JH681(1)400(2)	PFR5681(1)400J11L4(2)
400	220	0.0010	4.5	6.0	7.2	5	1000	JH/J11	F411JH102(1)400(2)	PFR5102(1)400J11L4(2)
400	220 220	0.0015 0.0022	4.5 4.5	6.0	7.2 7.2	5	1000	JH/J11 JH/J11	F411JH152(1)400(2)	PFR5152(1)400J11L4(2)
400 400	220	0.0022	4.5 5.5	6.0 7.0	7.2	5 5	1000 1000	JH/J11 JK/J12	F411JH222(1)400(2) F411JK332(1)400(2)	PFR5222(1)400J11L4(2) PFR5332(1)400J12L4(2)
400	220	0.0033	6.5	8.0	7.2	5	1000	JR/J12 JR/J13	F411JR472(1)400(2)	PFR5352(1)400312L4(2) PFR5472(1)400J13L4(2)
400	220	0.0068	6.5	8.0	7.2	5	1000	JR/J13	F411JR682(1)400(2)	PFR5682(1)400J13L4(2)
630	250	0.00010	4.5	6.0	7.2	5	1000	JH/J11	F411JH101(1)630(2)	PFR5101(1)630J11L4(2)
630	250	0.00015	4.5	6.0	7.2	5	1000	JH/J11	F411JH151(1)630(2)	PFR5151(1)630J11L4(2)
630	250	0.00022	4.5	6.0	7.2	5	1000	JH/J11	F411JH221(1)630(2)	PFR5221(1)630J11L4(2)
630	250	0.00033	4.5	6.0	7.2	5	1000	JH/J11	F411JH331(1)630(2)	PFR5331(1)630J11L4(2)
630 630	250 250	0.00047 0.00068	4.5 4.5	6.0 6.0	7.2 7.2	5 5	1000 1000	JH/J11 JH/J11	F411JH471(1)630(2)	PFR5471(1)630J11L4(2) PFR5681(1)630J11L4(2)
630	250 250	0.00068	4.5 4.5	6.0	7.2 7.2	5 5	1000	JH/J11 JH/J11	F411JH681(1)630(2) F411JH102(1)630(2)	PFR5102(1)630J11L4(2)
					··		dV/dt			
VDC	VAC	Cap Value (μF)	B (mm)	H (mm)	L (mm)	Lead Spacing (p)	av/at (V/µs)	Size Code (New/Legacy)	New KEMET Part Number	Legacy Part Number
			•		•					

⁽¹⁾ $F = \pm 1\%$, $G = \pm 2\%$, $H = \pm 2.5\%$, $J = \pm 5\%$, $K = \pm 10\%$.

⁽²⁾ Insert lead and packaging code. See Ordering Options Table for available options.

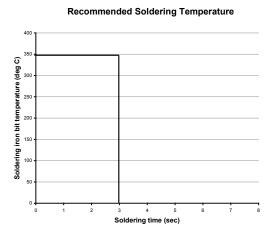
Table 1 – Ratings & Part Number Reference cont'd

VDC	VDC VAC Cap Valu		Max Dimensions in mm			Lead	dV/dt	Size Code	New KEMET	Legacy Part
VDC	VAC	(µF)	В	Н	L	Spacing (p)	(V/µs)	(New/Legacy)	Part Number	Number
630	250	0.0015	4.5	6.0	7.2	5	1000	JH/J11	F411JH152(1)630(2)	PFR5152(1)630J11L4(2)
630	250	0.0022	5.5	7.0	7.2	5	1000	JK/J12	F411JK222(1)630(2)	PFR5222(1)630J12L4(2)
630	250	0.0033	6.5	8.0	7.2	5	1000	JR/J13	F411JR332(1)630(2)	PFR5332(1)630J13L4(2)
630	250	0.0047	6.5	8.0	7.2	5	1000	JR/J13	F411JR472(1)630(2)	PFR5472(1)630J13L4(2)
1000	250	0.00010	4.5	6.0	7.2	5	1000	JH/J11	F411JH101(1)1K0(2)	PFR5101(1)1000J11L4(2)
1000	250	0.00015	4.5	6.0	7.2	5	1000	JH/J11	F411JH151(1)1K0(2)	PFR5151(1)1000J11L4(2)
1000	250	0.00022	4.5	6.0	7.2	5	1000	JH/J11	F411JH221(1)1K0(2)	PFR5221(1)1000J11L4(2)
1000	250	0.00033	5.5	7.0	7.2	5	1000	JK/J12	F411JK331(1)1K0(2)	PFR5331(1)1000J12L4(2)
1000	250	0.00047	5.5	7.0	7.2	5	1000	JK/J12	F411JK471(1)1K0(2)	PFR5471(1)1000J12L4(2)
1000	250	0.00068	5.5	7.0	7.2	5	1000	JK/J12	F411JK681(1)1K0(2)	PFR5681(1)1000J12L4(2)
1000	250	0.0010	6.5	8.0	7.2	5	1000	JR/J13	F411JR102(1)1K0(2)	PFR5102(1)1000J13L4(2)
VDC	VAC	Cap Value (µF)	B (mm)	H (mm)	L (mm)	Lead Spacing (p)	dV/dt (V/μs)	Size Code (New/Legacy)	New KEMET Part Number	Legacy Part Number

⁽¹⁾ $F = \pm 1\%$, $G = \pm 2\%$, $H = \pm 2.5\%$, $J = \pm 5\%$, $K = \pm 10\%$.

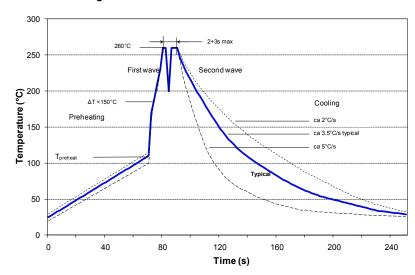
⁽²⁾ Insert lead and packaging code. See Ordering Options Table for available options.

Soldering Process


The implementation of the RoHS directive has resulted in the selection of SnAgCu (SAC) alloys or SnCu alloys as primary solder. This has increased the liquidus temperature from that of 183°C for SnPb eutectic alloy to 217 – 221°C for the new alloys. As a result, the heat stress to the components, even in wave soldering, has increased considerably due to higher pre-heat and wave temperatures. Polypropylene capacitors are especially sensitive to heat (the melting point of polypropylene is 160 – 170°C). Wave soldering can be destructive, especially for mechanically small polypropylene capacitors (with lead spacing of 5 mm to 15 mm), and great care has to be taken during soldering. The recommended solder profiles from KEMET should be used. Please consult KEMET with any questions. In general, the wave soldering curve from IEC Publication 61760-1 Edition 2 serves as a solid guideline for successful soldering. Please see Figure 1.

Reflow soldering is not recommended for through-hole film capacitors. Exposing capacitors to a soldering profile in excess of the above the recommended limits may result to degradation or permanent damage to the capacitors.

Do not place the polypropylene capacitor through an adhesive curing oven to cure resin for surface mount components. Insert through-hole parts after the curing of surface mount parts. Consult KEMET to discuss the actual temperature profile in the oven, if through-hole components must pass through the adhesive curing process. A maximum two soldering cycles is recommended. Please allow time for the capacitor surface temperature to return to a normal temperature before the second soldering cycle.


Manual Soldering Recommendations

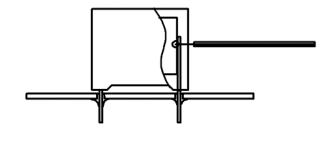
Following is the recommendation for manual soldering with a soldering iron.

The soldering iron tip temperature should be set at 350°C (+10°C maximum) with the soldering duration not to exceed more than 3 seconds.

Wave Soldering Recommendations

Soldering Process cont'd

Wave Soldering Recommendations cont'd


1. The table indicates the maximum set-up temperature of the soldering process Figure 1

Dielectric Film Material		imum Pre emperatu	Maximum Peak Soldering Temperature			
	Capacitor Pitch ≤ 10 mm	Capacitor Pitch = 15 mm	Capacitor Pitch > 15 mm	Capacitor Pitch ≤ 15 mm	Capacitor Pitch > 15 mm	
Polyester	130°C	130°C	130°C	270°C	270°C	
Polypropylene	100°C	110°C	130°C	260°C	270°C	
Paper	130°C	130°C	140°C	270°C	270°C	
Polyphenylene Sulphide	150°C	150°C	160°C	270°C	270°C	

2. The maximum temperature measured inside the capacitor:

Set the temperature so that inside the element the maximum temperature is below the limit:

Dielectric Film Material	Maximum temperature measured inside the element
Polyester	160°C
Polypropylene	110°C
Paper	160°C
Polyphenylene sulphide	160°C

Temperature monitored inside the capacitor.

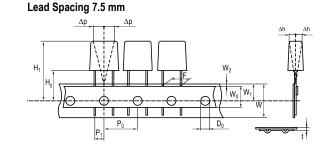
Selective Soldering Recommendations

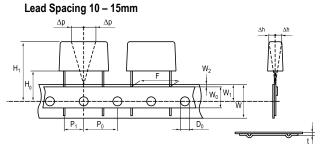
Selective dip soldering is a variation of reflow soldering. In this method, the printed circuit board with through-hole components to be soldered is preheated and transported over the solder bath as in normal flow soldering without touching the solder. When the board is over the bath, it is stopped and pre-designed solder pots are lifted from the bath with molten solder only at the places of the selected components, and pressed against the lower surface of the board to solder the components.

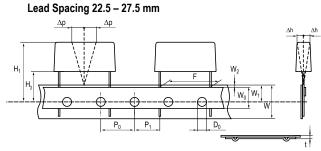
The temperature profile for selective soldering is similar to the double wave flow soldering outlined in this document, **however**, **instead of two baths**, **there is only one bath with a time from 3 to 10 seconds**. In selective soldering, the risk of overheating is greater than in double wave flow soldering, and great care must be taken so that the parts are not overheated.

Marking

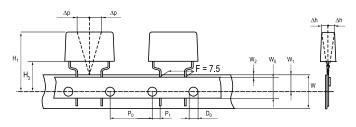
- Series
- Capacitance
- Capacitance tolerance
- Rated DC voltage


Packaging Quantities


KEMET Size Code	Legacy Size Code	Lead Spacing	Thickness (mm)	Height (mm)	Length (mm)	Bulk Short Leads	Bulk Long Leads	Standard Reel ø 360 mm	Large Reel ø 500 mm	Ammo
JF	J01		2.5	6.5	7.2	2000	2000	2500	5000	3000
JJ	J02		3.5	8	7.2	2000	2000	2000	4000	2000
JL	J03		4.5	9	7.2	1000	1000	1500	3000	1700
JQ	J04		5	10	7.2	1000	1000	1300	2600	1500
JT	J05	5	6	11	7.2	1000	1000	1000	2000	1200
JU	J06		7.2	13	7.2	1000	1000	800	1600	-
JH	J11		4.5	6	7.2	1000	1000	1500	3000	1700
JK	J12		5.5	7	7.2	1000	1000	1200	2400	1300
JR	J13		6.5	8	7.2	1000	1000	900	1800	1100



Lead Taping & Packaging (IEC 60286-2)



Formed Leads from 10 and 15 mm to 7.5 mm

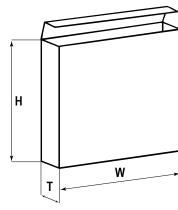
Taping Specification

	Standard IEC 60286-2									
Lead spacing	+6/-0.1	F	5	7.5	Formed 7.5	10	15	22.5	27.5	F
Carrier tape width	+/-0.5	W	18	18	18	18	18	18	18	18+1/-0.5
Hold-down tape width	+/-0.3	W _o	9	9	9	12	12	12	12	
Position of sprocket hole	+/-0.5	W ₁	9	9	9	9	9	9	9	9+0.75/-0.5
Distance between tapes	Maximum	W ₂	3	3	3	3	3	3	3	3
Sprocket hole diameter	+/-0.2	D ₀	4	4	4	4	4	4	4	4
Feed hole lead spacing	+/-0.3	P ₀ ⁽¹⁾	12.7	12.7	12.7(4)	12.7	12.7	12.7	12.7	12.7
Distance lead – feed hole	+/-0.7	P ₁	3.85	3.75	3.75	7.7	5.2	5.3	5.3	P ¹
Deviation tape – plane	Maximum	Δp	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
Lateral deviation	Maximum	Δh	2	2	2	2	2	2	2	2
Total thickness	+/-0.2	t	0.7	0.7	0.7	0.7	0.7	0.9 ^{MAX}	0.9 ^{MAX}	0.9 ^{MAX}
Sprocket hole/cap body	Nominal	H ₀ ⁽²⁾	18.5+/-0.5	18.5+/-0.5	18.5+/-0.5	18.5+/-0.5	18.5+/-0.5	18.5+/-0.5	18.5+/-0.5	18+2/-0
Sprocket hole/top of cap body	Maximum	H ₁ ⁽³⁾	32	31	43	43	43	58	58	58 ^{MAX}

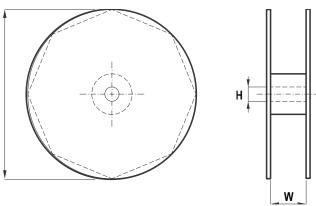
⁽¹⁾ Maximum cumulative feed hole error, 1 mm per 20 parts.

^{(2) 16.5} mm available on request.

⁽³⁾ Depending on case size.


^{(4) 15} mm available on request.

Lead Taping & Packaging (IEC 60286–2) cont'd


Ammo Specifications

Series	Dimensions (mm)		
Series	Н	W	Т
R4x, R4x+R, R7x, RSB			
F5A, F5B, F5D	360	340	59
F6xx, F8xx			
PHExxx, PMExxx, PMRxxx, SMR & PFR	330	330	50

Reel Specifications

Carias	Dimensions (mm)		
Series	D	Н	W
R4x, R4x+R, R7x, RSB	055	00	
F5A, F5B, F5D	355 500	30 25	55 (Max)
F6xx, F8xx	300	25	
PHExxx, PMExxx, PMRxxx, SMR & PFR	360 500	30	46 (Max)

D

Manufacturing Date Code (IEC-60062)

Y = Year, Z = Month					
Year	Code	Month	Code		
2000	M	January	1		
2001	N	February	2		
2002	Р	March	3		
2003	R	April	4		
2004	S	May	5		
2005	T	June	6		
2006	U	July	7		
2007	V	August	8		
2008	W	September	9		
2009	X	October	0		
2010	Α	November	N		
2011	В	December	D		
2012	С				
2013	D				
2014	Е				
2015	F				
2016	Н				
2017	J				
2018	K				
2019	L				
2020	M				

KEMET Corporation World Headquarters

2835 KEMET Way Simpsonville, SC 29681

Mailing Address: P.O. Box 5928 Greenville, SC 29606

www.kemet.com Tel: 864-963-6300 Fax: 864-963-6521

Corporate Offices Fort Lauderdale, FL Tel: 954-766-2800

North America

Northeast

Wilmington, MA Tel: 978-658-1663

Southeast

Lake Mary, FL Tel: 407-855-8886

Central

Novi, MI

Tel: 248-994-1030

Irving, TX

Tel: 972-915-6041

West

Milpitas, CA Tel: 408-433-9950

Mexico

Guadalajara, Jalisco Tel: 52-33-3123-2141

Europe

Southern Europe Sasso Marconi, Italy Tel: 39-051-939111

Skopje, Macedonia Tel: 389-2-55-14-623

Central Europe Landsberg, Germany Tel: 49-8191-3350800

Kamen, Germany Tel: 49-2307-438110

Northern Europe

Wyboston, United Kingdom Tel: 44-1480-273082

Espoo, Finland Tel: 358-9-5406-5000

Asia

Northeast Asia Hong Kong Tel: 852-2305-1168

Shenzhen, China Tel: 86-755-2518-1306

Beijing, China Tel: 86-10-5877-1075

Shanghai, China Tel: 86-21-6447-0707

Seoul, South Korea Tel: 82-2-6294-0550

Taipei, Taiwan Tel: 886-2-27528585

Southeast Asia

Singapore

Tel: 65-6701-8033

Penang, Malaysia Tel: 60-4-6430200

Bangalore, India Tel: 91-806-53-76817

Note: KEMET reserves the right to modify minor details of internal and external construction at any time in the interest of product improvement. KEMET does not assume any responsibility for infringement that might result from the use of KEMET Capacitors in potential circuit designs. KEMET is a registered trademark of KEMET Electronics Corporation.

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed.

All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Film Capacitors category:

Click to view products by Kemet manufacturer:

Other Similar products are found below:

F339X134748MIP2T0 F450KG153J250ALH0J 750-1018 FKP1-1500160010P15 FKP1R031007D00JYSD FKP1R031507E00JYSD FKP1U024707E00KYSD 82DC4100CK60J 82EC1100DQ50K PFR5101J100J11L16.5TA18 PME261JB5220KR19T0 A451GK223M040A A561ED221M450A QXJ2E474KTPT QXL2B333KTPT R49AN347000A1K EEC2G505HQA406 B25668A6676A375 B25673A4282E140 BFC233868148 BFC2370GC222 C3B2AD44400B20K C4ASWBU3220A3EK CB027C0473J-- CB177I0184J-- CB182K0184J-- 23PW210 950CQW5H-F SBDC3470AA10J SCD105K122A3-22 2N3155 A571EH331M450A FKP1-2202KV5P15 FKS3-680040010P10 QXL2E473KTPT 445450-1 B25669A3996J375 46KI322000M1M 46KR415050M1K 4BSNBX4100ZBFJ MKP383510063JKP2T0 MKPY2-.02230020P15 MKT 1813-368-015 4055292001 46KN410000N1K EEC2E106HQA405 EEC2G205HQA402 EEC2G805HQA415 P409CP224M250AH470 82EC2150DQ50K