Octal D-type transparent latch; 3-state Rev. 5 — 15 August 2012

General description 1.

The 74HC573; 74HCT573 is a high-speed Si-gate CMOS device and is pin compatible with Low-power Schottky TTL (LSTTL). It is specified in compliance with JEDEC standard no. 7A.

The 74HC573; 74HCT573 has octal D-type transparent latches featuring separate D-type inputs for each latch and 3-state true outputs for bus-oriented applications. A latch enable (LE) input and an output enable (OE) input are common to all latches.

When LE is HIGH, data at the Dn inputs enter the latches. In this condition, the latches are transparent, i.e. a latch output changes state each time its corresponding D input changes.

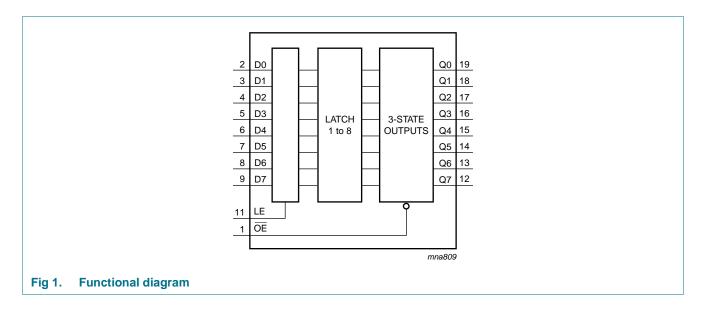
When LE is LOW the latches store the information that was present at the D-inputs a set-up time preceding the HIGH-to-LOW transition of LE. When OE is LOW, the contents of the 8 latches are available at the outputs. When OE is HIGH, the outputs go to the high-impedance OFF-state. Operation of the OE input does not affect the state of the latches.

The 74HC573; 74HCT573 is functionally identical to:

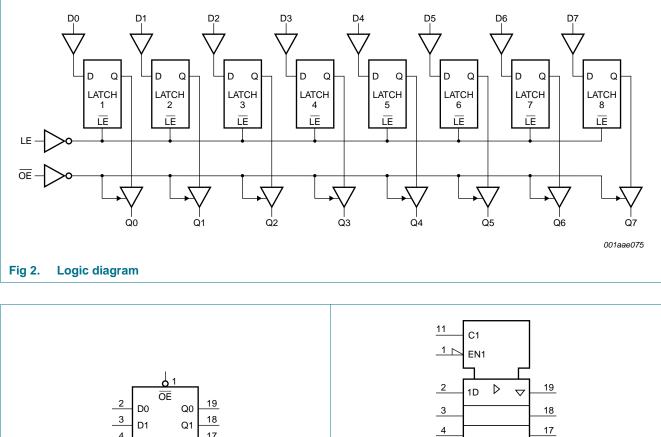
- 74HC563; 74HCT563, but inverted outputs
- 74HC373; 74HCT373, but different pin arrangement

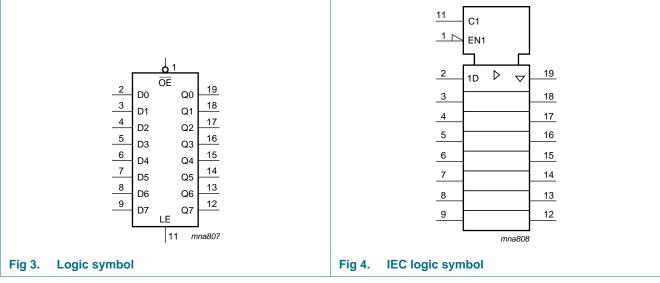
2. Features and benefits

- Input levels:
 - For 74HC573: CMOS level
 - For 74HCT573: TTL level
- Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- Useful as input or output port for microprocessors and microcomputers
- 3-state non-inverting outputs for bus-oriented applications
- Common 3-state output enable input
- Multiple package options
- ESD protection:
 - HBM JESD22-A114F exceeds 2 000 V
 - MM JESD22-A115-A exceeds 200 V
- Specified from –40 °C to +85 °C and from –40 °C to +125 °C



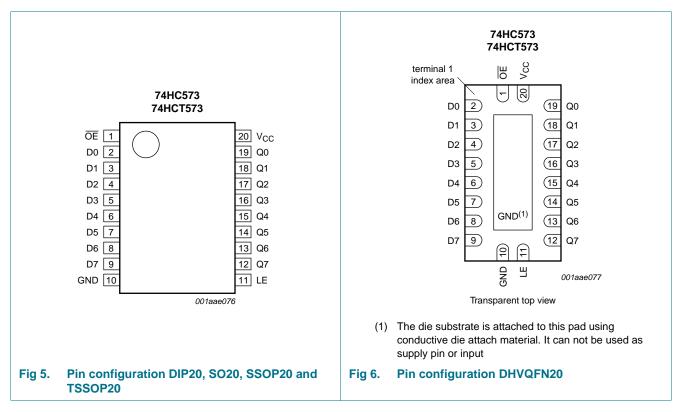
Octal D-type transparent latch; 3-state


3. Ordering information


Table 1. Ord	lering information			
Type number	Package			
	Temperature range	Name	Description	Version
74HC573N	–40 °C to +125 °C	DIP20	plastic dual in-line package; 20 leads (300 mil)	SOT146-1
74HCT534N				
74HC573D	–40 °C to +125 °C SO20		plastic small outline package; 20 leads;	SOT163-1
74HCT573D			body width 7.5 mm	
74HC573DB	–40 °C to +125 °C	SSOP20	plastic shrink small outline package; 20 leads;	SOT339-1
74HCT573DB			body width 5.3 mm	
74HC573PW	–40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package; 20 leads;	SOT360-1
74HCT573PW			body width 4.4 mm	
74HC573BQ	–40 °C to +125 °C	DHVQFN20	plastic dual in-line compatible thermal enhanced very	SOT764-1
74HCT573BQ			thin quad flat package; no leads; 20 terminals; body $2.5 \times 4.5 \times 0.85$ mm	

4. Functional diagram

Octal D-type transparent latch; 3-state



Octal D-type transparent latch; 3-state

Pinning information 5.

5.1 Pinning

5.2 Pin description

Table 2.	Pin description	
Symbol	Pin	Description
OE	1	3-state output enable input (active LOW)
D[0:7]	2, 3, 4, 5, 6, 7, 8, 9	data input
GND	10	ground (0 V)
LE	11	latch enable input (active HIGH)
Q[0:7]	19, 18, 17, 16, 15, 14, 13, 12	3-state latch output
V _{CC}	20	supply voltage

Octal D-type transparent latch; 3-state

6. Functional description

Table 3.Function table^[1]

Operating mode	Control		Input	Internal	Output
	OE	LE	Dn	latches	Qn
Enable and read register (transparent	L	Н	L	L	L
mode)			Н	Н	Н
Latch and read register	L	L	I	L	L
			h	Н	Н
Latch register and disable outputs	Н	L	I	L	Z
			h	Н	Z

[1] H = HIGH voltage level;

h = HIGH voltage level one set-up time prior to the HIGH-to-LOW LE transition;

L = LOW voltage level;

I = LOW voltage level one set-up time prior to the HIGH-to-LOW LE transition;

Z = high-impedance OFF-state.

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Parameter	Conditions	Min	Max	Unit
supply voltage		-0.5	+7	V
input clamping current	$V_{\rm I}$ < -0.5 V or $V_{\rm I}$ > $V_{\rm CC}$ + 0.5 V	-	±20	mA
output clamping current	$V_{\rm O}$ < –0.5 V or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5 V	-	±20	mA
output current	V_{O} = -0.5 V to (V _{CC} + 0.5 V)	-	±35	mA
supply current		-	+70	mA
ground current		-	-70	mA
storage temperature		-65	+150	°C
total power dissipation	DIP20 package	<u>[1]</u> _	750	mW
	SO20, SSOP20, TSSOP20 and DHVQFN20 packages	[2] _	500	mW
	supply voltage input clamping current output clamping current output current supply current ground current storage temperature	supply voltageinput clamping current $V_1 < -0.5 V \text{ or } V_1 > V_{CC} + 0.5 V$ output clamping current $V_0 < -0.5 V \text{ or } V_0 > V_{CC} + 0.5 V$ output current $V_0 = -0.5 V \text{ to } (V_{CC} + 0.5 V)$ supply currentground currentground currentDIP20 packagetotal power dissipationDIP20 packageSO20, SSOP20, TSSOP20 and	supply voltage-0.5input clamping current $V_1 < -0.5 V \text{ or } V_1 > V_{CC} + 0.5 V$ -output clamping current $V_0 < -0.5 V \text{ or } V_0 > V_{CC} + 0.5 V$ -output current $V_0 = -0.5 V \text{ to } (V_{CC} + 0.5 V)$ -supply currentground currentstorage temperature-65total power dissipationDIP20 package[1] -SO20, SSOP20, TSSOP20 and[2] -	supply voltage -0.5 +7 input clamping current $V_1 < -0.5 V \text{ or } V_1 > V_{CC} + 0.5 V$ - ± 20 output clamping current $V_0 < -0.5 V \text{ or } V_0 > V_{CC} + 0.5 V$ - ± 20 output current $V_0 < -0.5 V \text{ or } V_0 > V_{CC} + 0.5 V$ - ± 20 output current $V_0 = -0.5 V \text{ to } (V_{CC} + 0.5 V)$ - ± 35 supply current - - +70 ground current - - - storage temperature - - - total power dissipation DIP20 package [1] - 750 SO20, SSOP20, TSSOP20 and [2] - 500

[1] For DIP20 package: P_{tot} derates linearly with 12 mW/K above 70 $^\circ C.$

[2] For SO20: P_{tot} derates linearly with 8 mW/K above 70 $^\circ C.$

For SSOP20 and TSSOP20 packages: P_{tot} derates linearly with 5.5 mW/K above 60 °C. For DHVQFN20 package: P_{tot} derates linearly with 4.5 mW/K above 60 °C.

Octal D-type transparent latch; 3-state

8. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter		74HC5	573		74HC1	74HCT573		
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V_{CC}	0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	$V_{CC} = 2.0 V$	-	-	625	-	-	-	ns/V
		$V_{CC} = 4.5 V$	-	1.67	139	-	1.67	139	ns/V
		$V_{CC} = 6.0 V$	-	-	83	-	-	-	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		–40 °C t	o +85 °C	–40 °C to	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC57	3						1			
V _{IH}	HIGH-level	$V_{CC} = 2.0 V$	1.5	1.2	-	1.5	-	1.5	-	V
	input voltage	$V_{CC} = 4.5 V$	3.15	2.4	-	3.15	-	3.15	-	V
		$V_{CC} = 6.0 V$	4.2	3.2	-	4.2	-	4.2	-	V
V _{IL}	LOW-level	$V_{CC} = 2.0 V$	-	0.8	0.5	-	0.5	-	0.5	V
	input voltage	$V_{CC} = 4.5 V$	-	2.1	1.35	-	1.35	-	1.35	V
		$V_{CC} = 6.0 V$	-	2.8	1.8	-	1.8	-	1.8	V
V _{OH}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}$								
	output voltage	$I_O = -20 \ \mu\text{A}; \ V_{CC} = 2.0 \ \text{V}$	1.9	2.0	-	1.9	-	1.9	-	V
		$I_O = -20 \ \mu\text{A}; \ V_{CC} = 4.5 \ \text{V}$	4.4	4.5	-	4.4	-	4.4	-	V
		I_{O} = -20 μ A; V_{CC} = 6.0 V	5.9	6.0	-	5.9	-	5.9	-	V
		I_{O} = -6.0 mA; V_{CC} = 4.5 V	3.98	4.32	-	3.84	-	3.7	-	V
		$I_{O} = -7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	5.81	-	5.34	-	5.2	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}$								
	output voltage	I_{O} = 20 μ A; V_{CC} = 2.0 V	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 20 \ \mu\text{A}; \ V_{CC} = 4.5 \ \text{V}$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 20 \ \mu A; \ V_{CC} = 6.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		I_{O} = 6.0 mA; V_{CC} = 4.5 V	-	0.15	0.26	-	0.33	-	0.4	V
		I_{O} = 7.8 mA; V_{CC} = 6.0 V	-	0.16	0.26	-	0.33	-	0.4	V
I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 V$	-	-	±0.1	-	±1.0	-	±1.0	μΑ
I _{OZ}	OFF-state output current		-	-	±0.5	-	±5.0	-	±10.0	μΑ

Octal D-type transparent latch; 3-state

Table 6. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		–40 °C t	o +85 °C	–40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
сс	supply current		-	-	8.0	-	80	-	160	μA
CI	input capacitance		-	3.5	-					pF
74HCT5	73									
V _{IH}	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	1.6	-	2.0	-	2.0	-	V
V _{IL}	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	1.2	0.8	-	0.8	-	0.8	V
V _{он}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = -20 μA	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -6 mA	3.98	4.32	-	3.84	-	3.7	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$								
output v	output voltage	I _O = 20 μA	-	0	0.1	-	0.1	-	0.1	V
		I _O = 6.0 mA	-	0.16	0.26	-	0.33	-	0.4	V
I	input leakage current	$V_1 = V_{CC} \text{ or GND};$ $V_{CC} = 5.5 \text{ V}$	-	-	±0.1	-	±1.0	-	±1.0	μΑ
loz	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 5.5$ V; $V_O = V_{CC}$ or GND per input pin; other inputs at V_{CC} or GND; $I_O = 0$ A	-	-	±0.5	-	±5.0	-	±10	μΑ
lcc	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = V_{CC} \text{ or } GND; \ I_{O} = 0 \ A; \\ V_{CC} = 5.5 \ V \end{array}$	-	-	8.0	-	80	-	160	μΑ
00	additional supply current	$\label{eq:V_l} \begin{split} V_l &= V_{CC} - 2.1 \text{ V};\\ \text{other inputs at } V_{CC} \text{ or GND};\\ V_{CC} &= 4.5 \text{ V to } 5.5 \text{ V};\\ I_O &= 0 \text{ A} \end{split}$								
		per input pin; Dn inputs	-	35	126	-	158	-	172	μΑ
		per input pin; LE input	-	65	234	-	293	-	319	μΑ
		per input pin; OE input	-	125	450	-	563	-	613	μΑ
CI	input capacitance		-	3.5	-					pF

Octal D-type transparent latch; 3-state

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); $C_L = 50 \text{ pF}$ unless otherwise specified; for test circuit see Figure 11.

Symbol	Parameter	Conditions			25 °C		−40 °C	to +85 °C	–40 °C t	o +125 °C	Uni
				Min	Тур	Max	Min	Max	Min	Max	
For type	74HC573										
t _{pd}	propagation	Dn to Qn; see Figure 7	[1]								
	delay	$V_{CC} = 2.0 V$		-	47	150	-	190	-	225	ns
		$V_{CC} = 4.5 V$		-	17	30	-	38	-	45	ns
		$V_{CC} = 5 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		-	14	-	-	-	-	-	ns
		$V_{CC} = 6.0 V$		-	14	26	-	33	-	38	ns
pd	propagation	LE to Qn; see Figure 8	<u>[1]</u>								
	delay	$V_{CC} = 2.0 V$		-	50	150	-	190	-	225	ns
		$V_{CC} = 4.5 V$		-	18	30	-	38	-	45	ns
		$V_{CC} = 5 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		-	15	-	-	-	-	-	ns
		$V_{CC} = 6.0 V$		-	14	26	-	33	-	38	ns
en	enable time	OE to Qn; see Figure 9	[2]								
		$V_{CC} = 2.0 V$		-	44	140	-	175	-	210	ns
		V _{CC} = 4.5 V		-	16	28	-	35	-	42	ns
		V _{CC} = 6.0 V		-	13	24	-	30	-	36	ns
dis	disable time	OE to Qn; see Figure 9	[3]								
		V _{CC} = 2.0 V		-	55	150	-	190	-	225	ns
		V _{CC} = 4.5 V		-	20	30	-	38	-	45	ns
		V _{CC} = 6.0 V		-	16	26	-	33	-	38	ns
t	transition	Qn; see Figure 7	[4]								
	time	$V_{CC} = 2.0 V$		-	14	60	-	75	-	90	ns
		$V_{CC} = 4.5 V$		-	5	12	-	15	-	18	ns
		V _{CC} = 6.0 V		-	4	10	-	13	-	15	ns
W	pulse width	LE HIGH; see Figure 8									
		V _{CC} = 2.0 V		80	14	-	100	-	120	-	ns
		V _{CC} = 4.5 V		16	5	-	20	-	24	-	ns
		V _{CC} = 6.0 V		14	4	-	17	-	20	-	ns
su	set-up time	Dn to LE; see Figure 10									
		V _{CC} = 2.0 V		50	11	-	65	-	75	-	ns
		V _{CC} = 4.5 V		10	4	-	13	-	15	-	ns
		V _{CC} = 6.0 V		9	3	-	11	-	13	-	ns
h	hold time	Dn to LE; see Figure 10									
		V _{CC} = 2.0 V		5	3	-	5	-	5	-	ns
		V _{CC} = 4.5 V		5	1	-	5	-	5	-	ns
		V _{CC} = 6.0 V		5	1	-	5	-	5	-	ns
C _{PD}	power dissipation capacitance	$C_L = 50 \text{ pF}; \text{ f} = 1 \text{ MHz};$ $V_I = \text{GND to } V_{CC}$	[5]	-	26	-	-	-	-	-	pF
4HC_HCT573		All information					1			(P B.V. 2012. All rig	

Octal D-type transparent latch; 3-state

Symbol	Parameter	Conditions			25 °C		_40 °C	to +85 °C	–40 °C	to +125 °C	Unit
				Min	Тур	Max	Min	Max	Min	Max	
For type	74HCT573										
t _{pd}	propagation	Dn to Qn; see Figure 7	[1]								
	delay	V _{CC} = 4.5 V		-	20	35	-	44	-	53	ns
		$V_{CC} = 5 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		-	17	-	-	-	-	-	ns
t _{pd}	propagation	LE to Qn; see Figure 8	[1]								
	delay	$V_{CC} = 4.5 V$		-	18	35	-	44	-	53	ns
		$V_{CC} = 5 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		-	15	-	-	-	-	-	ns
t _{en} enable time		OE to Qn; see Figure 9	[2]								
		V _{CC} = 4.5 V		-	17	30	-	38	-	45	ns
t _{dis} disable time	OE to Qn; see Figure 9	[3]									
		V _{CC} = 4.5 V		-	18	30	-	38	-	45	ns
t _t	transition	Qn; see Figure 7	[4]								
	time	V _{CC} = 4.5 V		-	5	12	-	15	-	18	ns
t _W	pulse width	LE HIGH; see Figure 8									
		V _{CC} = 4.5 V		16	5	-	20	-	24	-	ns
t _{su}	set-up time	Dn to LE; see Figure 10									
		V _{CC} = 4.5 V		13	7	-	16	-	20	-	ns
t _h	hold time	Dn to LE; see Figure 10									
		V _{CC} = 4.5 V		9	4	-	11	-	15	-	ns
C _{PD}	power dissipation capacitance	C_L = 50 pF; f = 1 MHz; V _I = GND to V _{CC}	<u>[5]</u>	-	26	-	-	-	-	-	pF

Table 7. Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); $C_L = 50 \text{ pF}$ unless otherwise specified; for test circuit see Figure 11.

 $\label{eq:tpd} [1] \quad t_{pd} \mbox{ is the same as } t_{PLH} \mbox{ and } t_{PHL}.$

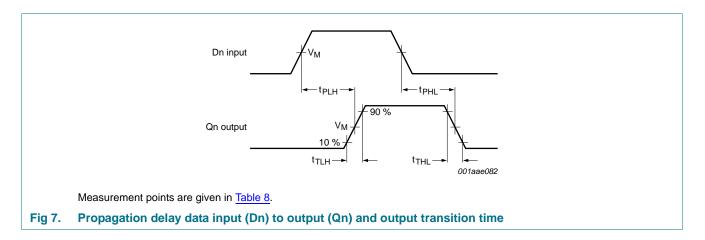
[2] t_{en} is the same as t_{PZH} and t_{PZL} .

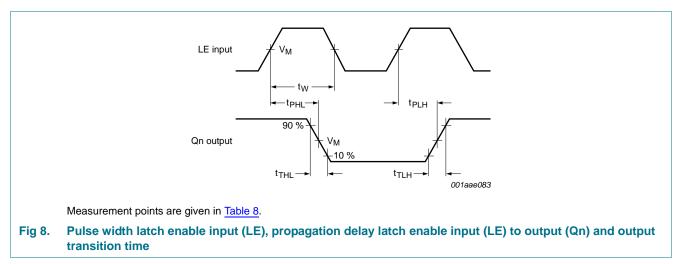
[3] t_{dis} is the same as t_{PLZ} and t_{PHZ} .

[4] t_t is the same as t_{THL} and t_{TLH} .

[5] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W). $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o)$ where: f_i = input frequency in MHz;

 $f_o =$ output frequency in MHz;

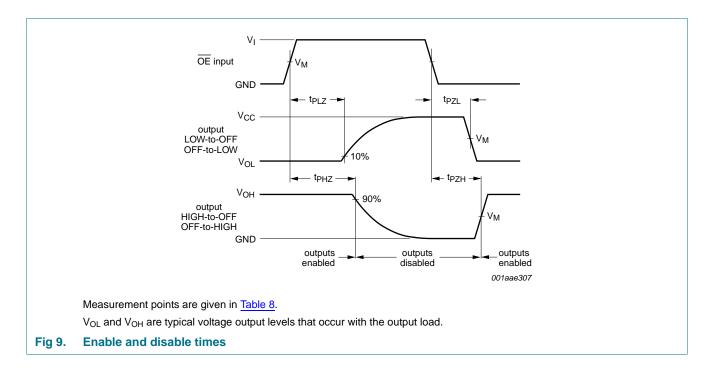

 C_L = output load capacitance in pF;

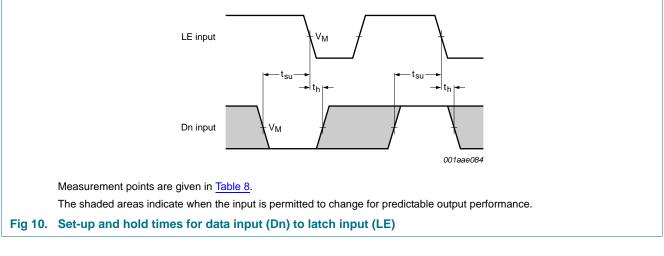

V_{CC} = supply voltage in V; N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs.}$

Octal D-type transparent latch; 3-state

11. Waveforms

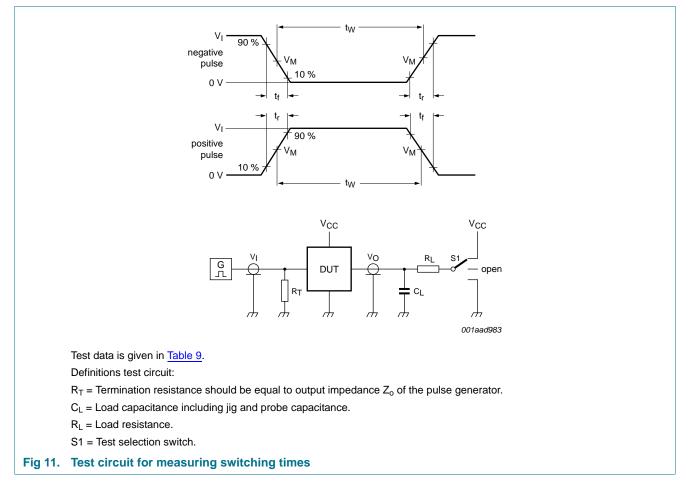




NXP Semiconductors

74HC573; 74HCT573

Octal D-type transparent latch; 3-state


Table 8. Measurement points

Туре	Input	Output
	V _M	V _M
74HC573	0.5V _{CC}	0.5V _{CC}
74HCT573	1.3 V	1.3 V

NXP Semiconductors

74HC573; 74HCT573

Octal D-type transparent latch; 3-state

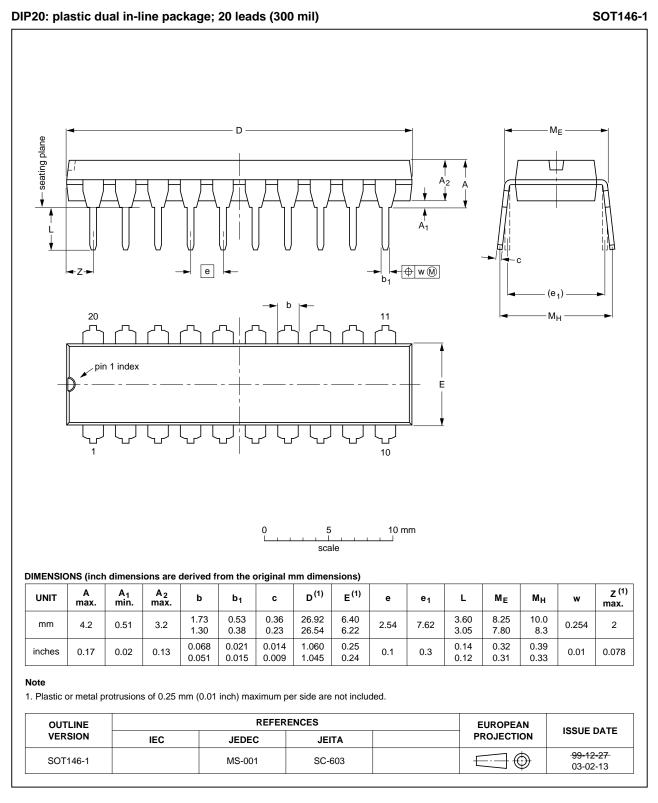


Table 9. Test data

Туре	Input		Load		S1 position			
	VI	t _r , t _f	CL	RL	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}	
74HC573	V _{CC}	6 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}	
74HCT573	3 V	6 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}	

Octal D-type transparent latch; 3-state

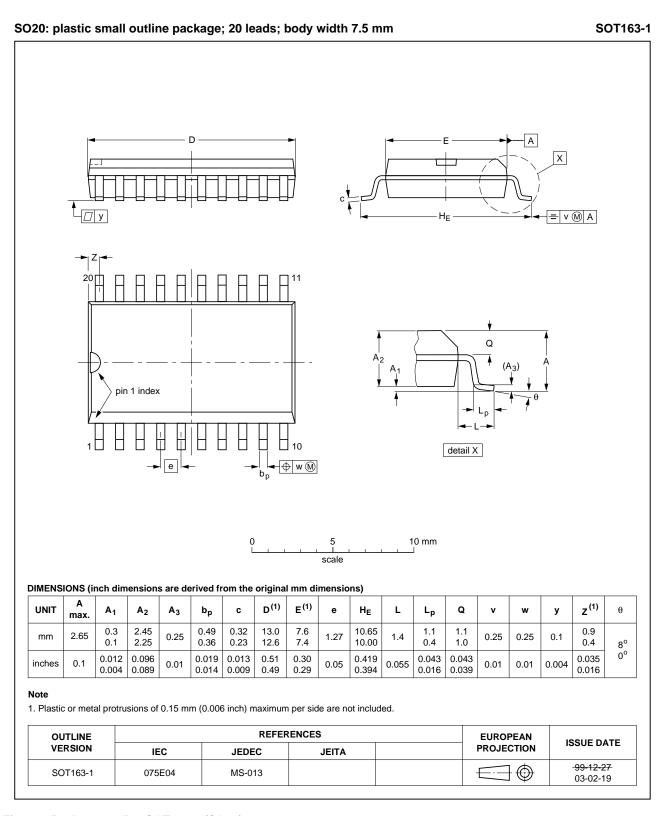
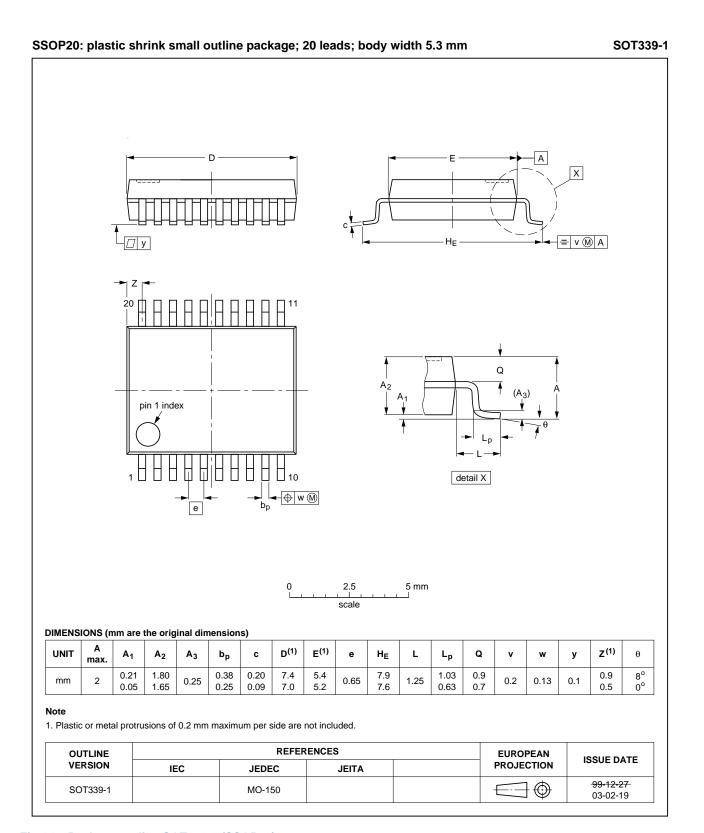

12. Package outline

Fig 12. Package outline SOT146-1 (DIP20)


All information provided in this document is subject to legal disclaimers.

Octal D-type transparent latch; 3-state

Fig 13. Package outline SOT163-1 (SO20)

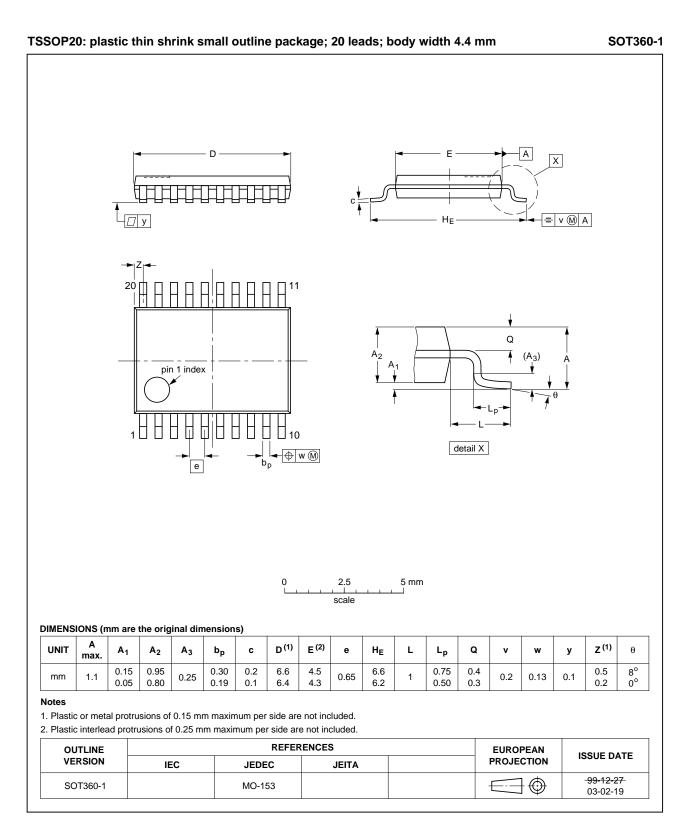

Octal D-type transparent latch; 3-state

Fig 14. Package outline SOT339-1 (SSOP20)

All information provided in this document is subject to legal disclaimers.

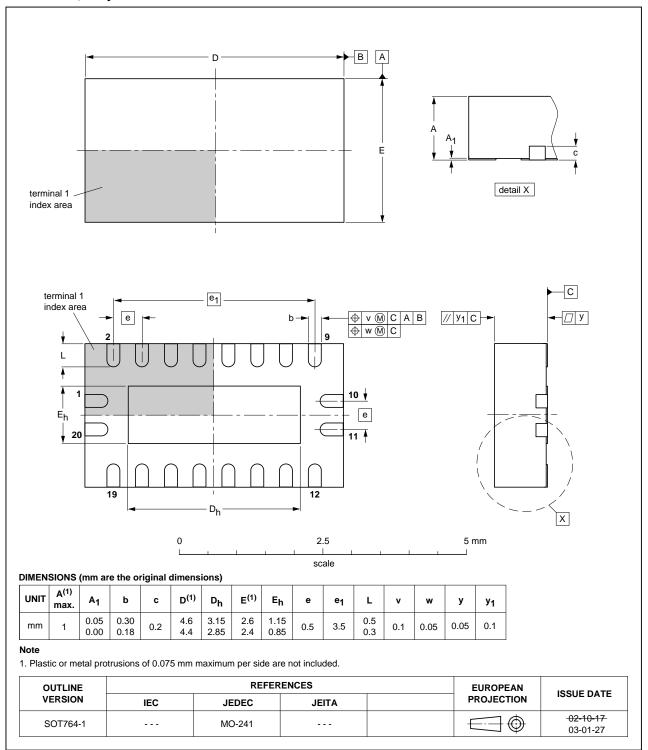

Octal D-type transparent latch; 3-state

Fig 15. Package outline SOT360-1 (TSSOP20)

All information provided in this document is subject to legal disclaimers.

Octal D-type transparent latch; 3-state

DHVQFN20: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 20 terminals; body 2.5 x 4.5 x 0.85 mm SOT764-1

Fig 16. Package outline SOT764-1 (DHVQFN20)

Octal D-type transparent latch; 3-state

13. Abbreviations

Table 10.	Abbreviations
Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

14. Revision history

Table 11.Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
74HC_HCT573 v.5	20120815	Product data sheet	-	74HC_HCT573 v.3	
Modifications:	 Alternative 	descriptive title corrected	l (errata).		
74HC_HCT573 v.4	20120806	Product data sheet	-	74HC_HCT573 v.3	
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 				
	 Legal texts 	have been adapted to th	e new company name	where appropriate.	
74HC_HCT573 v.3	20060117	Product data sheet	-	74HC_HCT573_CNV v.2	
74HC_HCT573_CNV v.2	19901201	Product specification	-	-	

Octal D-type transparent latch; 3-state

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

© NXP B.V. 2012. All rights reserved.

74HC HCT573

Octal D-type transparent latch; 3-state

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Octal D-type transparent latch; 3-state

17. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 2
4	Functional diagram 2
5	Pinning information 4
5.1	Pinning 4
5.2	Pin description 4
6	Functional description 5
7	Limiting values 5
8	Recommended operating conditions 6
9	Static characteristics 6
10	Dynamic characteristics 8
11	Waveforms 10
12	Package outline 13
13	Abbreviations 18
14	Revision history 18
15	Legal information 19
15.1	Data sheet status 19
15.2	Definitions 19
15.3	Disclaimers
15.4	Trademarks 20
16	Contact information 20
17	Contents 21

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2012.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 15 August 2012 Document identifier: 74HC_HCT573

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Latches category:

Click to view products by NXP manufacturer:

Other Similar products are found below :

M38510/75403BSA 634674X 634752C ML4875CS-5 54FCT573ATDB 401639B 027063C 029314R 54FCT573CTLB NLV14043BDR2G 716165RB 74F373DW 74LVC373ADTR2G 74LVC573ADTR2G NL17SG373DFT2G NLV14044BDG 5962-8863901RA 5962-88639012A 2.PM30.006-30 MIC59P50YV NLV14042BDR2G 4.401.001 NLV14044BDR2G 2.L18.001-21 2.PM18.002-18 2.PM18.006-18 2.T18.001-21 2.T18.002-18 2.T18.006-18 CQ/AA-KEY CQ/A-M22X1,5-45-28 M22-2-D5-2-21-01-P CY74FCT2373CTSOC 421283 74ALVCH16260PAG MM74HC373WM MM74HC573MTCX MM74HC573WM 74LCX373MTC 74LVT16373MTDX 74VHC373MX KLD5.001-02 KLT9.001-02 Z-0233-827-15 5962-8686701RA 5962-8685601RA 74AHCT573D.112 74FCT16373CTPVG8 74FCT573ATQG 5962-8755501RA