COMPLEMENTARY SILICON POWER TRANSISTORS

- STMicroelectronics PREFERRED SALESTYPE
- COMPLEMENTARY PNP - NPN DEVICES

DESCRIPTION

The BD433, BD435, and BD437 are silicon epitaxial-base NPN power transistors in Jedec SOT-32 plastic package, intented for use in medium power linear and switching applications.
The BD433 is especially suitable for use in car-radio output stages.
The complementary PNP types are BD434, BD436, and BD438 respectively.

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Value			Unit
		NPN	BD433	BD435	BD437	
		PNP	BD434	BD436	BD438	
$\mathrm{V}_{\text {cbo }}$	Collector-Base Voltage ($\mathrm{I}_{\mathrm{E}}=0$)		22	32	45	V
$\mathrm{V}_{\text {ces }}$	Collector-Emitter Voltage ($\mathrm{V}_{\mathrm{BE}}=0$)		22	32	45	V
$\mathrm{V}_{\text {Ceo }}$	Collector-Emitter Voltage ($\mathrm{I}_{\mathrm{B}}=0$)		22	32	45	V
$\mathrm{V}_{\text {Ebo }}$	Emitter-Base Voltage ($\mathrm{IC}_{\mathrm{C}}=0$)			5		V
Ic	Collector Current			4		A
Icm	Collector Peak Current ($\mathrm{t} \leq 10 \mathrm{~ms}$)			7		A
I_{B}	Base Current			1		A
$\mathrm{P}_{\text {tot }}$	Total Dissipation at $\mathrm{T}_{\mathrm{c}} \leq 25^{\circ} \mathrm{C}$			36		W
$\mathrm{T}_{\text {stg }}$	Storage Temperature			-65 to 150		${ }^{\circ} \mathrm{C}$
T_{j}	Max. Operating Junction Temperature			150		${ }^{\circ} \mathrm{C}$

[^0]
THERMAL DATA

$\mathrm{R}_{\mathrm{thj} \text {-case }}$	Thermal	Resistance Junction-case	Max	3.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\mathrm{thj} \text {-amb }}$	Thermal	Resistance	Junction-ambient	Max	100

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
Ісво	Collector Cut-off Current ($\mathrm{I}_{\mathrm{E}}=0$)	for BD433/434 for BD435/436 for BD437/438	$\begin{aligned} & \mathrm{V}_{C B}=22 \mathrm{~V} \\ & \mathrm{~V}_{C B}=32 \mathrm{~V} \\ & \mathrm{~V}_{C B}=45 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Ices	Collector Cut-off Current ($\mathrm{V}_{\mathrm{BE}}=0$)	$\begin{aligned} & \text { for BD433/434 } \\ & \text { for BD435/436 } \\ & \text { for BD437/438 } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=22 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=32 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=45 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
$I_{\text {ebo }}$	Emitter Cut-off Current ($\mathrm{IC}=0$)	$\mathrm{V}_{\mathrm{EB}}=5 \mathrm{~V}$				1	mA
Vceo(sus)*	Collector-Emitter Sustaining Voltage $\left(I_{B}=0\right)$	$\mathrm{IC}=100 \mathrm{~mA}$	$\begin{aligned} & \text { for BD433/434 } \\ & \text { for BD435/436 } \\ & \text { for BD437/438 } \end{aligned}$	$\begin{aligned} & 22 \\ & 32 \\ & 45 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{CE} \text { (sat)* }}$	Collector-Emitter Saturation Voltage	$\mathrm{IC}=2 \mathrm{~A}$	$\begin{aligned} & I_{B}=0.2 \mathrm{~A} \\ & \text { for BD433/434 } \\ & \text { for BD435/436 } \\ & \text { for BD437/438 } \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.6 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$V_{B E *}$	Base-Emitter Voltage	$\begin{aligned} & \mathrm{IC}=10 \mathrm{~mA} \\ & \mathrm{IC}=2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{C E}=5 \mathrm{~V} \\ & V_{C E}=1 \mathrm{~V} \\ & \text { for BD433/434 } \\ & \text { for BD435/436 } \\ & \text { for BD437/438 } \end{aligned}$		0.58	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.2 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
hfE^{*}	DC Current Gain	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$ $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{c}}=2 \mathrm{~A} \end{aligned}$	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$ for BD433/434 for BD435/436 for BD437/438 $\mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}$ $\mathrm{V}_{\text {CE }}=1 \mathrm{~V}$ for BD433/434 for BD435/436 for BD437/438	$\begin{aligned} & 40 \\ & 40 \\ & 30 \\ & 85 \\ & 50 \\ & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \\ & 130 \\ & 140 \end{aligned}$		
$\mathrm{h}_{\text {FE1 }} / \mathrm{h}_{\text {FE2 }}$ *	Matched Pair	$\mathrm{IC}=500 \mathrm{~mA}$	$\mathrm{V}_{C E}=1 \mathrm{~V}$			1.4	
f_{T}	Transition frequency	$\mathrm{IC}=250 \mathrm{~mA}$	$\mathrm{V}_{\text {CE }}=1 \mathrm{~V}$	3			MHz

* Pulsed: Pulse duration = 300 ss, duty cycle 1.5%

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	7.4		7.8	0.291		0.307
B	10.5		10.8	0.413		0.425
b	0.7		0.9	0.028		0.035
b1	0.40		0.65	0.015		0.025
C	2.4		2.7	0.094		0.106
c1	1.0		1.3	0.039		0.051
D	15.4		16.0	0.606		0.630
e		2.2			0.087	
e3		4.4			0.173	
F		3.8			0.150	
G	3		3.2	0.118		0.126
H			2.54			0.100
H2		1.27			0.084	
I		0.3			0.05	
O		10°			0.011	
V					10°	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics
© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - Pre-Biased category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
MMUN2217LT1G FP101-TL-E RN1607(TE85L,F) DRC9A14E0L DTA124GKAT146 DTA144WETL DTA144WKAT146 DTC113EET1G DTC115TETL DTC115TKAT146 DTC124TETL DTC144ECA-TP DTC144VUAT106 MUN5241T1G BCR158WH6327XTSA1 NSBA114TDP6T5G NSBA143TF3T5G NSBA143ZF3T5G NSBC114EF3T5G NSBC114YF3T5G NSBC123TF3T5G NSBC143TF3T5G NSVMUN2212T1G NSVMUN5111DW1T3G NSVMUN5314DW1T3G NSVUMC2NT1G SMMUN2134LT1G SMUN2212T1G SMUN5235T1G SMUN5330DW1T1G SSVMUN5312DW1T2G 2SC3650-TD-E RN1303(TE85L,F) RN4605(TE85L,F) BCR135SH6327XT TTEPROTOTYPE79 UMC3NTR DTA113EET1G EMA2T2R EMH15T2R SDTA114YET1G SMMUN2111LT3G SMMUN2113LT1G SMMUN2114LT1G SMMUN2211LT3G SMUN2214T3G SMUN5113DW1T1G SMUN5335DW1T1G NSBA114YF3T5G NSBC114TF3T5G

[^0]: For PNP types voltage and current values are negative.

