# **74LVC14A**

# Hex inverting Schmitt trigger with 5 V tolerant input

Rev. 5 — 23 December 2011

Product data sheet

# 1. General description

The 74LVC14A provides six inverting buffers with Schmitt trigger input. It is capable of transforming slowly-changing input signals into sharply defined, jitter-free output signals.

The inputs switch at different points for positive and negative-going signals. The difference between the positive voltage  $V_{T+}$  and the negative voltage  $V_{T-}$  is defined as the input hysteresis voltage  $V_H$ .

Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of this device as a translator in mixed 3.3 V and 5 V applications.

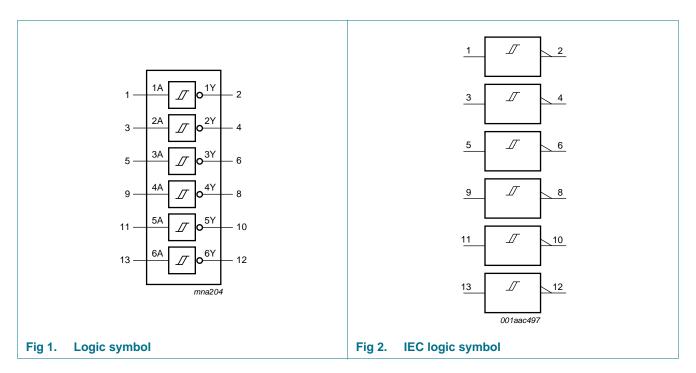
### 2. Features and benefits

- Wide supply voltage range from 1.2 V to 3.6 V
- 5 V tolerant input for interfacing with 5 V logic
- CMOS low-power consumption
- Direct interface with TTL levels
- Unlimited input rise and fall times
- Inputs accept voltages up to 5.5 V
- Complies with JEDEC standard JESD8-C/JESD36 (2.7 V to 3.6 V)
- ESD protection:
  - ♦ HBM JESD22-A114F exceeds 2000 V
  - ♦ MM JESD22-A115-B exceeds 200 V
  - ◆ CDM JESD22-C101E exceeds 1000 V
- Multiple package options
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

# 3. Applications

- Wave and pulse shapers for highly noisy environments
- Astable multivibrators
- Monostable multivibrators




# Hex inverting Schmitt trigger with 5 V tolerant input

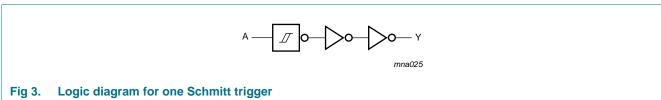

# 4. Ordering information

Table 1. Ordering information

| Type number | Package           |          |                                                                                                                                            |          |  |  |  |  |  |  |
|-------------|-------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|--|--|--|
|             | Temperature range | Name     | Description                                                                                                                                | Version  |  |  |  |  |  |  |
| 74LVC14AD   | -40 °C to +125 °C | SO14     | plastic small outline package; 14 leads;<br>body width 3.9 mm                                                                              | SOT108-1 |  |  |  |  |  |  |
| 74LVC14ADB  | –40 °C to +125 °C | SSOP14   | plastic thin shrink small outline package; 14 leads; body width 5.3 mm                                                                     | SOT337-1 |  |  |  |  |  |  |
| 74LVC14APW  | –40 °C to +125 °C | TSSOP14  | plastic thin shrink small outline package; 14 leads; body width 4.4 mm                                                                     | SOT402-1 |  |  |  |  |  |  |
| 74LVC14ABQ  | –40 °C to +125 °C | DHVQFN14 | plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 $\times$ 3 $\times$ 0.85 mm | SOT762-1 |  |  |  |  |  |  |

# 5. Functional diagram





### Hex inverting Schmitt trigger with 5 V tolerant input

# 6. Pinning information

### 6.1 Pinning



### 6.2 Pin description

Table 2. Pin description

| Symbol                 | Pin                | Description    |
|------------------------|--------------------|----------------|
| 1A, 2A, 3A, 4A, 5A, 6A | 1, 3, 5, 9, 11, 13 | data input     |
| 1Y, 2Y, 3Y, 4Y, 5Y, 6Y | 2, 4, 6, 8, 10, 12 | data output    |
| GND                    | 7                  | ground (0 V)   |
| V <sub>CC</sub>        | 14                 | supply voltage |

# 7. Functional description

Table 3. Function table [1]

| Input nA | Output nY |
|----------|-----------|
| L        | Н         |
| Н        | L         |

[1] H = HIGH voltage level; L = LOW voltage level

### Hex inverting Schmitt trigger with 5 V tolerant input

# 8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

| Symbol           | Parameter               | Conditions                                                           | Min             | Max            | Unit |
|------------------|-------------------------|----------------------------------------------------------------------|-----------------|----------------|------|
| $V_{CC}$         | supply voltage          |                                                                      | -0.5            | +6.5           | V    |
| VI               | input voltage           |                                                                      | <u>[1]</u> –0.5 | +6.5           | V    |
| Vo               | output voltage          |                                                                      | [2][3] -0.5     | $V_{CC} + 0.5$ | V    |
| I <sub>IK</sub>  | input clamping current  | V <sub>I</sub> < 0 V                                                 | -50             | -              | mA   |
| I <sub>OK</sub>  | output clamping current | $V_O > V_{CC}$ or $V_O < 0$ V                                        | -               | ±50            | mA   |
| Io               | output current          | $V_O = 0 V \text{ to } V_{CC}$                                       | -               | ±50            | mA   |
| I <sub>CC</sub>  | supply current          |                                                                      | -               | 100            | mA   |
| I <sub>GND</sub> | ground current          |                                                                      | -100            | -              | mA   |
| T <sub>stg</sub> | storage temperature     |                                                                      | -65             | +150           | °C   |
| P <sub>tot</sub> | total power dissipation | $T_{amb} = -40  ^{\circ}\text{C} \text{ to } +125  ^{\circ}\text{C}$ | <u>[4]</u> _    | 500            | mW   |

<sup>[1]</sup> The minimum input voltage ratings may be exceeded if the input current ratings are observed.

# 9. Recommended operating conditions

Table 5. Recommended operating conditions

| Symbol           | Parameter           | Conditions | Min  | Тур | Max      | Unit |
|------------------|---------------------|------------|------|-----|----------|------|
| $V_{CC}$         | supply voltage      |            | 1.65 | -   | 3.6      | V    |
|                  |                     | functional | 1.2  | -   | -        | V    |
| V <sub>I</sub>   | input voltage       |            | 0    | -   | 5.5      | V    |
| Vo               | output voltage      |            | 0    | -   | $V_{CC}$ | V    |
| T <sub>amb</sub> | ambient temperature |            | -40  | -   | +125     | °C   |

<sup>[2]</sup> The output voltage ratings may be exceeded if the output current ratings are observed.

<sup>[3]</sup> When  $V_{CC} = 0 \text{ V}$  (Power-down mode), the output voltage can be 3.6 V in normal operation.

<sup>[4]</sup> For SO14 packages: P<sub>tot</sub> derates linearly with 8 mW/K above 70 °C.
For (T)SSOP14 packages: P<sub>tot</sub> derates linearly with 5.5 mW/K above 60 °C.
For DHVQFN14 packages: P<sub>tot</sub> derates linearly with 4.5 mW/K above 60 °C.

### Hex inverting Schmitt trigger with 5 V tolerant input

# 10. Static characteristics

Table 6. Static characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

| Symbol                    | Parameter                                        | Conditions                                                                    | -40 °                 | C to +85 | °C   | –40 °C to             | +125 °C | Unit |
|---------------------------|--------------------------------------------------|-------------------------------------------------------------------------------|-----------------------|----------|------|-----------------------|---------|------|
|                           |                                                  |                                                                               | Min                   | Typ[1]   | Max  | Min                   | Max     |      |
| $V_{OH}$                  | HIGH-level                                       | $V_I = V_{T+}$ or $V_{T-}$                                                    | •                     | ·        |      | '                     |         |      |
| output voltage            | output voltage                                   | $I_O = -100 \mu A;$<br>$V_{CC} = 1.65 \text{ V to } 3.6 \text{ V}$            | V <sub>CC</sub> – 0.2 | -        | -    | V <sub>CC</sub> - 0.3 | -       | V    |
|                           |                                                  | $I_{O} = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$                              | 1.2                   | -        | -    | 1.05                  | -       | V    |
|                           |                                                  | $I_{O} = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$                               | 1.8                   | -        | -    | 1.65                  | -       | V    |
|                           | $I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$ | 2.2                                                                           | -                     | -        | 2.05 | -                     | V       |      |
|                           |                                                  | $I_{O} = -18 \text{ mA}; V_{CC} = 3.0 \text{ V}$                              | 2.4                   | -        | -    | 2.25                  | -       | V    |
|                           |                                                  | $I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$                              | 2.2                   | -        | -    | 2.0                   | -       | V    |
| V <sub>OL</sub> LOW-level |                                                  | $V_I = V_{T+}$ or $V_{T-}$                                                    |                       |          |      |                       |         |      |
|                           | voltage output                                   | $I_O = 100 \ \mu A; \ V_{CC} = 1.65 \ V \ to \ 3.6 \ V$                       | -                     | -        | 0.2  | -                     | 0.3     | V    |
|                           |                                                  | $I_O = 4 \text{ mA}; V_{CC} = 1.65 \text{ V}$                                 | -                     | -        | 0.45 | -                     | 0.65    | V    |
|                           |                                                  | $I_O = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$                                  | -                     | -        | 0.6  | -                     | 8.0     | V    |
|                           |                                                  | $I_O = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$                                 | -                     | -        | 0.4  | -                     | 0.6     | V    |
|                           |                                                  | $I_O = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$                                 | -                     | -        | 0.55 | -                     | 8.0     | V    |
| II                        | input leakage<br>current                         | $V_{CC} = 3.6 \text{ V}; V_I = 5.5 \text{ V or GND}$                          | -                     | ±0.1     | ±5   | -                     | ±20     | μΑ   |
| I <sub>CC</sub>           | supply current                                   | $V_{CC} = 3.6 \text{ V}; V_I = V_{CC} \text{ or GND}; I_O = 0 \text{ A}$      | -                     | 0.1      | 10   | -                     | 40      | μΑ   |
| $\Delta I_{CC}$           | additional supply current                        | per input pin; $V_{CC}$ = 2.7 V to 3.6 V; $V_I = V_{CC} - 0.6$ V; $I_O = 0$ A | -                     | 5        | 500  | -                     | 5000    | μΑ   |
| C <sub>I</sub>            | input<br>capacitance                             | $V_{CC} = 0 \text{ V to } 3.6 \text{ V; } V_I = \text{GND to } V_{CC}$        | -                     | 4.0      | -    | -                     | -       | pF   |

<sup>[1]</sup> All typical values are measured at  $V_{CC}$  = 3.3 V (unless stated otherwise) and  $T_{amb}$  = 25 °C.

# 11. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 7.

| Symbol             | Parameter         | Conditions                                   |     | -40 | °C to +8 | 5 °C | –40 °C to | +125 °C | Unit |
|--------------------|-------------------|----------------------------------------------|-----|-----|----------|------|-----------|---------|------|
|                    |                   |                                              |     | Min | Typ[1]   | Max  | Min       | Max     |      |
| $t_{pd}$           | propagation delay | gation delay nA to nY; see Figure 6          |     |     |          |      |           |         |      |
|                    |                   | V <sub>CC</sub> = 1.2 V                      |     | -   | 16       | -    | -         | -       | ns   |
|                    |                   | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ |     | 1.0 | 6.1      | 12.7 | 1.0       | 14.7    | ns   |
|                    |                   | $V_{CC}$ = 2.3 V to 2.7 V                    |     | 1.5 | 3.5      | 7.8  | 1.5       | 10.0    | ns   |
|                    |                   | $V_{CC} = 2.7 \text{ V}$                     |     | 1.5 | 3.6      | 7.5  | 1.5       | 9.5     | ns   |
|                    |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$   |     | 1.0 | 3.2      | 6.4  | 1.0       | 8.0     | ns   |
| t <sub>sk(o)</sub> | output skew time  | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$   | [3] | -   | -        | 1.0  | -         | 1.5     | ns   |

### Hex inverting Schmitt trigger with 5 V tolerant input

 Table 7.
 Dynamic characteristics ...continued

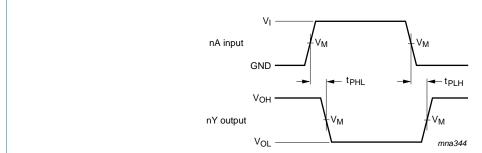
Voltages are referenced to GND (ground = 0 V). For test circuit see <u>Figure 7</u>.

| Symbol                            | Parameter                                    | Conditions                                 |   | -40 | °C to +8 | 5 °C | –40 °C to | -40 °C to +125 °C |    |  |
|-----------------------------------|----------------------------------------------|--------------------------------------------|---|-----|----------|------|-----------|-------------------|----|--|
|                                   |                                              |                                            |   | Min | Typ[1]   | Max  | Min       | Max               |    |  |
| C <sub>PD</sub> power dissipation |                                              | per buffer; $V_I = GND$ to $V_{CC}$ [4]    |   |     | '        |      | •         | •                 | '  |  |
| capacitance                       | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ |                                            | - | 9.0 | -        | -    | -         | pF                |    |  |
|                                   |                                              | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ |   | -   | 12.5     | -    | -         | -                 | pF |  |
|                                   |                                              | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ |   | -   | 15.6     | -    | -         | -                 | pF |  |

- [1] Typical values are measured at  $T_{amb} = 25$  °C and  $V_{CC} = 1.2$  V, 1.8 V, 2.5 V, 2.7 V, and 3.3 V respectively.
- [2]  $t_{pd}$  is the same as  $t_{PLH}$  and  $t_{PHL}$ .
- [3] Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.
- [4]  $C_{PD}$  is used to determine the dynamic power dissipation ( $P_D$  in  $\mu W$ ).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o) \text{ where:}$ 

 $f_i$  = input frequency in MHz;  $f_o$  = output frequency in MHz


C<sub>L</sub> = output load capacitance in pF

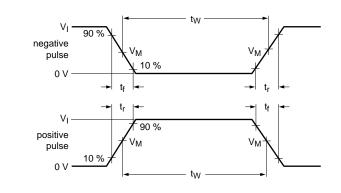
V<sub>CC</sub> = supply voltage in Volts

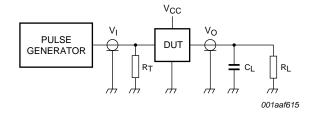
N = number of inputs switching

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$  = sum of the outputs.

### 12. Waveforms




 $V_M$  = 1.5 V at  $V_{CC} \geq 2.7 \ V$ 


 $V_M = 0.5 \times V_{CC}$  at  $V_{CC} < 2.7$  V.

 $V_{OL}$  and  $V_{OH}$  are typical output voltage levels that occur with the output load.

Fig 6. Propagation delay input (nA) to output (nY)

# Hex inverting Schmitt trigger with 5 V tolerant input





Test data is given in Table 8. Definitions for test circuit:

R<sub>L</sub> = Load resistance

C<sub>L</sub> = Load capacitance including jig and probe capacitance

 $R_T$  = Termination resistance should be equal to output impedance  $Z_o$  of the pulse generator.

Fig 7. Load circuitry for measuring switching times

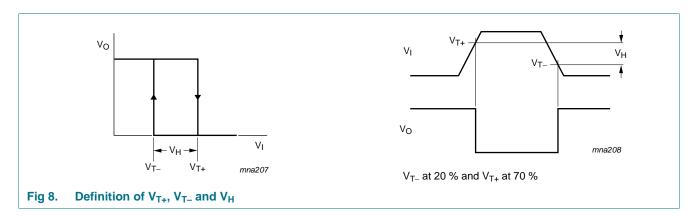
Table 8. Test data

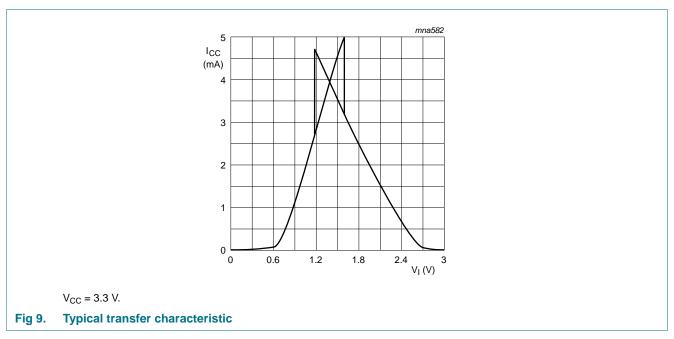
| Supply voltage   | Input           |                                 | Load  | Load           |  |  |  |
|------------------|-----------------|---------------------------------|-------|----------------|--|--|--|
|                  | V <sub>I</sub>  | t <sub>r</sub> , t <sub>f</sub> | CL    | R <sub>L</sub> |  |  |  |
| 1.2 V            | V <sub>CC</sub> | ≤ 2 ns                          | 30 pF | 1 kΩ           |  |  |  |
| 1.65 V to 1.95 V | $V_{CC}$        | ≤ 2 ns                          | 30 pF | 1 kΩ           |  |  |  |
| 2.3 V to 2.7 V   | $V_{CC}$        | ≤ 2 ns                          | 30 pF | 500 Ω          |  |  |  |
| 2.7 V            | 2.7 V           | ≤ 2.5 ns                        | 50 pF | 500 Ω          |  |  |  |
| 3.0 V to 3.6 V   | 2.7 V           | ≤ 2.5 ns                        | 50 pF | 500 Ω          |  |  |  |

# Hex inverting Schmitt trigger with 5 V tolerant input

# 13. Transfer characteristics

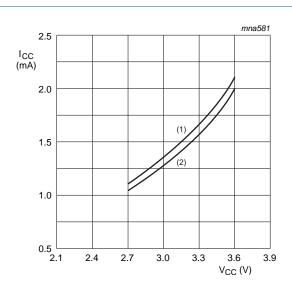
Table 9. Transfer characteristics


Voltages are referenced to GND (ground = 0 V); see Figure 8.


| Symbol         | Parameter           | Conditions                   | T <sub>amb</sub> = - | -40 °C to +85 °C | T <sub>amb</sub> = - | 40 °C to +125 °C | Unit |
|----------------|---------------------|------------------------------|----------------------|------------------|----------------------|------------------|------|
|                |                     |                              | Min                  | Max              | Min                  | Max              |      |
| $V_{T+}$       | positive-going      | $V_{CC} = 1.2 \text{ V}$     | 0.2                  | 1.0              | 0.2                  | 1.0              | V    |
|                | threshold voltage   | V <sub>CC</sub> = 1.65 V     | 0.4                  | 1.3              | 0.4                  | 1.3              | V    |
|                |                     | V <sub>CC</sub> = 1.95 V     | 0.6                  | 1.5              | 0.6                  | 1.5              | V    |
|                |                     | $V_{CC} = 2.3 \text{ V}$     | 0.8                  | 1.7              | 0.8                  | 1.7              | V    |
|                |                     | $V_{CC} = 2.5 \text{ V}$     | 0.9                  | 1.7              | 0.9                  | 1.7              | V    |
|                |                     | $V_{CC} = 2.7 \text{ V}$     | 1.1                  | 2                | 1.1                  | 2                | V    |
|                |                     | $V_{CC} = 3 V$               | 1.2                  | 2                | 1.2                  | 2                | V    |
|                |                     | $V_{CC} = 3.6 \text{ V}$     | 1.2                  | 2                | 1.2                  | 2                | V    |
| $V_{T-}$       | negative-going      | $V_{CC} = 1.2 \text{ V}$     | 0.12                 | 0.75             | 0.12                 | 0.75             | V    |
| thre           | threshold voltage   | V <sub>CC</sub> = 1.65 V     | 0.15                 | 0.85             | 0.15                 | 0.85             | V    |
|                |                     | V <sub>CC</sub> = 1.95 V     | 0.25                 | 0.95             | 0.25                 | 0.95             | V    |
|                |                     | $V_{CC} = 2.3 \text{ V}$     | 0.4                  | 1.1              | 0.4                  | 1.1              | V    |
|                |                     | V <sub>CC</sub> = 2.5 V      | 0.4                  | 1.2              | 0.4                  | 1.2              | V    |
|                |                     | $V_{CC} = 2.7 \text{ V}$     | 8.0                  | 1.4              | 8.0                  | 1.4              | V    |
|                |                     | $V_{CC} = 3 V$               | 8.0                  | 1.5              | 0.8                  | 1.5              | V    |
|                |                     | $V_{CC} = 3.6 \text{ V}$     | 8.0                  | 1.5              | 8.0                  | 1.5              | V    |
| V <sub>H</sub> | hysteresis voltage  | $V_{CC} = 1.2 \text{ V}$     | 0.1                  | 1.0              | 0.1                  | 1.0              | V    |
|                | $(V_{T+} - V_{T-})$ | V <sub>CC</sub> = 1.65 V     | 0.2                  | 1.15             | 0.2                  | 1.15             | V    |
|                |                     | V <sub>CC</sub> = 1.95 V     | 0.2                  | 1.25             | 0.2                  | 1.25             | V    |
|                |                     | $V_{CC} = 2.3 \text{ V}$     | 0.3                  | 1.3              | 0.3                  | 1.3              | V    |
|                |                     | V <sub>CC</sub> = 2.5 V      | 0.3                  | 1.3              | 0.3                  | 1.3              | V    |
|                |                     | $V_{CC} = 2.7 \text{ V}$     | 0.3                  | 1.1              | 0.3                  | 1.1              | V    |
|                |                     | $V_{CC} = 3 V$               | 0.3                  | 1.2              | 0.3                  | 1.2              | V    |
|                |                     | $V_{CC} = 3.6 \text{ V}$ [1] | 0.3                  | 1.2              | 0.3                  | 1.2              | V    |

<sup>[1]</sup> Typical transfer characteristic is displayed in  $\underline{\text{Figure 9}}$ .

# Hex inverting Schmitt trigger with 5 V tolerant input


# 14. Waveforms transfer characteristics





# Hex inverting Schmitt trigger with 5 V tolerant input

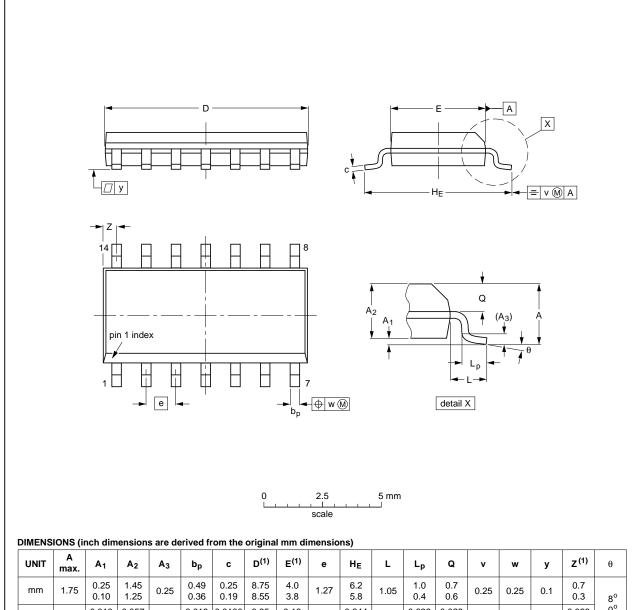
# 15. Application information



- (1) Positive-going edge.
- (2) Negative going-edge. Linear change of V<sub>I</sub> between 0.8 V to 2.0 V. All values given are typical unless otherwise specified.

Fig 10. Average supply current as a function of supply voltage

$$f = \frac{I}{T} \approx \frac{I}{0.8 \times RC}$$
 at  $V_{CC} = 3.0 \text{ V}$ 


Fig 11. Relaxation oscillator

# Hex inverting Schmitt trigger with 5 V tolerant input

# 16. Package outline

### SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1



| UNIT   | A<br>max. | A <sub>1</sub> | A <sub>2</sub> | А3   | bp           | С                | D <sup>(1)</sup> | E <sup>(1)</sup> | е    | HE             | L     | Lp             | Q          | ٧    | w    | у     | Z <sup>(1)</sup> | θ  |
|--------|-----------|----------------|----------------|------|--------------|------------------|------------------|------------------|------|----------------|-------|----------------|------------|------|------|-------|------------------|----|
| mm     | 1.75      | 0.25<br>0.10   | 1.45<br>1.25   | 0.25 | 0.49<br>0.36 | 0.25<br>0.19     | 8.75<br>8.55     | 4.0<br>3.8       | 1.27 | 6.2<br>5.8     | 1.05  | 1.0<br>0.4     | 0.7<br>0.6 | 0.25 | 0.25 | 0.1   | 0.7<br>0.3       | 8° |
| inches | 0.069     | 0.010<br>0.004 | 0.057<br>0.049 | 0.01 |              | 0.0100<br>0.0075 |                  | 0.16<br>0.15     | 0.05 | 0.244<br>0.228 | 0.041 | 0.039<br>0.016 |            | 0.01 | 0.01 | 0.004 | 0.028<br>0.012   | 0° |

#### Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

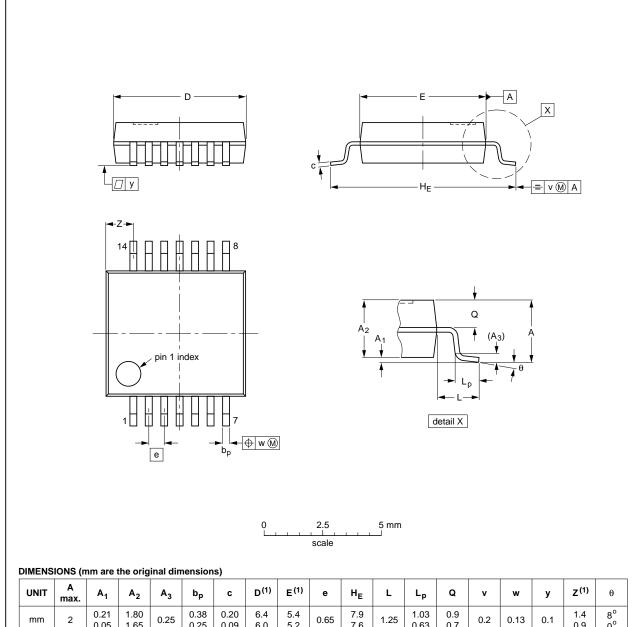

| OUTLINE  |        | REFER  | EUROPEAN | ISSUE DATE |            |                                 |  |
|----------|--------|--------|----------|------------|------------|---------------------------------|--|
| VERSION  | IEC    | JEDEC  | JEITA    |            | PROJECTION | ISSUE DATE                      |  |
| SOT108-1 | 076E06 | MS-012 |          |            |            | <del>99-12-27</del><br>03-02-19 |  |

Fig 12. Package outline SOT108-1 (SO14)

# Hex inverting Schmitt trigger with 5 V tolerant input

SSOP14: plastic shrink small outline package; 14 leads; body width 5.3 mm

SOT337-1



| UNIT | A<br>max. | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | bp           | C            | D <sup>(1)</sup> | E <sup>(1)</sup> | e    | HE         | L    | Lp           | Q          | v   | w    | у   | Z <sup>(1)</sup> | θ        |
|------|-----------|----------------|----------------|----------------|--------------|--------------|------------------|------------------|------|------------|------|--------------|------------|-----|------|-----|------------------|----------|
| mm   | 2         | 0.21<br>0.05   | 1.80<br>1.65   | 0.25           | 0.38<br>0.25 | 0.20<br>0.09 | 6.4<br>6.0       | 5.4<br>5.2       | 0.65 | 7.9<br>7.6 | 1.25 | 1.03<br>0.63 | 0.9<br>0.7 | 0.2 | 0.13 | 0.1 | 1.4<br>0.9       | 8°<br>0° |

### Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

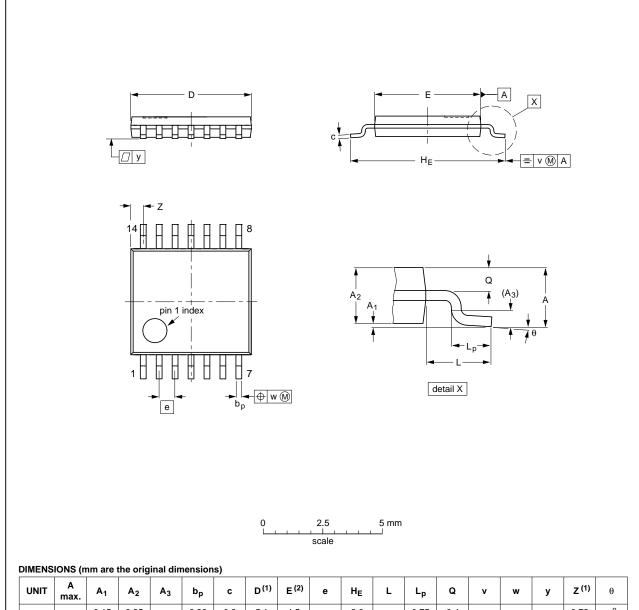

| OUTLINE  |     | REFER  | EUROPEAN | ISSUE DATE |            |                                 |
|----------|-----|--------|----------|------------|------------|---------------------------------|
| VERSION  | IEC | JEDEC  | JEITA    |            | PROJECTION | ISSUE DATE                      |
| SOT337-1 |     | MO-150 |          |            |            | <del>99-12-27</del><br>03-02-19 |

Fig 13. Package outline SOT337-1 (SSOP14)

# Hex inverting Schmitt trigger with 5 V tolerant input

TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm

SOT402-1



| UNIT | max. | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | bp           | С          | D <sup>(1)</sup> | E (2)      | е    | HE         | L | Lp           | Q          | v   | w    | у   | Z <sup>(1)</sup> | θ        |
|------|------|----------------|----------------|----------------|--------------|------------|------------------|------------|------|------------|---|--------------|------------|-----|------|-----|------------------|----------|
| mm   | 1.1  | 0.15<br>0.05   | 0.95<br>0.80   | 0.25           | 0.30<br>0.19 | 0.2<br>0.1 | 5.1<br>4.9       | 4.5<br>4.3 | 0.65 | 6.6<br>6.2 | 1 | 0.75<br>0.50 | 0.4<br>0.3 | 0.2 | 0.13 | 0.1 | 0.72<br>0.38     | 8°<br>0° |

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

| OUTLINE  |     | REFER  | EUROPEAN | ISSUE DATE |            |                                 |  |
|----------|-----|--------|----------|------------|------------|---------------------------------|--|
| VERSION  | IEC | JEDEC  | JEITA    |            | PROJECTION | ISSUE DATE                      |  |
| SOT402-1 |     | MO-153 |          |            |            | <del>99-12-27</del><br>03-02-18 |  |

Fig 14. Package outline SOT402-1 (TSSOP14)

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2011. All rights reserved.

DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 x 3 x 0.85 mm SOT762-1

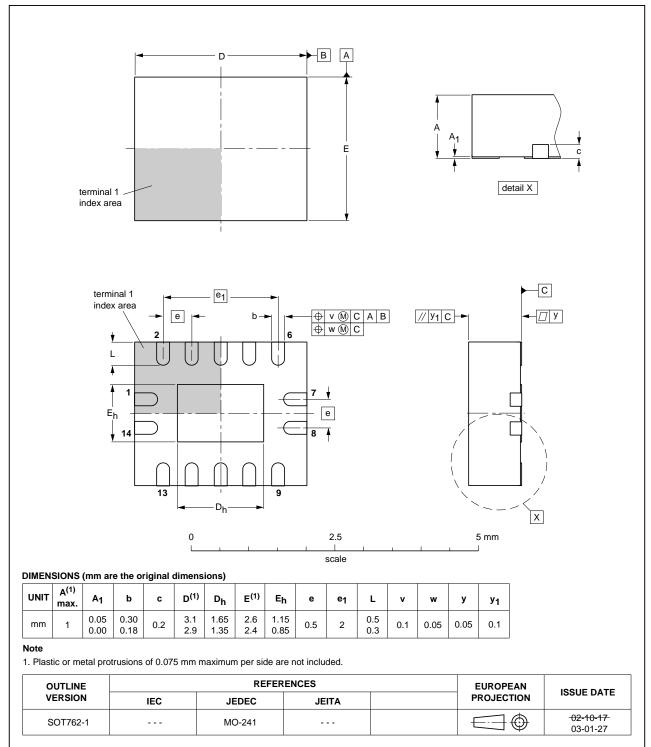



Fig 15. Package outline SOT762-1 (DHVQFN14)

74LVC14A All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

# Hex inverting Schmitt trigger with 5 V tolerant input

# 17. Abbreviations

### Table 10. Abbreviations

| Acronym | Description                 |
|---------|-----------------------------|
| CDM     | Charged Device Model        |
| DUT     | Device Under Test           |
| ESD     | ElectroStatic Discharge     |
| НВМ     | Human Body Model            |
| MM      | Machine Model               |
| TTL     | Transistor-Transistor Logic |

# 18. Revision history

### Table 11. Revision history

|                | •                                                      |                                            |                        |                             |
|----------------|--------------------------------------------------------|--------------------------------------------|------------------------|-----------------------------|
| Document ID    | Release date                                           | Data sheet status                          | Change notice          | Supersedes                  |
| 74LVC14A v.5   | 20111223                                               | Product data sheet                         | -                      | 74LVC14A v.4                |
| Modifications: | <ul> <li>The format of to<br/>of NXP Semice</li> </ul> | this data sheet has been red<br>onductors. | esigned to comply with | the new identity guidelines |
|                | <ul> <li>Legal texts have</li> </ul>                   | ve been adapted to the new                 | company name where     | appropriate.                |
|                | • Table 4, Table                                       | 5, Table 6, Table 7 and Table              | 8: values added for lo | wer voltage ranges.         |
| 74LVC14A v.4   | 20050215                                               | Product data sheet                         | -                      | 74LVC14A v.3                |
| 74LVC14A v.3   | 20030228                                               | Product specification                      | -                      | 74LVC14A v.2                |
| 74LVC14A v.2   | 20020315                                               | Product specification                      | -                      | 74LVC14A v.1                |
| 74LVC14A v.1   | 19980428                                               | Product specification                      |                        | -                           |
|                |                                                        |                                            |                        |                             |

# Hex inverting Schmitt trigger with 5 V tolerant input

# 19. Legal information

#### 19.1 Data sheet status

| Document status[1][2]          | Product status[3] | Definition                                                                            |
|--------------------------------|-------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development       | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification     | This document contains data from the preliminary specification.                       |
| Product [short] data sheet     | Production        | This document contains the product specification.                                     |

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

### 19.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

**Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

#### 19.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

**Suitability for use** — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nxp.com/profile/terms">http://www.nxp.com/profile/terms</a>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

**No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

74LVC14A

### Hex inverting Schmitt trigger with 5 V tolerant input

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

#### 19.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

### 20. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

**74LVC14A NXP Semiconductors** Hex inverting Schmitt trigger with 5 V tolerant input

# 21. Contents

| 1    | General description                  |
|------|--------------------------------------|
| 2    | Features and benefits 1              |
| 3    | Applications                         |
| 4    | Ordering information 2               |
| 5    | Functional diagram 2                 |
| 6    | Pinning information                  |
| 6.1  | Pinning                              |
| 6.2  | Pin description                      |
| 7    | Functional description 3             |
| 8    | Limiting values 4                    |
| 9    | Recommended operating conditions 4   |
| 10   | Static characteristics 5             |
| 11   | Dynamic characteristics 5            |
| 12   | Waveforms 6                          |
| 13   | Transfer characteristics 8           |
| 14   | Waveforms transfer characteristics 9 |
| 15   | Application information              |
| 16   | Package outline 11                   |
| 17   | Abbreviations                        |
| 18   | Revision history                     |
| 19   | Legal information                    |
| 19.1 | Data sheet status                    |
| 19.2 | Definitions                          |
| 19.3 | Disclaimers                          |
| 19.4 | Trademarks17                         |
| 20   | Contact information                  |
| 21   | Contents                             |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

5962-8769901BCA 74HC85N NL17SG08P5T5G NL17SG32DFT2G NLU1G32AMUTCG NLV7SZ58DFT2G NLVHC1G08DFT1G
NLVVHC1G14DTT1G NLX2G08DMUTCG NLX2G08MUTCG MC74HCT20ADR2G 091992B 091993X 093560G 634701C 634921A
NL17SG32P5T5G NL17SG86DFT2G NLU1G32CMUTCG NLV14001UBDR2G NLVVHC1G132DTT1G NLVVHC1G86DTT1G
NLX1G11AMUTCG NLX1G97MUTCG 746427X 74AUP1G17FW5-7 74LS38 74LVC1G08Z-7 74LVC32ADTR2G 74LVC1G125FW4-7
74LVC08ADTR2G MC74HCT20ADTR2G NLV14093BDTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G NLV17SZ126DFT2G
NLV27WZ17DFT2G NLV74HC02ADR2G NLV74HC08ADR2G NLVVHC1GT32DFT1G 74HC32S14-13 74LS133 74LVC1G32Z-7
M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 M38510/06202BFA NLV74HC08ADTR2G NLV74HC14ADR2G
NLV74HC20ADR2G