74LVC1G98

Low-power configurable multiple function gate Rev. 3 — 10 September 2014 P

Product data sheet

1. **General description**

The 74LVC1G98 is a configurable multiple function gate with Schmitt-trigger inputs. The device can be configured as any of the following logic functions MUX, AND, OR, NAND, NOR, inverter and buffer; using the 3-bit input. All inputs can be connected to V_{CC} or GND.

Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of these devices as translators in mixed 3.3 V and 5 V environments.

This device is fully specified for partial power-down applications using I_{OFF}. The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

2. **Features and benefits**

- Wide supply voltage range from 1.65 V to 5.5 V
- 5 V tolerant input/output for interfacing with 5 V logic
- High noise immunity
- Complies with JEDEC standard:
 - ◆ JESD8-7 (1.65 V to 1.95 V)
 - ◆ JESD8-5 (2.3 V to 2.7 V)
 - ◆ JESD8B/JESD36 (2.7 V to 3.6 V).
- ± 24 mA output drive ($V_{CC} = 3.0 \text{ V}$)
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- CMOS low power consumption
- Latch-up performance exceeds 250 mA
- Direct interface with TTL levels
- Inputs accept voltages up to 5 V
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C.

Low-power configurable multiple function gate

3. Ordering information

Table 1. Ordering information

Type number	Package							
	Temperature range	Name	Description	Version				
74LVC1G98GW	-40 °C to +125 °C	SC-88	plastic surface-mounted package; 6 leads	SOT363				
74LVC1G98GV	-40 °C to +125 °C	SC-74	plastic surface mounted package; 6 leads	SOT457				
74LVC1G98GM	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body $1 \times 1.45 \times 0.5$ mm	SOT886				
74LVC1G98GF	-40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body $1 \times 1 \times 0.5$ mm	SOT891				
74LVC1G98GN	-40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body $0.9 \times 1.0 \times 0.35$ mm	SOT1115				
74LVC1G98GS	-40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body $1.0 \times 1.0 \times 0.35$ mm	SOT1202				

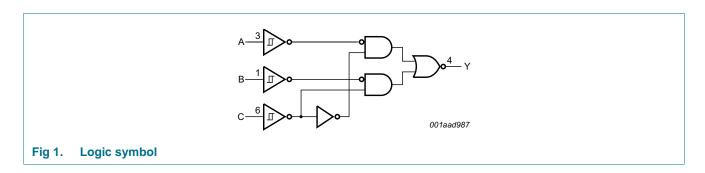
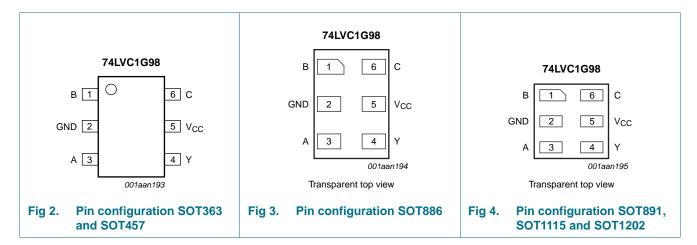

4. Marking

Table 2. Marking

Type number	Marking code ^[1]
74LVC1G98GW	V9
74LVC1G98GV	V98
74LVC1G98GM	V9
74LVC1G98GF	V9
74LVC1G98GN	V9
74LVC1G98GS	V9

^[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.


5. Functional diagram

Low-power configurable multiple function gate

6. Pinning information

6.1 Pinning

6.2 Pin description

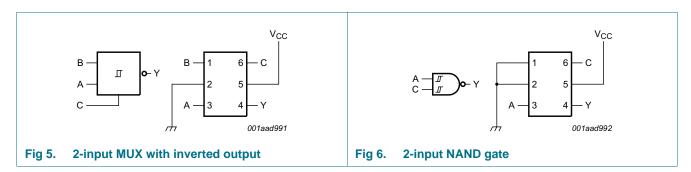
Table 3. Pin description

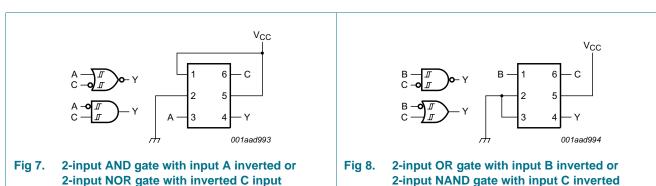
Symbol	Pin	Description
В	1	data input
GND	2	ground (0 V)
Α	3	data input
Υ	4	data output
V _{CC}	5	supply voltage
С	6	data input

7. Functional description

Table 4. Function table [1]

Input			Output
С	В	A	Υ
L	L	L	Н
L	L	Н	Н
L	Н	L	L
L	Н	Н	L
Н	L	L	Н
Н	L	Н	L
Н	Н	L	Н
Н	Н	Н	L


[1] H = HIGH voltage level; L = LOW voltage level.


Low-power configurable multiple function gate

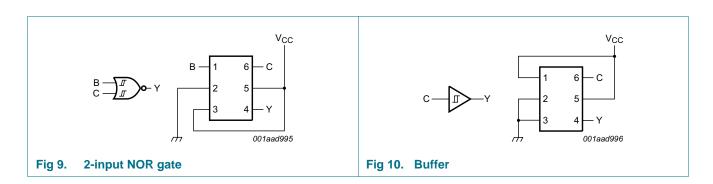
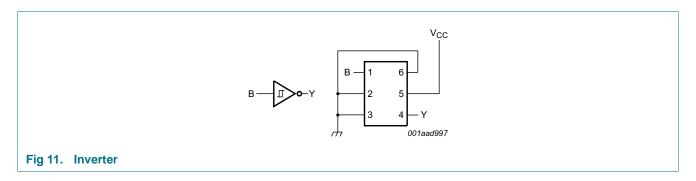

7.1 Logic configurations

Table 5. Function selection table


Logic function	Figure
2-input MUX with inverted output	see Figure 5
2-input NAND	see Figure 6
2-input NOR with one input inverted	see Figure 7
2-input AND with one input inverted	see Figure 7
2-input NAND with one input inverted	see Figure 8
2-input OR with one input inverted	see Figure 8
2-input NOR	see Figure 9
Buffer	see Figure 10
Inverter	see Figure 11

Low-power configurable multiple function gate

8. Limiting values

Table 6. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+6.5	V
I _{IK}	input clamping current	V _I < 0 V		-50	-	mA
VI	input voltage		[1]	-0.5	+6.5	V
I _{OK}	output clamping current	$V_O > V_{CC}$ or $V_O < 0$ V		-	±50	mA
Vo	output voltage	Active mode	[1][2]	-0.5	+6.5	V
		Power-down mode	[1][2]	-0.5	+6.5	V
I _O	output current	$V_O = 0 V \text{ to } V_{CC}$		-	±50	mA
I _{CC}	supply current			-	+100	mA
I _{GND}	ground current			-100	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[3]	-	250	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

9. Recommended operating conditions

Table 7. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage		1.65	-	5.5	V
VI	input voltage		0	-	5.5	V
Vo	output voltage	Active mode	0	-	V _{CC}	V
		V _{CC} = 0 V; Power-down mode	0	-	5.5	V
T _{amb}	ambient temperature		-40	-	+125	°C

^[2] When $V_{CC} = 0 \text{ V}$ (Power-down mode), the output voltage can be 5.5 V in normal operation.

^[3] For SC-88 and SC-74 packages: above 87.5 °C the value of P_{tot} derates linearly with 4.0 mW/K. For XSON6 packages: above 118 °C the value of P_{tot} derates linearly with 7.8 mW/K.

Low-power configurable multiple function gate

10. Static characteristics

Table 8. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40	°C to +85	°C	-40 °C to	Unit	
			Min	Typ[1]	Max	Min	Max	
V _{OL}	LOW-level	$V_I = V_{CC}$ or GND						
	output voltage	$I_O = 100 \mu A;$ $V_{CC} = 1.65 \text{ V to } 5.5 \text{ V}$	-	-	0.1	-	0.1	V
		$I_O = 4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.45	-	0.7	V
		$I_O = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.3	-	0.45	V
		$I_O = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	-	0.4	-	0.6	V
		$I_O = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.55	-	0.8	V
		$I_O = 32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.55	-	0.8	V
V _{OH}	HIGH-level	$V_I = V_{CC}$ or GND						
output voltage	output voltage	$I_O = -100 \mu A;$ $V_{CC} = 1.65 \text{ V to } 5.5 \text{ V}$	V _{CC} - 0.1	-	-	V _{CC} - 0.1	-	V
		$I_{O} = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.2	-	-	0.95	-	V
		$I_{O} = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.9	-	-	1.7	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	2.2	-	-	1.9	-	V
		$I_O = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.3	-	-	2.0	-	V
		$I_{O} = -32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.8	-	-	3.4	-	V
II	input leakage current	V _I = 5.5 V or GND; V _{CC} = 0 V to 5.5 V	-	±0.1	±5	-	±100	μΑ
I _{OFF}	power-off leakage current	$V_1 \text{ or } V_0 = 5.5 \text{ V}; V_{CC} = 0 \text{ V}$	-	±0.1	±10	-	±200	μΑ
I _{CC}	supply current	V _I = 5.5 V or GND; I _O = 0 A; V _{CC} = 1.65 V to 5.5 V	-	0.1	10	-	200	μА
Δl _{CC}	additional supply current	$V_I = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A};$ $V_{CC} = 2.3 \text{ V} \text{ to } 5.5 \text{ V}$	-	5	500	-	5000	μА
C _I	input capacitance		-	2.5	-	-	-	pF

^[1] Typical values are measured at maximum V_{CC} and T_{amb} = 25 °C.

Low-power configurable multiple function gate

11. Dynamic characteristics

Table 9. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 13.

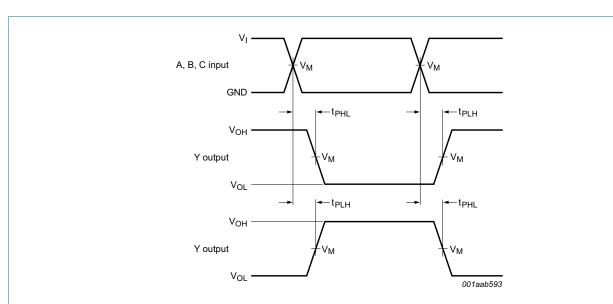
Symbol	Parameter	Conditions		-40 °C to +85 °C			–40 °C to	Unit	
				Min	Typ[1]	Max	Min	Max	
t _{pd}	propagation delay	A, B, C to Y; see Figure 12	[2]						
		V _{CC} = 1.65 V to 1.95 V		1.0	6.0	14.4	1.0	18.0	ns
		V _{CC} = 2.3 V to 2.7 V		0.5	3.5	8.3	0.5	10.4	ns
		V _{CC} = 2.7 V		0.5	4.2	8.5	0.5	10.6	ns
		V _{CC} = 3.0 V to 3.6 V		0.5	3.8	6.3	0.5	7.9	ns
		V _{CC} = 4.5 V to 5.5 V		0.5	3.0	5.1	0.5	6.4	ns
C_{PD}	power dissipation capacitance	$V_{CC} = 3.3 \text{ V}$; $V_I = \text{GND to } V_{CC}$	[3]	-	20	-	-	-	pF

- [1] Typical values are measured at nominal V_{CC} and at T_{amb} = 25 °C.
- [2] t_{pd} is the same as t_{PLH} and t_{PHL}
- [3] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o) \text{ where:}$

 f_i = input frequency in MHz;

f_o = output frequency in MHz;


C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

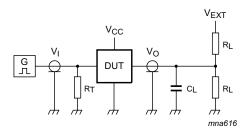
N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of outputs.

12. Waveforms

Measurement points are given in Table 10.

 $\ensuremath{V_{OL}}$ and $\ensuremath{V_{OH}}$ are typical output voltage levels that occur with the output load.


Fig 12. Input A, B and C to output Y propagation delay times

74LVC1G98

Low-power configurable multiple function gate

Table 10. Measurement points

Supply voltage	Input C		Output
V _{CC}	V _M	VI	V _M
1.65 V to 1.95 V	0.5V _{CC}	V _{CC}	0.5V _{CC}
2.3 V to 2.7 V	0.5V _{CC}	V _{CC}	0.5V _{CC}
2.7 V	1.5 V	2.7 V	1.5 V
3.0 V to 3.6 V	1.5 V	2.7 V	1.5 V
4.5 V to 5.5 V	0.5V _{CC}	V _{CC}	0.5V _{CC}

Measurement points are given in <u>Table 11</u>.

Definitions test circuit:

 R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator.

 V_{EXT} = External voltage for measuring switching times.

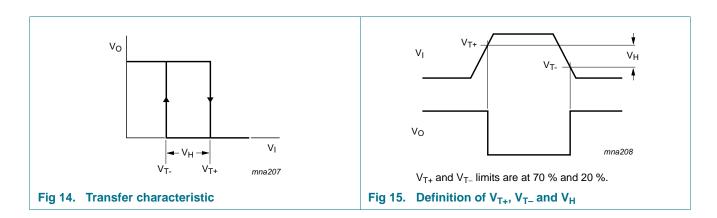
Fig 13. Test circuit for measuring switching times

Table 11. Measurement points

Supply voltage	Input		Load	V _{EXT}	
V _{CC}	VI	$\mathbf{t_r} = \mathbf{t_f}$	CL	R _L	t _{PLH} , t _{PHL}
1.65 V to 1.95 V	V _{CC}	≤ 2.0 ns	30 pF	1 kΩ	open
2.3 to 2.7 V	V _{CC}	≤ 2.0 ns	30 pF	500 Ω	open
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open
4.5 V to 5.5 V	V _{CC}	≤ 2.5 ns	50 pF	500 Ω	open

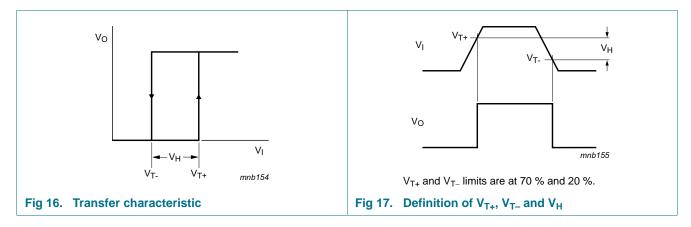
Low-power configurable multiple function gate

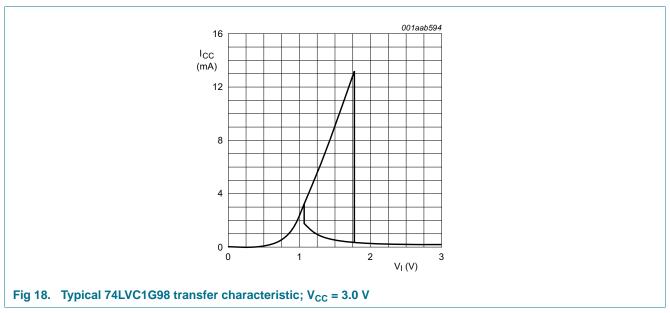
13. Transfer characteristics


Table 12. Transfer characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40	°C to +85	S°C	-40 °C to	+125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
V_{T+}	positive-going threshold voltage	see <u>Figure 14</u> , <u>Figure 15</u> , <u>Figure 16</u> and <u>Figure 17</u>						
		V _{CC} = 1.8 V	0.70	1.02	1.20	0.67	1.20	V
		V _{CC} = 2.3 V	1.11	1.42	1.60	1.08	1.60	V
		V _{CC} = 3.0 V	1.50	1.79	2.00	1.47	2.00	V
		V _{CC} = 4.5 V	2.16	2.52	2.74	2.13	2.74	V
		V _{CC} = 5.5 V	2.61	2.99	3.33	2.58	3.33	V
V_{T-}	negative-going threshold voltage	see Figure 14, Figure 15, Figure 16 and Figure 17						
		V _{CC} = 1.8 V	0.30	0.53	0.72	0.30	0.75	V
		V _{CC} = 2.3 V	0.58	0.77	1.00	0.58	1.03	V
		V _{CC} = 3.0 V	0.80	1.04	1.30	0.80	1.33	V
		V _{CC} = 4.5 V	1.21	1.55	1.90	1.21	1.93	V
		V _{CC} = 5.5 V	1.45	1.86	2.29	1.45	2.32	V
V _H	hysteresis voltage	(V _{T+} − V _{T−}) See <u>Figure 14</u> , <u>Figure 15</u> , <u>Figure 16</u> and <u>Figure 17</u>						
		V _{CC} = 1.8 V	0.30	0.48	0.62	0.23	0.62	V
		V _{CC} = 2.3 V	0.40	0.64	0.80	0.34	0.80	V
		V _{CC} = 3.0 V	0.50	0.75	1.00	0.44	1.00	V
		V _{CC} = 4.5 V	0.71	0.97	1.20	0.65	1.20	V
		V _{CC} = 5.5 V	0.71	1.13	1.40	0.65	1.40	V


^[1] Typical values are measured at T_{amb} = 25 °C.


14. Waveforms transfer characteristics

74LVC1G98

Low-power configurable multiple function gate

74LVC1G98 **NXP Semiconductors**

Low-power configurable multiple function gate

15. Package outline

Plastic surface-mounted package; 6 leads

SOT363

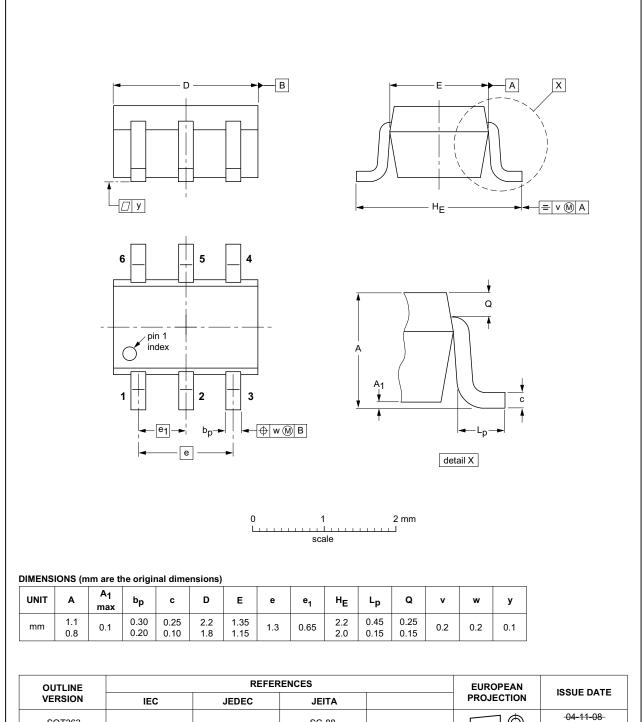


Fig 19. Package outline SOT363 (SC-88)

74LVC1G98

SC-88

06-03-16

 $\bigoplus \emptyset$

SOT363

74LVC1G98 **NXP Semiconductors**

Low-power configurable multiple function gate

Plastic surface-mounted package (TSOP6); 6 leads **SOT457** В Α = v (M) A 6 pin 1 index 3 2 - | w M B detail X scale **DIMENSIONS** (mm are the original dimensions) UNIT Е Q ΗE $L_{\mathbf{p}}$ 0.1 0.26 0.10 3.1 2.7 1.7 3.0 2.5 1.1 0.40 0.6 0.33 0.95 0.2 0.2 0.1 mm 0.013 0.25 1.3 0.23 0.9 REFERENCES **EUROPEAN** OUTLINE ISSUE DATE **PROJECTION** VERSION JEDEC IEC JEITA 05-11-07 06-03-16 SOT457 SC-74 $\exists \, \oplus$

Fig 20. Package outline SOT457 (SC-74)

Low-power configurable multiple function gate

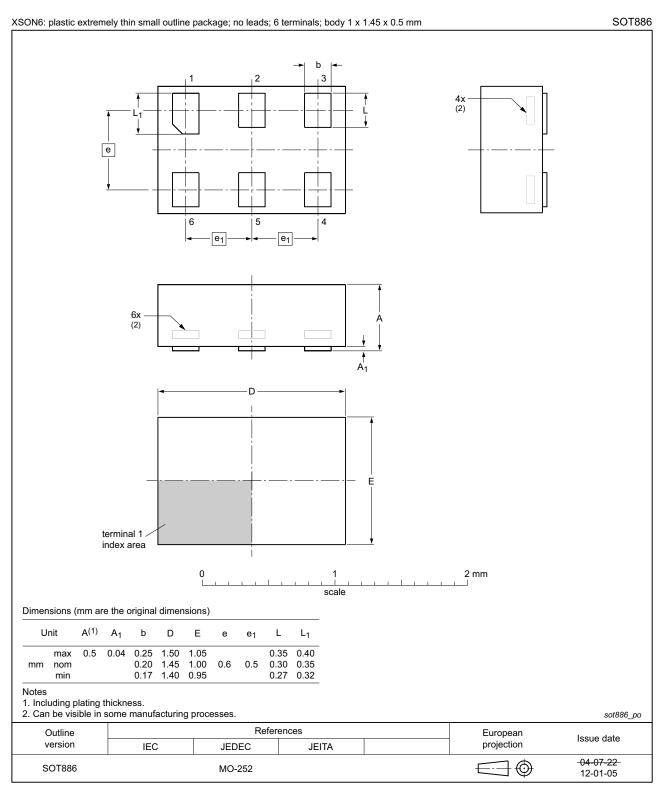


Fig 21. Package outline SOT886 (XSON6)

74LVC1G98

All information provided in this document is subject to legal disclaimers.

Low-power configurable multiple function gate

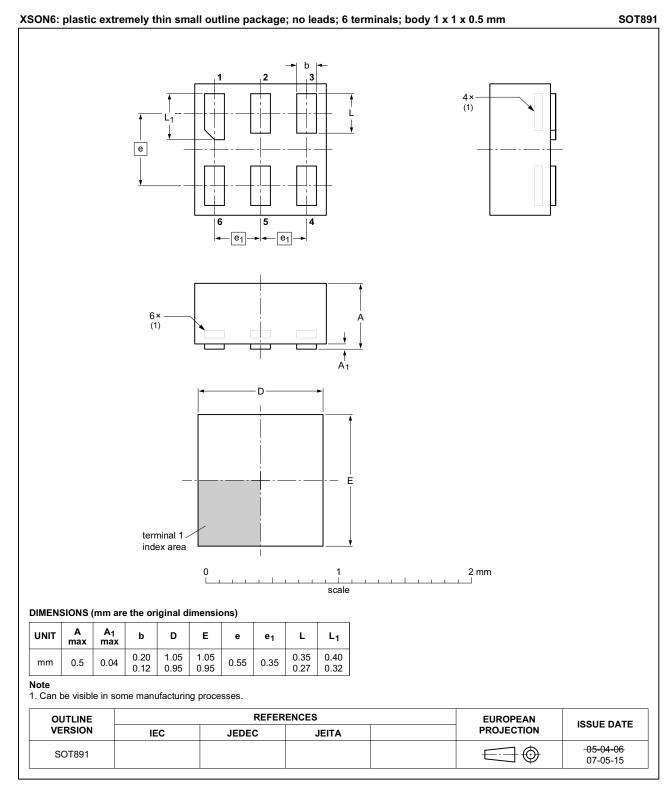


Fig 22. Package outline SOT891 (XSON6)

74LVC1G98 All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2014. All rights reserved.

Low-power configurable multiple function gate

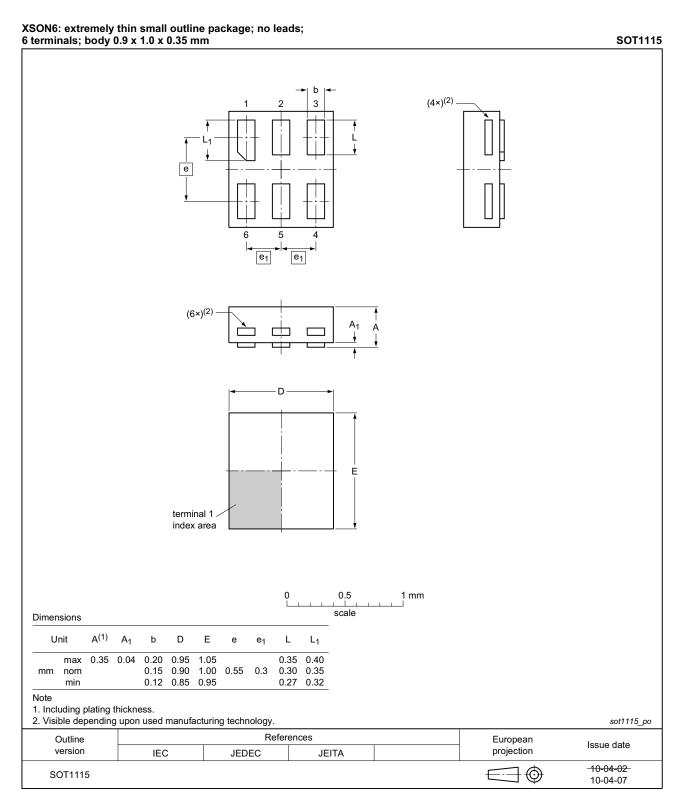


Fig 23. Package outline SOT1115 (XSON6)

74LVC1G98 All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2014. All rights reserved.

74LVC1G98 **NXP Semiconductors**

Low-power configurable multiple function gate

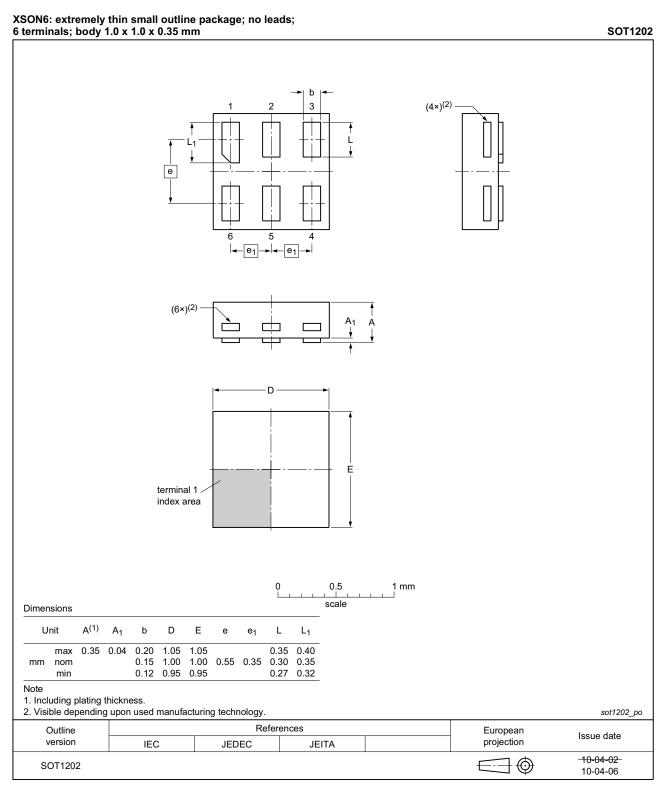


Fig 24. Package outline SOT1202 (XSON6)

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2014. All rights reserved.

Product data sheet

Low-power configurable multiple function gate

16. Abbreviations

Table 13. Abbreviations

Acronym	Description	
CDM	Charged Device Model	
CMOS	Complementary Metal Oxide Semiconductor	
TTL	Transistor-Transistor Logic	
HBM	Human Body Model	
ESD	ElectroStatic Discharge	
MM	Machine Model	
DUT	Device Under Test	

17. Revision history

Table 14. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVC1G98 v.4	20140910	Product data sheet	-	74LVC1G98 v.3
Modifications:	Package outli	ne drawing of SOT886 (Figure	21) modified.	
74LVC1G98 v.3	20111201	Product data sheet	-	74LVC1G98 v.2
74LVC1G98 v.2	20111201	Product data sheet	-	74LVC1G98 v.1
74LVC1G98 v.1	20101221	Product data sheet	-	-

Low-power configurable multiple function gate

18. Legal information

18.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

18.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

74LVC1G98

Low-power configurable multiple function gate

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

18.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

19. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

NXP Semiconductors 74LVC1G98

Low-power configurable multiple function gate

20. Contents

1	General description
2	Features and benefits 1
3	Ordering information
4	Marking 2
5	Functional diagram 2
6	Pinning information 3
6.1	Pinning
6.2	Pin description
7	Functional description 3
7.1	Logic configurations 4
8	Limiting values 5
9	Recommended operating conditions 5
10	Static characteristics 6
11	Dynamic characteristics 7
12	Waveforms
13	Transfer characteristics 9
14	Waveforms transfer characteristics 9
15	Package outline 11
16	Abbreviations
17	Revision history
18	Legal information
18.1	Data sheet status
18.2	Definitions
18.3	Disclaimers
18.4	Trademarks19
19	Contact information
20	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

5962-8769901BCA 74HC85N NL17SG08P5T5G NL17SG32DFT2G NLU1G32AMUTCG NLV7SZ58DFT2G NLVHC1G08DFT1G
NLVVHC1G14DTT1G NLX2G08DMUTCG NLX2G08MUTCG MC74HCT20ADR2G 091992B 091993X 093560G 634701C 634921A
NL17SG32P5T5G NL17SG86DFT2G NLU1G32CMUTCG NLV14001UBDR2G NLVVHC1G132DTT1G NLVVHC1G86DTT1G
NLX1G11AMUTCG NLX1G97MUTCG 746427X 74AUP1G17FW5-7 74LS38 74LVC1G08Z-7 74LVC32ADTR2G 74LVC1G125FW4-7
74LVC08ADTR2G MC74HCT20ADTR2G NLU1G08CMX1TCG NLV14093BDTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G
NLV17SZ126DFT2G NLV27WZ17DFT2G NLV74HC02ADR2G NLV74HC08ADR2G NLVVHC1GT32DFT1G 74HC32S14-13 74LS133
74LVC1G32Z-7 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 M38510/06202BFA NLV74HC08ADTR2G
NLV74HC14ADR2G