74LVC3G17

Triple non-inverting Schmitt trigger with 5 V tolerant input Rev. 12 — 15 December 2016 Product data s

Product data sheet

1. **General description**

The 74LVC3G17 provides three non-inverting buffers with Schmitt trigger input. It is capable of transforming slowly changing input signals into sharply defined, jitter-free output signals.

Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of the 74LVC3G17 as a translator in a mixed 3.3 V and 5 V environment.

This device is fully specified for partial power-down applications using I_{OFF}. The I_{OFF} circuitry disables the output, preventing a damaging backflow current through the device when it is powered down.

Features and benefits 2.

- Wide supply voltage range from 1.65 V to 5.5 V
- 5 V tolerant input/output for interfacing with 5 V logic
- High noise immunity
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- \pm 24 mA output drive (V_{CC} = 3.0 V)
- CMOS low-power consumption
- Latch-up performance exceeds 250 mA
- Direct interface with TTL levels
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

Applications 3.

Wave and pulse shapers for highly noisy environments

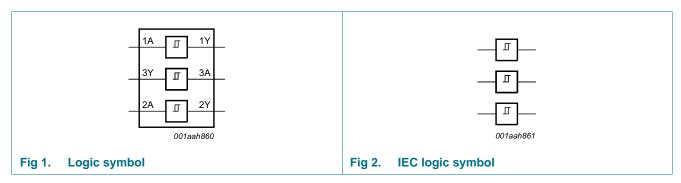
Triple non-inverting Schmitt trigger with 5 V tolerant input

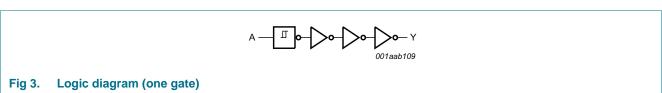
4. Ordering information

Table 1. Ordering information

Type number	Package							
	Temperature range	Name	Description	Version				
74LVC3G17DP	-40 °C to +125 °C	TSSOP8	plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm	SOT505-2				
74LVC3G17DC	-40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package; 8 leads; body width 2.3 mm	SOT765-1				
74LVC3G17GT	-40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 1 \times 1.95 \times 0.5 mm	SOT833-1				
74LVC3G17GF	-40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.35 \times 1 \times 0.5 mm	SOT1089				
74LVC3G17GD	−40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; Ubody $3\times2\times0.5$ mm	SOT996-2				
74LVC3G17GM	−40 °C to +125 °C	XQFN8	plastic, extremely thin quad flat package; no leads; 8 terminals; body 1.6 \times 1.6 \times 0.5 mm	SOT902-2				
74LVC3G17GN	-40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.2 \times 1.0 \times 0.35 mm	SOT1116				
74LVC3G17GS	-40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body $1.35 \times 1.0 \times 0.35$ mm	SOT1203				

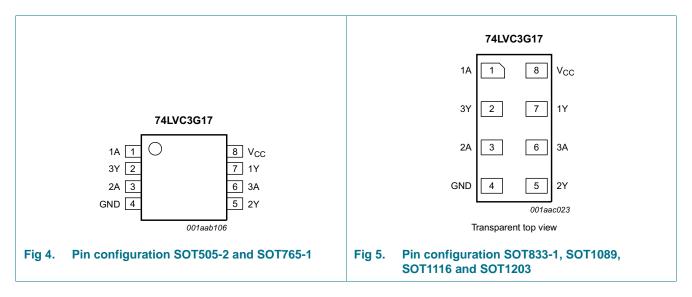
5. Marking

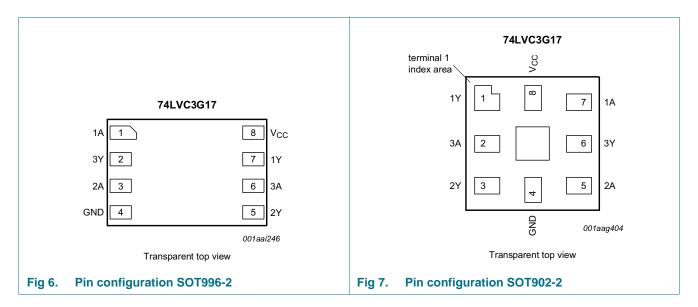

Table 2. Marking codes


Type number	Marking code ^[1]
74LVC3G17DP	V17
74LVC3G17DC	V17
74LVC3G17GT	V17
74LVC3G17GF	VV
74LVC3G17GD	V17
74LVC3G17GM	V17
74LVC3G17GN	VV
74LVC3G17GS	VV

^[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

Triple non-inverting Schmitt trigger with 5 V tolerant input


6. Functional diagram



7. Pinning information

7.1 Pinning

Triple non-inverting Schmitt trigger with 5 V tolerant input

7.2 Pin description

Table 3. Pin description

Symbol	Pin	Description		
	SOT505-2, SOT765-1, SOT833-1, SOT1089, SOT996-2, SOT1116 and SOT1203	SOT902-2		
1A, 2A, 3A	1, 3, 6	7, 5, 2	data input	
GND	4	4	ground (0 V)	
1Y, 2Y, 3Y	7, 5, 2	1, 3, 6	data output	
V _{CC}	8	8	supply voltage	

8. Functional description

Table 4. Function table [1]

Input	Output
nA	nY
L	L
Н	Н

[1] H = HIGH voltage level; L = LOW voltage level.

Triple non-inverting Schmitt trigger with 5 V tolerant input

9. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+6.5	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
VI	input voltage	[1]	-0.5	+6.5	V
I _{OK}	output clamping current	$V_O > V_{CC}$ or $V_O < 0$ V	-	±50	mA
Vo	output voltage	Active mode [1]	-0.5	V _{CC} + 0.5	V
		Power-down mode [1][2]	-0.5	+6.5	V
Io	output current	$V_O = 0 \text{ V to } V_{CC}$	-	±50	mA
I _{CC}	supply current		-	100	mA
I _{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	-	250	mW

^[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.

10. Recommended operating conditions

Table 6. Operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		1.65	5.5	V
VI	input voltage		0	5.5	V
Vo	output voltage		0	V _{CC}	V
T _{amb}	ambient temperature		-40	+125	°C

^[2] When $V_{CC} = 0 \text{ V}$ (Power-down mode), the output voltage can be 5.5 V in normal operation.

^[3] For TSSOP8 package: above 55 °C the value of P_{tot} derates linearly with 2.5 mW/K.
For VSSOP8 package: above 110 °C the value of P_{tot} derates linearly with 8 mW/K.
For XSON8 and XQFN8 packages: above 118 °C the value of P_{tot} derates linearly with 7.8 mW/K.

Triple non-inverting Schmitt trigger with 5 V tolerant input

11. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
T _{amb} = -	-40 °C to +85 °C					
V_{OL}	LOW-level output voltage	$V_I = V_{T+}$ or V_{T-}				
		$I_O = 100 \mu A$; $V_{CC} = 1.65 \text{ V to } 5.5 \text{ V}$	-	-	0.1	V
		$I_O = 4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	0.45	V
		$I_O = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	- 0.1 - 0.45 - 0.3 - 0.4 - 0.55 - 0.55 ±0.1 ±1 ±0.1 ±2 0.1 4 - 5 500 0.1 - 0.70	V	
		$I_O = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	-	0.1 0.45 0.3 0.4 0.55 0.55 1 ±1 1 ±2 1 4 500 5 - 0.1 0.70 0.45 0.60 0.80 0.80	V
		$I_O = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.55	V
		$I_O = 32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.55	V
V_{OH}	OH HIGH-level output voltage	$V_I = V_{T+}$ or V_{T-}				
		$I_O = -100 \mu A$; $V_{CC} = 1.65 \text{ V}$ to 5.5 V	V _{CC} - 0.1	-	-	V
		$I_O = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.2	-	-	V
		$I_{O} = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.9	-	-	V
		$I_O = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	2.2	-	-	V
		$I_O = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.3	-	-	V
		$I_O = -32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	A ₁ V _{CC} = 1.65 V to 5.5 V - - 0.1 V (₁ V _{CC} = 1.65 V to 5.5 V - - 0.45 V (₂ V _{CC} = 2.3 V - - 0.44 V A ₁ V _{CC} = 2.7 V - - 0.44 V A ₂ V _{CC} = 3.0 V - - 0.55 V A ₃ V _{CC} = 4.5 V - - 0.55 V A ₄ V _{CC} = 1.65 V to 5.5 V A ₅ V _{CC} = 1.65 V A ₅ V _{CC} = 1.65 V A ₅ V _{CC} = 2.3 V A ₅ V _{CC} = 2.3 V A ₅ V _{CC} = 2.3 V A ₅ V _{CC} = 2.3 V A ₅ V _{CC} = 3.0 V A ₅ V _{CC} = 0 0.6 V A ₅ V _{CC} = 1.65 V A ₅ V _{CC} = 1.65 V A ₅ V _{CC} = 1.65 V A ₅ V _{CC} = 3.0 V A ₅ V _{CC} = 3.0 V A ₅ V _{CC} = 1.65 V A ₅ V _{CC} = 2.3 V A ₅ V _{CC} = 2.3 V A ₅ V _{CC} = 2.7 V A ₅ V _{CC} = 3.0 V A ₅	V		
I _I	input leakage current	$V_I = 5.5 \text{ V or GND}; V_{CC} = 0 \text{ V to } 5.5 \text{ V}$	-	±0.1	±1	μΑ
I _{OFF}	power-off leakage current	V_{I} or $V_{O} = 5.5 \text{ V}$; $V_{CC} = 0 \text{ V}$	-	±0.1	±2	μΑ
I _{CC}	supply current	$V_I = 5.5 \text{ V or GND}$; $I_O = 0 \text{ A}$; $V_{CC} = 1.65 \text{ V to } 5.5 \text{ V}$	-	0.1	4	μΑ
ΔI_{CC}	additional supply current	$V_I = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A};$ $V_{CC} = 2.3 \text{ V} \text{ to } 5.5 \text{ V}$	-	5	500	μΑ
Cı	input capacitance		-	3.5	-	pF
T _{amb} = -	-40 °C to +125 °C		1		I .	
V _{OL}	LOW-level output voltage	$V_I = V_{T+}$ or V_{T-}				
		$I_O = 100 \mu A$; $V_{CC} = 1.65 \text{ V to } 5.5 \text{ V}$	-	-	0.1	V
I_{CC} so ΔI_{CC} a C_{I} in $T_{amb} = -40$		$I_{O} = 4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.70	V
		$I_{O} = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.45	V
		$I_O = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	-	0.60	V
		$I_O = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.80	V
		$I_O = 32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.80	V
V _{OH}	HIGH-level output voltage	$V_I = V_{T+}$ or V_{T-}				
		$I_{O} = -100 \mu A$; $V_{CC} = 1.65 \text{ V}$ to 5.5 V	V _{CC} - 0.1	-	-	V
		$I_O = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	0.95	-	-	V
		$I_{O} = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.7	-	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	1.9	-	-	V
		$I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.0	-	-	V
		$I_{O} = -32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.4	-	-	V

Triple non-inverting Schmitt trigger with 5 V tolerant input

Table 7. Static characteristics ... continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
I _I	input leakage current	$V_I = 5.5 \text{ V or GND}$; $V_{CC} = 0 \text{ V to } 5.5 \text{ V}$	-	-	±1	μΑ
I _{OFF}	power-off leakage current	V_{I} or $V_{O} = 5.5 \text{ V}$; $V_{CC} = 0 \text{ V}$	-	-	±2	μΑ
I _{CC}	supply current	V _I = 5.5 V or GND; I _O = 0 A; V _{CC} = 1.65 V to 5.5 V	-	-	4	μА
ΔI_{CC}	additional supply current	$V_1 = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A};$ $V_{CC} = 2.3 \text{ V} \text{ to } 5.5 \text{ V}$	-	-	500	μΑ

^[1] All typical values are measured at T_{amb} = 25 °C.

12. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9.

Symbol	Parameter	Conditions	-40	°C to +85	°C	-40 °C to	+125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
t _{pd}	propagation delay	nA to nY; see Figure 8 [2]						
		V _{CC} = 1.65 V to 1.95 V	1.5	5.6	10.5	1.5	13.1	ns
		V _{CC} = 2.3 V to 2.7 V	1.0	3.7	6.5	1.0	8.5	ns
		V _{CC} = 2.7 V	1.0	3.8	6.5	1.0	8.5	ns
		V _{CC} = 3.0 V to 3.6 V	1.0	3.6	5.7	1.0	7.1	ns
		V _{CC} = 4.5 V to 5.5 V	1.0	2.7	4.3	1.0	5.4	ns
C_{PD}	power dissipation capacitance	per buffer; $V_{CC} = 3.3 \text{ V}$; $V_I = \text{GND to } V_{CC}$	-	16.3	-	-	-	pF

^[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.8 V, 2.5 V, 2.7 V, 3.3 V and 5.0 V respectively.

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

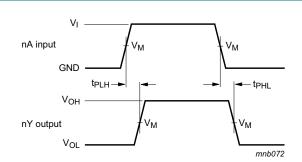
 $f_o = output frequency in MHz;$

C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of outputs.


^[2] These typical values are measured at V_{CC} = 3.3 V.

^[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

^[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

Triple non-inverting Schmitt trigger with 5 V tolerant input

13. Waveforms

Measurement points are given in Table 9.

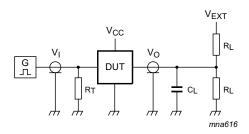

 $\ensuremath{V_{\text{OL}}}$ and $\ensuremath{V_{\text{OH}}}$ are typical output voltage levels that occur with the output load.

Fig 8. The input (nA) to output (nY) propagation delays and the output transition times

Table 9. Measurement points

Supply voltage	Input	Output
V _{CC}	V _M	V _M
1.65 V to 1.95 V	0.5 × V _{CC}	$0.5 \times V_{CC}$
2.3 V to 2.7 V	0.5 × V _{CC}	$0.5 \times V_{CC}$
2.7 V	1.5 V	1.5 V
3.0 V to 3.6 V	1.5 V	1.5 V
4.5 V to 5.5 V	0.5 × V _{CC}	0.5 × V _{CC}

Triple non-inverting Schmitt trigger with 5 V tolerant input

Test data is given in Table 10.

Definitions for test circuit:

R_L = Load resistance.

C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

 V_{EXT} = External voltage for measuring switching times.

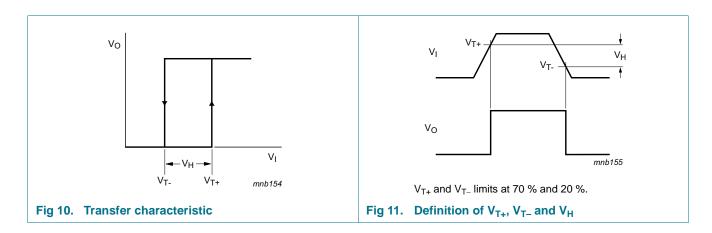
Fig 9. Test circuit for measuring switching times

Table 10. Test data

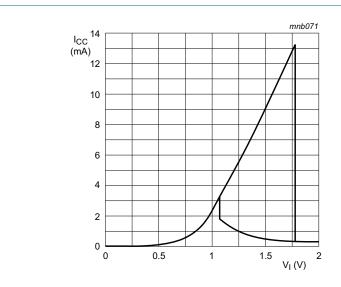
Supply voltage	Input		Load	Load		V _{EXT}		
V _{CC}	VI	t _r , t _f	CL	R _L	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t_{PZL}, t_{PLZ}	
1.65 V to 1.95 V	V _{CC}	≤ 2.0 ns	30 pF	1 kΩ	open	GND	$2 \times V_{CC}$	
2.3 V to 2.7 V	V _{CC}	≤ 2.0 ns	30 pF	500 Ω	open	GND	$2 \times V_{CC}$	
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open	GND	6 V	
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open	GND	6 V	
4.5 V to 5.5 V	V_{CC}	≤ 2.5 ns	50 pF	500 Ω	open	GND	$2 \times V_{CC}$	

Triple non-inverting Schmitt trigger with 5 V tolerant input

14. Transfer characteristics

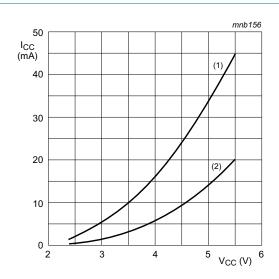

Table 11. Transfer characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).


Symbol	Parameter	Conditions	-40	-40 °C to +85 °C			-40 °C to +125 °C		
			Min	Typ[1]	Max	Min	Max		
V _{T+}	positive-going	see Figure 10 and Figure 11							
	threshold voltage	V _{CC} = 1.8 V	0.70	1.10	1.50	0.70	1.70	V	
		V _{CC} = 2.3 V	1.00	1.40	1.80	1.00	2.00	V	
		V _{CC} = 3.0 V	1.30	1.76	2.20	1.30	2.40	V	
		V _{CC} = 4.5 V	1.90	2.47	3.10	1.90	3.30	V	
		V _{CC} = 5.5 V	2.20	2.91	3.60	2.20	3.80	V	
V_{T-}	negative-going threshold voltage	see Figure 10 and Figure 11							
		V _{CC} = 1.8 V	0.25	0.61	0.90	0.25	1.10	V	
		V _{CC} = 2.3 V	0.40	0.80	1.15	0.40	1.35	V	
		V _{CC} = 3.0 V	0.60	1.04	1.50	0.60	1.70	V	
		V _{CC} = 4.5 V	1.00	1.55	2.00	1.00	2.20	V	
		V _{CC} = 5.5 V	1.20	1.86	2.30	1.20	2.50	V	
V _H	hysteresis voltage	(V _{T+} – V _T _); see <u>Figure 10</u> , <u>Figure 11</u> and <u>Figure 12</u>							
		V _{CC} = 1.8 V	0.15	0.49	1.00	0.15	1.20	V	
		V _{CC} = 2.3 V	0.25	0.60	1.10	0.25	1.30	V	
		V _{CC} = 3.0 V	0.40	0.73	1.20	0.40	1.40	V	
		V _{CC} = 4.5 V	0.60	0.92	1.50	0.60	1.70	V	
		V _{CC} = 5.5 V	0.70	1.02	1.70	0.70	1.90	V	

^[1] All typical values are measured at T_{amb} = 25 °C.

15. Waveforms transfer characteristics



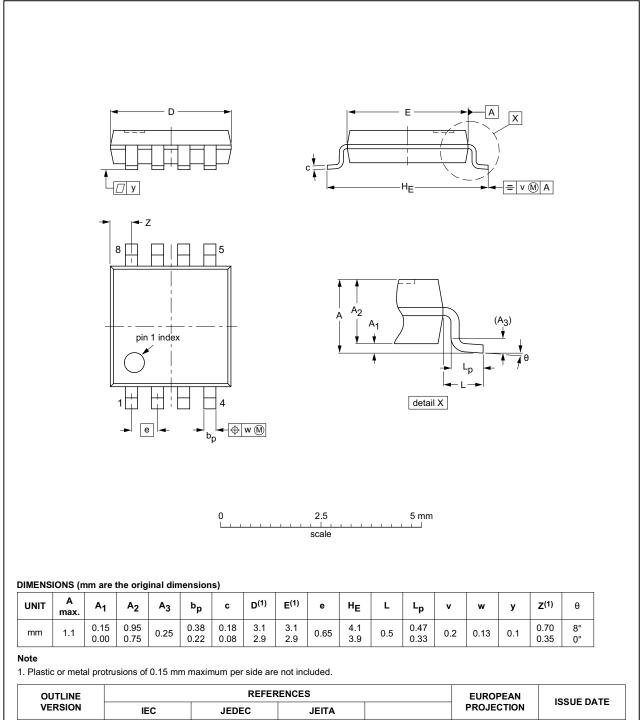
Triple non-inverting Schmitt trigger with 5 V tolerant input

 $V_{CC} = 3.0 \text{ V}.$

Fig 12. Typical transfer characteristic

- (1) Positive-going edge.
- (2) Negative-going edge.

Linear change of $V_{\rm I}$ between 0.8 V to 2.0 V. All values given are typical unless otherwise specified.


Fig 13. Average I_{CC} as a function of V_{CC}

74LVC3G17 **Nexperia**

Triple non-inverting Schmitt trigger with 5 V tolerant input

16. Package outline

TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm SOT505-2

OUTLINE	REFERENCES				EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT505-2						02-01-16

Fig 14. Package outline SOT505-2 (TSSOP8)

Triple non-inverting Schmitt trigger with 5 V tolerant input

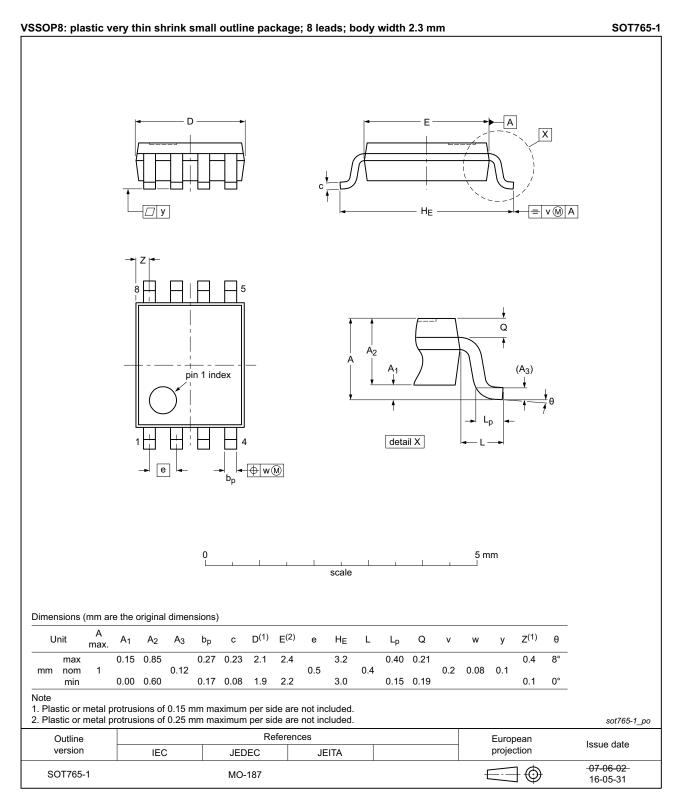


Fig 15. Package outline SOT765-1 (VSSOP8)

74LVC3G17 All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserve

Triple non-inverting Schmitt trigger with 5 V tolerant input

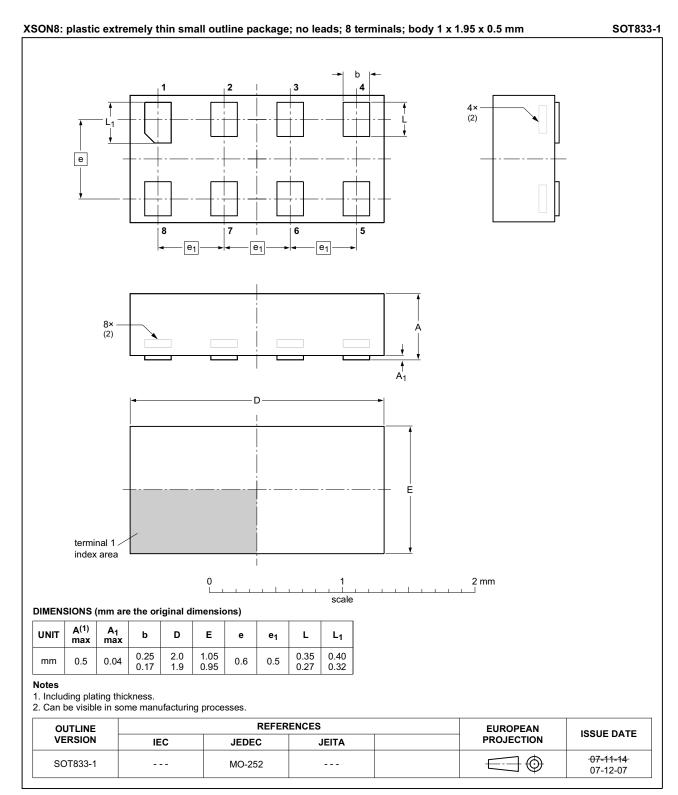


Fig 16. Package outline SOT833-1 (XSON8)

74LVC3G17

Triple non-inverting Schmitt trigger with 5 V tolerant input

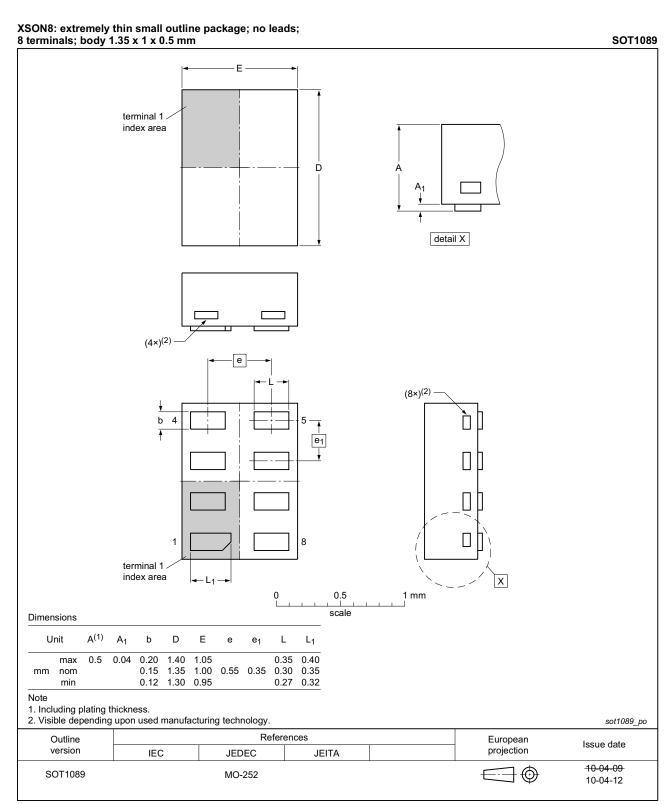


Fig 17. Package outline SOT1089 (XSON8)

74LVC3G17

Triple non-inverting Schmitt trigger with 5 V tolerant input

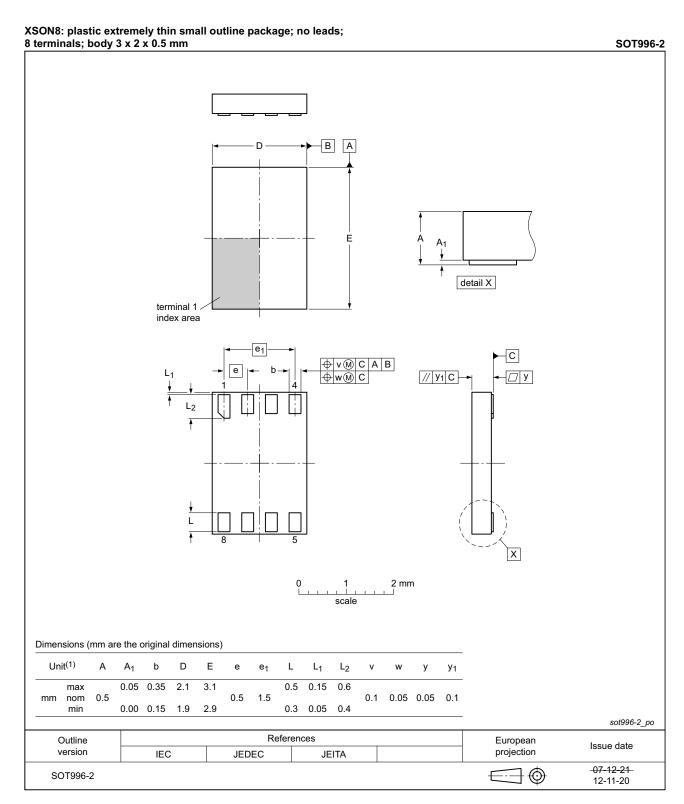


Fig 18. Package outline SOT996-2 (XSON8)

74LVC3G17

Triple non-inverting Schmitt trigger with 5 V tolerant input

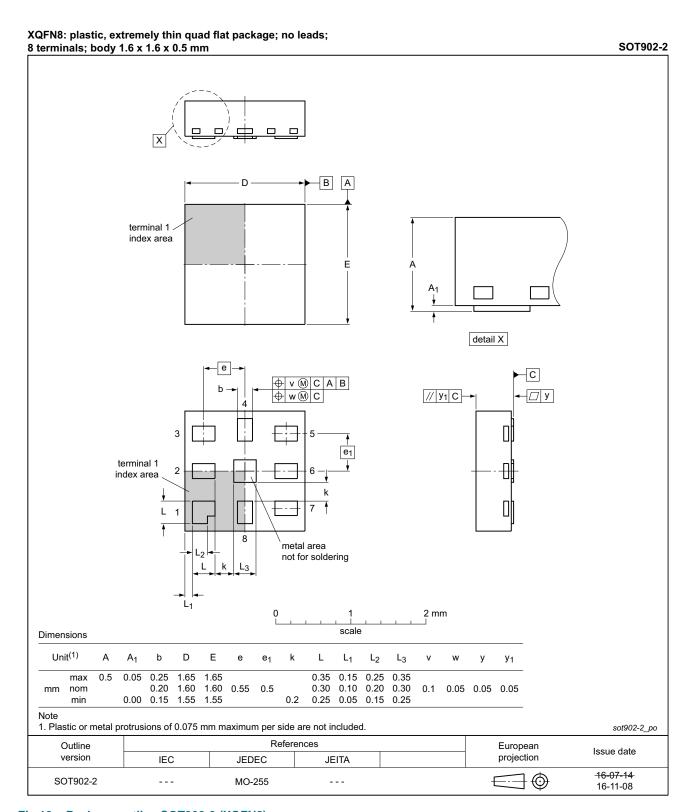


Fig 19. Package outline SOT902-2 (XQFN8)

74LVC3G17

Triple non-inverting Schmitt trigger with 5 V tolerant input

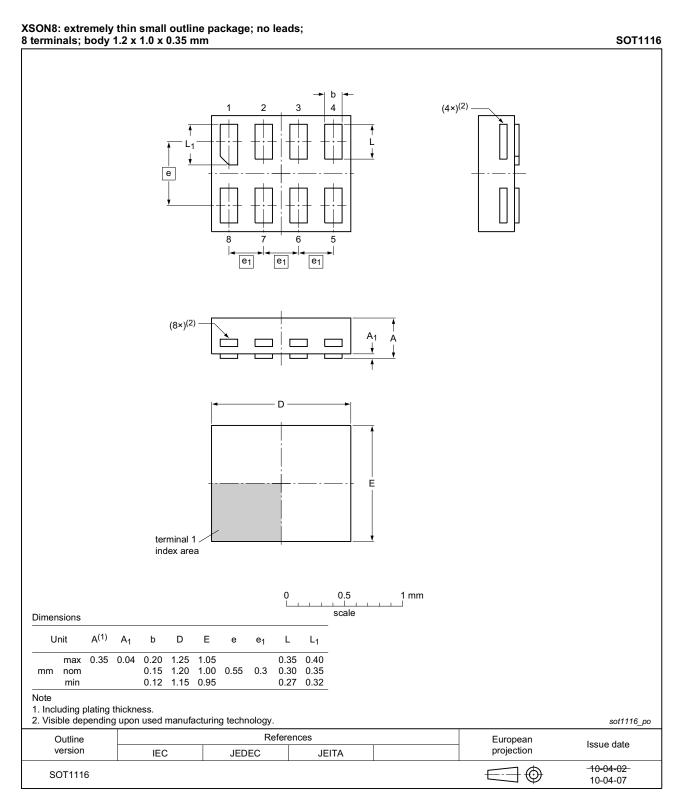


Fig 20. Package outline SOT1116 (XSON8)

Triple non-inverting Schmitt trigger with 5 V tolerant input

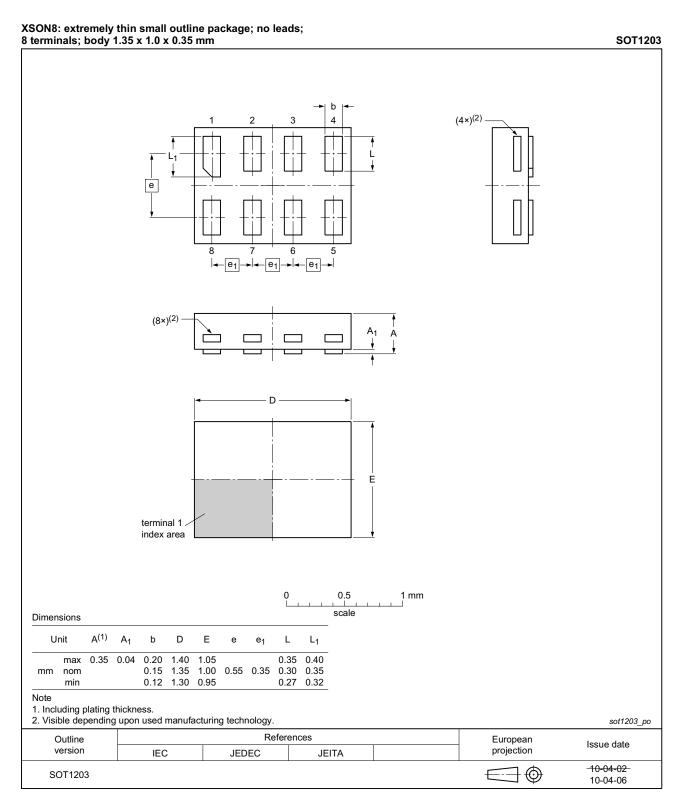


Fig 21. Package outline SOT1203 (XSON8)

Triple non-inverting Schmitt trigger with 5 V tolerant input

17. Abbreviations

Table 12. Abbreviations

Acronym	Description	
CMOS	Complementary Metal-Oxide Semiconductor	
DUT	Device Under Test	
ESD	ElectroStatic Discharge	
HBM	Human Body Model	
MM	Machine Model	
TTL	Transistor-Transistor Logic	

18. Revision history

Table 13. Revision history

Release date	Data sheet status	Change notice	Supersedes	
20161215	Product data sheet	-	74LVC3G17 v.11	
• Table 7: The maximum limits for leakage current and supply current have changed.				
20130409	Product data sheet	-	74LVC3G17 v.10	
 For type number 74 	LVC3G17GD XSON8U h	as changed to XSON8.		
20120706	Product data sheet	-	74LVC3G17 v.9	
 For type number 74 	LVC3G17GM the SOT co	ode has changed to SOT	902-2.	
20111123	Product data sheet	-	74LVC3G17 v.8	
 Legal pages update 	d.			
20110921	Product data sheet	-	74LVC3G17 v.7	
20101104	Product data sheet	-	74LVC3G17 v.6	
20080606	Product data sheet	-	74LVC3G17 v.5	
20080313	Product data sheet	-	74LVC3G17 v.4	
20070521	Product data sheet	-	74LVC3G17 v.3	
20050131	Product data sheet	-	74LVC3G17 v.2	
20041103	Product specification	-	74LVC3G17 v.1	
20040624	Product specification	-	-	
	20161215 • Table 7: The maxim 20130409 • For type number 74 20120706 • For type number 74 20111123 • Legal pages update 20110921 20101104 20080606 20080313 20070521 20050131 20041103	20161215 Product data sheet Table 7: The maximum limits for leakage curred and sheet Product data sheet For type number 74LVC3G17GD XSON8U here are a compared and sheet Product data sheet Product data sheet Product data sheet Product data sheet Legal pages updated. Product data sheet Product data sheet 20101104 Product data sheet 20080606 Product data sheet 20080313 Product data sheet 20070521 Product data sheet 20050131 Product data sheet Product data sheet Product data sheet Product data sheet	20161215 Product data sheet - • Table 7: The maximum limits for leakage current and supply current h 20130409 Product data sheet - • For type number 74LVC3G17GD XSON8U has changed to XSON8. 20120706 Product data sheet - • For type number 74LVC3G17GM the SOT code has changed to SOT 20111123 Product data sheet - • Legal pages updated. 20110921 Product data sheet - 20101104 Product data sheet - 20080606 Product data sheet - 200806131 Product data sheet - 20050131 Product data sheet - 20041103 Product specification -	

Triple non-inverting Schmitt trigger with 5 V tolerant input

19. Legal information

19.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

19.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

19.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

74LVC3G17

Triple non-inverting Schmitt trigger with 5 V tolerant input

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of

non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

19.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

20. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

74LVC3G17

Triple non-inverting Schmitt trigger with 5 V tolerant input

21. Contents

Nexperia

1	General description
2	Features and benefits 1
3	Applications
4	Ordering information
5	Marking
6	Functional diagram 3
7	Pinning information
7.1	Pinning
7.2	Pin description 4
8	Functional description 4
9	Limiting values 5
10	Recommended operating conditions 5
11	Static characteristics 6
12	Dynamic characteristics
13	Waveforms
14	Transfer characteristics 10
15	Waveforms transfer characteristics 10
16	Package outline
17	Abbreviations
18	Revision history
19	Legal information
19.1	Data sheet status 21
19.2	Definitions
19.3	Disclaimers
19.4	Trademarks
20	Contact information 22
24	Contents

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

5962-9217601MSA 634810D 875140G HEF4022BP HEF4043BP NL17SG125DFT2G NL17SZ126P5T5G NLU1GT126CMUTCG
NLU3G16AMX1TCG NLV27WZ125USG MC74HCT365ADTR2G BCM6306KMLG 54FCT240CTDB Le87401NQC Le87402MQC
028192B 042140C 051117G 070519XB 065312DB 091056E 098456D NL17SG07DFT2G NL17SG17DFT2G NL17SG34DFT2G
NL17SZ07P5T5G NL17SZ125P5T5G NLU1GT126AMUTCG NLV27WZ16DFT2G 5962-8982101PA 5962-9052201PA 74LVC07ADR2G
MC74VHC1G125DFT1G NL17SH17P5T5G NL17SZ125CMUTCG NLV17SZ07DFT2G NLV37WZ17USG NLVHCT244ADTR2G
NC7WZ17FHX 74HCT126T14-13 NL17SH125P5T5G NLV14049UBDTR2G NLV37WZ07USG 74VHC541FT(BE) RHFAC244K1
74LVC1G17FW4-7 74LVC1G126FZ4-7 BCM6302KMLG 74LVC1G07FZ4-7 74LVC1G125FW4-7