Dual supply translating transceiver; 3-state Rev. 6 — 6 August 2012

Product data sheet

General description 1.

The 74LVC1T45; 74LVCH1T45 are single bit, dual supply transceivers with 3-state outputs that enable bidirectional level translation. They feature two 1-bit input-output ports (A and B), a direction control input (DIR) and dual supply pins ($V_{CC(A)}$ and $V_{CC(B)}$). Both $V_{CC(A)}$ and $V_{CC(B)}$ can be supplied at any voltage between 1.2 V and 5.5 V making the device suitable for translating between any of the low voltage nodes (1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3 V and 5.0 V). Pins A and DIR are referenced to $V_{CC(A)}$ and pin B is referenced to V_{CC(B)}. A HIGH on DIR allows transmission from A to B and a LOW on DIR allows transmission from B to A.

The devices are fully specified for partial power-down applications using I_{OFF}. The I_{OFF} circuitry disables the output, preventing any damaging backflow current through the device when it is powered down. In suspend mode when either $V_{CC(A)}$ or $V_{CC(B)}$ are at GND level, both A port and B port are in the high-impedance OFF-state.

Active bus hold circuitry in the 74LVCH1T45 holds unused or floating data inputs at a valid logic level.

Features and benefits 2.

- Wide supply voltage range:
 - V_{CC(A)}: 1.2 V to 5.5 V
 - V_{CC(B)}: 1.2 V to 5.5 V
- High noise immunity
- Complies with JEDEC standards:
 - JESD8-7 (1.2 V to 1.95 V)
 - JESD8-5 (1.8 V to 2.7 V)
 - JESD8C (2.7 V to 3.6 V)
 - JESD36 (4.5 V to 5.5 V)
- ESD protection:
 - HBM JESD22-A114F Class 3A exceeds 4000 V
 - CDM JESD22-C101E exceeds 1000 V
- Maximum data rates:
 - 420 Mbps (3.3 V to 5.0 V translation)
 - 210 Mbps (translate to 3.3 V))
 - 140 Mbps (translate to 2.5 V)
 - 75 Mbps (translate to 1.8 V)
 - 60 Mbps (translate to 1.5 V)
- Suspend mode

nexperia

Dual supply translating transceiver; 3-state

- Latch-up performance exceeds 100 mA per JESD 78 Class II
- ± 24 mA output drive (V_{CC} = 3.0 V)
- Inputs accept voltages up to 5.5 V
- Low power consumption: 16 μA maximum I_{CC}
- I_{OFF} circuitry provides partial Power-down mode operation
- Multiple package options
- Specified from –40 °C to +85 °C and –40 °C to +125 °C

3. Ordering information

Type number	Package						
	Temperature range	Name	Description	Version			
74LVC1T45GW	–40 °C to +125 °C	SC-88	plastic surface-mounted package; 6 leads	SOT363			
74LVCH1T45GW							
74LVC1T45GM	–40 °C to +125 °C	XSON6					
74LVCH1T45GM			6 terminals; body $1 \times 1.45 \times 0.5$ mm				
74LVC1T45GF	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads;	SOT891			
74LVCH1T45GF			6 terminals; body 1 \times 1 \times 0.5 mm				
74LVC1T45GN	–40 °C to +125 °C	XSON6	extremely thin small outline package; no leads;	SOT1115			
74LVCH1T45GN			6 terminals; body $0.9 \times 1.0 \times 0.35$ mm				
74LVC1T45GS	–40 °C to +125 °C	XSON6	extremely thin small outline package; no leads;	SOT1202			
74LVCH1T45GS			6 terminals; body $1.0 \times 1.0 \times 0.35$ mm				

4. Marking

. .

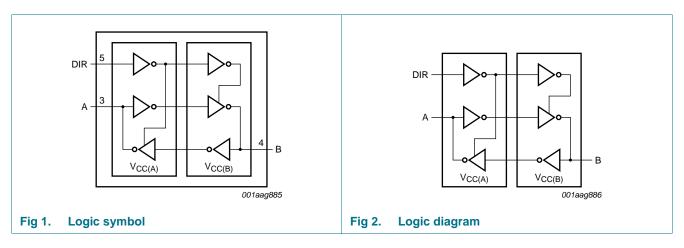
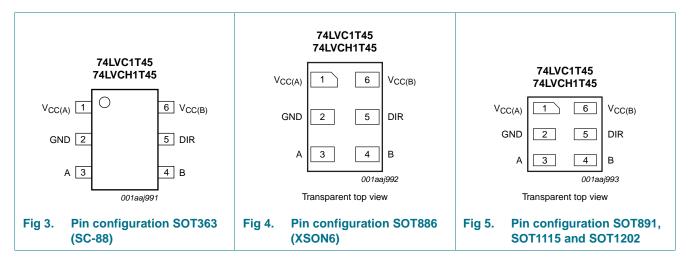

-- --

Table 2. Marking	
Type number	Marking code ^[1]
74LVC1T45GW	V5
74LVCH1T45GW	X5
74LVC1T45GM	V5
74LVCH1T45GM	X5
74LVC1T45GF	V5
74LVCH1T45GF	X5
74LVC1T45GN	V5
74LVCH1T45GN	X5
74LVC1T45GS	V5
74LVCH1T45GS	X5

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.


Dual supply translating transceiver; 3-state

5. Functional diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Symbol V _{CC(A)} GND A	Pin 1 2	Description supply voltage port A and DIR
GND	1 2	
	2	ground (0.)()
A	—	ground (0 V)
	3	data input or output
В	4	data input or output
DIR	5	direction control
V _{CC(B)}	6	supply voltage port B

74LVC_LVCH1T45
Product data sheet

Dual supply translating transceiver; 3-state

7. Functional description

Table 4. Function table ^[1]	
--	--

Supply voltage	Input	Input/output ^[2]	
V _{CC(A)} , V _{CC(B)}	DIR	Α	В
1.2 V to 5.5 V	L	A = B	input
1.2 V to 5.5 V	Н	input	B = A
GND ^[3]	Х	Z	Z

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

[2] The input circuit of the data I/O is always active.

[3] When either $V_{CC(A)}$ or $V_{CC(B)}$ is at GND level, the device goes into suspend mode.

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

			-		-
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC(A)}	supply voltage A		-0.5	+6.5	V
V _{CC(B)}	supply voltage B		-0.5	+6.5	V
I _{IK}	input clamping current	V ₁ < 0 V	-50	-	mA
VI	input voltage		<u>[1]</u> –0.5	+6.5	V
Ι _{ΟΚ}	output clamping current	V _O < 0 V	-50	-	mA
Vo	output voltage	Active mode	<u>[1][2][3]</u> _0.5	V _{CCO} + 0.5	V
		Suspend or 3-state mode	<u>[1]</u> –0.5	+6.5	V
lo	output current	$V_{O} = 0 V$ to V_{CCO}	[2] _	±50	mA
I _{CC}	supply current	I _{CC(A)} or I _{CC(B)}	-	100	mA
I _{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	T_{amb} = -40 °C to +125 °C	[4] _	250	mW

[1] The minimum input voltage ratings and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] V_{CCO} is the supply voltage associated with the output port.

[3] V_{CCO} + 0.5 V should not exceed 6.5 V.

[4] For SC-88 package: above 87.5 °C the value of P_{tot} derates linearly with 4.0 mW/K. For XSON6 package: above 118 °C the value of P_{tot} derates linearly with 7.8 mW/K.

9. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC(A)}	supply voltage A		1.2	5.5	V
V _{CC(B)}	supply voltage B		1.2	5.5	V
VI	input voltage		0	5.5	V

Dual supply translating transceiver; 3-state

	Recommended operating conditi				
Symbol	Parameter	Conditions	Min	Max	Unit
Vo	output voltage	Active mode	<u>[1]</u> 0	V _{cco}	V
		Suspend or 3-state mode	0	5.5	V
T _{amb}	ambient temperature		-40	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	V _{CCI} = 1.2 V	[2] _	20	ns/V
		$V_{CCI} = 1.4 \text{ V}$ to 1.95 V	-	20	ns/V
		V_{CCI} = 2.3 V to 2.7 V	-	20	ns/V
		$V_{CCI} = 3 V \text{ to } 3.6 V$	-	10	ns/V
		V_{CCI} = 4.5 V to 5.5 V	-	5	ns/V

Table 6. Recommended operating conditions ...continued

[1] V_{CCO} is the supply voltage associated with the output port.

[2] V_{CCI} is the supply voltage associated with the input port.

10. Static characteristics

Table 7.Typical static characteristics at $T_{amb} = 25 \text{ °C}$

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		$I_0 = -3 \text{ mA}; V_{CCO} = 1.2 \text{ V}$	<u>[1]</u> _	1.09	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		$I_0 = 3 \text{ mA}; V_{CCO} = 1.2 \text{ V}$	<u>[1]</u> _	0.07	-	V
l _l	input leakage current	DIR input; $V_I = 0 V$ to 5.5 V; $V_{CCI} = 1.2 V$ to 5.5 V	[2] _	-	±1	μΑ
I _{BHL}	bus hold LOW current	A or B port; V_I = 0.42 V; V_{CCI} = 1.2 V	[2] _	19	-	μA
I _{BHH}	bus hold HIGH current	A or B port; $V_I = 0.78 \text{ V}$; $V_{CCI} = 1.2 \text{ V}$	[2] _	-19	-	μA
I _{BHLO}	bus hold LOW overdrive current	A or B port; $V_{CCI} = 1.2 V$	<u>[2][3]</u> _	19	-	μA
I _{BHHO}	bus hold HIGH overdrive current	A or B port; $V_{CCI} = 1.2 V$	<u>[2][3]</u> _	-19	-	μA
I _{OZ}	OFF-state output current	A or B port; $V_0 = 0$ V or V_{CCO} ; $V_{CCO} = 1.2$ V to 5.5 V	<u>[1]</u> -	-	±1	μA
I _{OFF}	power-off leakage current	A port; V ₁ or V _O = 0 V to 5.5 V; V _{CC(A)} = 0 V; V _{CC(B)} = 1.2 V to 5.5 V	-	-	±1	μΑ
		B port; V ₁ or V _O = 0 V to 5.5 V; V _{CC(B)} = 0 V; V _{CC(A)} = 1.2 V to 5.5 V	-	-	±1	μA
CI	input capacitance	DIR input; $V_I = 0 V \text{ or } 3.3 V$; $V_{CC(A)} = V_{CC(B)} = 3.3 V$	-	2.2	-	pF
C _{I/O}	input/output capacitance	A and B port; suspend mode; V _O = 3.3 V or 0 V; V _{CC(A)} = V _{CC(B)} = 3.3 V	-	6.0	-	pF

[1] V_{CCO} is the supply voltage associated with the output port.

[2] V_{CCI} is the supply voltage associated with the data input port.

[3] To guarantee the node switches, an external driver must source/sink at least I_{BHLO}/I_{BHHO} when the input is in the range V_{IL} to V_{IH} .

Dual supply translating transceiver; 3-state

Table 8. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		–40 °C te	o +85 °C	–40 °C to +125 °C		Unit
				Min	Max	Min	Max	
/ _{IH}	HIGH-level	data input	<u>[1]</u>					
	input voltage	V _{CCI} = 1.2 V		0.8V _{CCI}	-	0.8V _{CCI}	-	V
		$V_{CCI} = 1.4 \text{ V to } 1.95 \text{ V}$		0.65V _{CCI}	-	$0.65V_{CCI}$	-	V
		$V_{CCI} = 2.3 \text{ V} \text{ to } 2.7 \text{ V}$		1.7	-	1.7	-	V
		$V_{CCI} = 3.0 \text{ V to } 3.6 \text{ V}$		2.0	-	2.0	-	V
		$V_{CCI} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$		0.7V _{CCI}	-	0.7V _{CCI}	-	V
		DIR input						
		V _{CCI} = 1.2 V		0.8V _{CC(A)}	-	0.8V _{CC(A)}	-	V
		$V_{CCI} = 1.4 \text{ V to } 1.95 \text{ V}$		0.65V _{CC(A)}	-	0.65V _{CC(A)}	-	V
		$V_{CCI} = 2.3 \text{ V} \text{ to } 2.7 \text{ V}$		1.7	-	1.7	-	V
		$V_{CCI} = 3.0 V \text{ to } 3.6 V$		2.0	-	2.0	-	V
		V_{CCI} = 4.5 V to 5.5 V		0.7V _{CC(A)}	-	$0.7V_{CC(A)}$	-	V
∕ _{IL}	LOW-level	data input	<u>[1]</u>					
Ì	input voltage	V _{CCI} = 1.2 V		-	0.2V _{CCI}	-	0.2V _{CCI}	V
		$V_{CCI} = 1.4 \text{ V to } 1.95 \text{ V}$		-	0.35V _{CCI}	-	0.35V _{CCI}	V
		V_{CCI} = 2.3 V to 2.7 V		-	0.7	-	0.7	V
		$V_{CCI} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		-	0.8	-	0.8	V
		V_{CCI} = 4.5 V to 5.5 V		-	$0.3V_{CCI}$	-	$0.3V_{CCI}$	V
		DIR input						
		V _{CCI} = 1.2 V		-	0.2V _{CC(A)}	-	0.2V _{CC(A)}	V
		$V_{CCI} = 1.4 \text{ V to } 1.95 \text{ V}$		-	0.35V _{CC(A)}	-	0.35V _{CC(A)}	V
		V_{CCI} = 2.3 V to 2.7 V		-	0.7	-	0.7	V
		$V_{CCI} = 3.0 \text{ V to } 3.6 \text{ V}$		-	0.8	-	0.8	V
		$V_{CCI} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$		-	0.3V _{CC(A)}	-	0.3V _{CC(A)}	V
/ _{ОН}	HIGH-level	$V_{I} = V_{IH}$						
	output voltage	$I_{O} = -100 \ \mu A;$ $V_{CCO} = 1.2 \ V \text{ to } 4.5 \ V$	[2]	V _{CCO} - 0.1	-	$V_{CCO}-0.1$	-	V
		$I_{O} = -6 \text{ mA}; V_{CCO} = 1.4 \text{ V}$		1.0	-	1.0	-	V
		$I_{O} = -8 \text{ mA}; V_{CCO} = 1.65 \text{ V}$		1.2	-	1.2	-	V
		$I_0 = -12 \text{ mA}; V_{CCO} = 2.3 \text{ V}$		1.9	-	1.9	-	V
		$I_0 = -24$ mA; $V_{CCO} = 3.0$ V		2.4	-	2.4	-	V
		$I_0 = -32 \text{ mA}; V_{CCO} = 4.5 \text{ V}$		3.8	-	3.8	-	V

Dual supply translating transceiver; 3-state

Symbol	Parameter	Conditions		–40 °C te	o +85 °C	–40 °C to +125 °C		Unit
				Min	Max	Min	Max	
Vol	LOW-level	$V_I = V_{IL}$	[2]					
	output voltage input leakage current bus hold LOW current bus hold HIGH current	I _O = 100 μA; V _{CCO} = 1.2 V to 4.5 V		-	0.1	-	0.1	V
		$I_0 = 6 \text{ mA}; V_{CCO} = 1.4 \text{ V}$		-	0.3	-	0.3	V
		$I_{O} = 8 \text{ mA}; V_{CCO} = 1.65 \text{ V}$		-	0.45	-	0.45	V
		$I_0 = 12 \text{ mA}; V_{CCO} = 2.3 \text{ V}$		-	0.3	-	0.3	V
		$I_{O} = 24 \text{ mA}; V_{CCO} = 3.0 \text{ V}$		-	0.55	-	0.55	V
		$I_{O} = 32 \text{ mA}; V_{CCO} = 4.5 \text{ V}$		-	0.55	-	0.55	V
I		DIR input; $V_I = 0 V$ to 5.5 V; $V_{CCI} = 1.2 V$ to 5.5 V		-	±2	-	±10	μΑ
BHL	bus hold LOW	A or B port	<u>[1]</u>					
	current	V _I = 0.49 V; V _{CCI} = 1.4 V		15	-	10	-	μΑ
		V _I = 0.58 V; V _{CCI} = 1.65 V		25	-	20	-	μA
		$V_{I} = 0.70 \text{ V}; V_{CCI} = 2.3 \text{ V}$		45	-	45	-	μA
		$V_{I} = 0.80 \text{ V}; V_{CCI} = 3.0 \text{ V}$		100	-	80	-	μA
		$V_{I} = 1.35 \text{ V}; V_{CCI} = 4.5 \text{ V}$		100	-	100	-	μA
внн		A or B port	<u>[1]</u>					
		$V_{I} = 0.91 \text{ V}; V_{CCI} = 1.4 \text{ V}$		-15	-	-10	-	μΑ
		$V_{I} = 1.07 \text{ V}; V_{CCI} = 1.65 \text{ V}$		-25	-	-20	-	μΑ
		$V_{I} = 1.60 \text{ V}; V_{CCI} = 2.3 \text{ V}$		-45	-	-45	-	μΑ
		$V_{I} = 2.00 \text{ V}; V_{CCI} = 3.0 \text{ V}$		-100	-	-80	-	μΑ
		$V_{I} = 3.15 \text{ V}; V_{CCI} = 4.5 \text{ V}$		-100	-	-100	-	μΑ
BHLO	bus hold LOW	A or B port	<u>[1][3]</u>					
	overdrive current	$V_{CCI} = 1.6 V$		125	-	125	-	μΑ
	current	V _{CCI} = 1.95 V		200	-	200	-	μA
		$V_{CCI} = 2.7 V$		300	-	300	-	μA
		$V_{CCI} = 3.6 V$		500	-	500	-	μΑ
		$V_{CCI} = 5.5 V$		900	-	900	-	μΑ
внно	bus hold HIGH	A or B port	<u>[1][3]</u>					
	overdrive current	$V_{CCI} = 1.6 V$		-125	-	-125	-	μA
	Guirein	V _{CCI} = 1.95 V		-200	-	-200	-	μA
		$V_{CCI} = 2.7 V$		-300	-	-300	-	μΑ
		$V_{CCI} = 3.6 V$		-500	-	-500	-	μA
		$V_{CCI} = 5.5 V$		-900	-	-900	-	μA
OZ	OFF-state output current	A or B port; $V_0 = 0$ V or V_{CCO} ; $V_{CCO} = 1.2$ V to 5.5 V	[2]	-	±2	-	±10	μA

Table 8. Static characteristics ... continued

.... nd 01/1

74LVC_LVCH1T45 Product data sheet

Dual supply translating transceiver; 3-state

Symbol	Parameter	Conditions		–40 °C t	o +85 °C	–40 °C to	o +125 °C	Unit
				Min	Max	Min	Max	
OFF	power-off leakage current	A port; V _I or V _O = 0 V to 5.5 V; V _{CC(A)} = 0 V; V _{CC(B)} = 1.2 V to 5.5 V		-	±2	-	±10	μΑ
		B port; V _I or V _O = 0 V to 5.5 V; V _{CC(B)} = 0 V; V _{CC(A)} = 1.2 V to 5.5 V		-	±2	-	±10	μΑ
СС	supply current	A port; $V_I = 0$ V or V_{CCI} ; $I_O = 0$ A	[1]					
		$V_{CC(A)}$, $V_{CC(B)} = 1.2$ V to 5.5 V		-	8	-	8	μΑ
		$V_{CC(A)}$, $V_{CC(B)} = 1.65$ V to 5.5 V		-	3	-	3	μA
		$V_{CC(A)} = 5.5 \text{ V}; V_{CC(B)} = 0 \text{ V}$		-	2	-	2	μA
		$V_{CC(A)} = 0 V; V_{CC(B)} = 5.5 V$		-2	-	-2	-	μA
		B port; $V_I = 0$ V or V_{CCI} ; $I_O = 0$ A						
		$V_{CC(A)}$, $V_{CC(B)} = 1.2$ V to 5.5 V		-	8	-	8	μA
		$V_{CC(A)}$, $V_{CC(B)} = 1.65$ V to 5.5 V		-	3	-	3	μA
		$V_{CC(B)} = 5.5 \text{ V}; V_{CC(A)} = 0 \text{ V}$		-	2	-	2	μA
		$V_{CC(B)} = 0 V; V_{CC(A)} = 5.5 V$		-2	-	-2	-	μA
		A plus B port ($I_{CC(A)} + I_{CC(B)}$); $I_O = 0$ A; $V_I = 0$ V or V_{CCI}						
		$V_{CC(A)}$, $V_{CC(B)} = 1.2$ V to 5.5 V		-	16	-	16	μA
		$V_{CC(A)}$, $V_{CC(B)} = 1.65$ V to 5.5 V		-	4	-	4	μA
VI _{CC}	additional	$V_{CC(A)}$, $V_{CC(B)} = 3.0$ V to 5.5 V						
	supply current	A port; A port at $V_{CC(A)} - 0.6$ V; DIR at $V_{CC(A)}$; B port = open	<u>[4]</u>	-	50	-	75	μΑ
		DIR input; DIR at $V_{CC(A)} - 0.6$ V; A port at $V_{CC(A)}$ or GND; B port = open		-	50	-	75	μΑ
		B port; B port at $V_{CC(B)} - 0.6 V$; DIR at GND; A port = open	<u>[4]</u>	-	50	-	75	μΑ

Table 8. Static characteristics ... continued

. ~ ~ ~ ~

[1] V_{CCI} is the supply voltage associated with the data input port.

V_{CCO} is the supply voltage associated with the output port. [2]

To guarantee the node switches, an external driver must source/sink at least I_{BHLO}/I_{BHHO} when the input is in the range V_{IL} to V_{IH} . [3]

For non bus hold parts only (74LVC1T45). [4]

Dual supply translating transceiver; 3-state

11. Dynamic characteristics

Table 9.

Table 9.Typical dynamic characteristics at $V_{CC(A)} = 1.2$ V and $T_{amb} = 25$ °CVoltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for waveforms see Figure 6 and Figure 7

	•							
Parameter	Conditions			Vco	С(В)			Unit
		1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	5.0 V	
LOW to HIGH	A to B	10.6	8.1	7.0	5.8	5.3	5.1	ns
propagation delay	B to A	10.6	9.5	9.0	8.5	8.3	8.2	ns
HIGH to LOW	A to B	10.1	7.1	6.0	5.3	5.2	5.4	ns
propagation delay	B to A	10.1	8.6	8.1	7.8	7.6	7.6	ns
HIGH to OFF-state	DIR to A	9.4	9.4	9.4	9.4	9.4	9.4	ns
propagation delay	DIR to B	12.0	9.4	9.0	7.8	8.4	7.9	ns
LOW to OFF-state	DIR to A	7.1	7.1	7.1	7.1	7.1	7.1	ns
propagation delay	DIR to B	9.5	7.8	7.7	6.9	7.6	7.0	ns
OFF-state to HIGH	DIR to A [1]	20.1	17.3	16.7	15.4	15.9	15.2	ns
propagation delay	DIR to B	17.7	15.2	14.1	12.9	12.4	12.2	ns
OFF-state to LOW	DIR to A [1]	22.1	18.0	17.1	15.6	16.0	15.5	ns
propagation delay	DIR to B	19.5	16.5	15.4	14.7	14.6	14.8	ns
	LOW to HIGH propagation delay HIGH to LOW propagation delay HIGH to OFF-state propagation delay LOW to OFF-state propagation delay OFF-state to HIGH propagation delay OFF-state to LOW	LOW to HIGH propagation delayA to B B to AHIGH to LOW propagation delayA to B B to AHIGH to OFF-state propagation delayDIR to AHIGH to OFF-state propagation delayDIR to ADIR to BDIR to BLOW to OFF-state to HIGH propagation delayDIR to AOFF-state to HIGH propagation delayDIR to A0FF-state to LOW propagation delayDIR to ADIR to B11DIR to B11DIR to B11DIR to A11DIR to A11DIR to A11DIR to A11DIR to A11DIR to A11DIR to A11	Image: constraint of the systemImage: constraint of the systemLOW to HIGH propagation delayA to B10.6B to A10.6HIGH to LOW propagation delayA to B10.1B to A10.1B to A10.1B to A10.1HIGH to OFF-state propagation delayDIR to A9.4DIR to B12.0LOW to OFF-state propagation delayDIR to A7.1DIR to B9.50FF-state to HIGH propagation delayDIR to A11OFF-state to LOW propagation delayDIR to A1122.1DIR to A1122.11111	Image: constraint of the state of the sta	Image: constraint of the state of the sta	Image: Constraint of the sector of	Image: constraint of the state of the sta	LOW to HIGH propagation delayA to B10.68.17.05.85.35.1B to A10.69.59.08.58.38.2HIGH to LOW propagation delayA to B10.17.16.05.35.25.4B to A10.17.16.05.35.25.4B to A10.18.68.17.87.67.6HIGH to OFF-state propagation delayDIR to A9.49.49.49.49.4DIR to B12.09.49.07.88.47.9LOW to OFF-state

[1] t_{PZH} and t_{PZL} are calculated values using the formula shown in Section 14.4 "Enable times"

Table 10. Typical dynamic characteristics at $V_{CC(B)} = 1.2$ V and $T_{amb} = 25$ °CVoltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for waveforms see Figure 6 and Figure 7

Symbol	Parameter	Conditions			Vc	C(A)			Unit
			1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	5.0 V	
t _{PLH}	LOW to HIGH	A to B	10.6	9.5	9.0	8.5	8.3	8.2	ns
	propagation delay	B to A	10.6	8.1	7.0	5.8	5.3	5.1	ns
t _{PHL}	HIGH to LOW	A to B	10.1	8.6	8.1	7.8	7.6	7.6	ns
	propagation delay	B to A	10.1	7.1	6.0	5.3	5.2	5.4	ns
t _{PHZ}	HIGH to OFF-state	DIR to A	9.4	6.5	5.7	4.1	4.1	3.0	ns
	propagation delay	DIR to B	12.0	6.1	5.4	4.6	4.3	4.0	ns
t _{PLZ}	LOW to OFF-state	DIR to A	7.1	4.9	4.5	3.2	3.4	2.5	ns
	propagation delay	DIR to B	9.5	7.3	6.6	5.9	5.7	5.6	ns
t _{PZH}	OFF-state to HIGH	DIR to A [1]	20.1	15.4	13.6	11.7	11.0	10.7	ns
	propagation delay	DIR to B	17.7	14.4	13.5	11.7	11.7	10.7	ns
t _{PZL}	OFF-state to LOW	DIR to A [1]	22.1	13.2	11.4	9.9	9.5	9.4	ns
	propagation delay	DIR to B	19.5	15.1	13.8	11.9	11.7	10.6	ns

[1] t_{PZH} and t_{PZL} are calculated values using the formula shown in Section 14.4 "Enable times"

Dual supply translating transceiver; 3-state

Symbol	Parameter	Conditions		V _{CC(A)} ai	nd V _{CC(B)}		Unit
			1.8 V	2.5 V	3.3 V	5.5 V	
C _{PD}	power dissipation capacitance	A port: (direction A to B); B port: (direction B to A)	2	3	3	4	pF
		A port: (direction B to A); B port: (direction A to B)	15	16	16	18	pF

Table 11. Typical power dissipation capacitance at $V_{CC(A)} = V_{CC(B)}$ and $T_{amb} = 25 \text{ °C}$ [1][2] Voltages are referenced to GND (ground = 0 V).

[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz;

 $f_o = output frequency in MHz;$

 C_L = load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

 $\label{eq:constraint} \mbox{[2]} \quad f_i = 10 \mbox{ MHz; } V_I = GND \mbox{ to } V_{CC}; \mbox{ } t_r = t_f = 1 \mbox{ ns; } C_L = 0 \mbox{ pF; } R_L = \infty \ \Omega.$

Table 12. Dynamic characteristics for temperature range -40 °C to +85 °C

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7

Symbol	Parameter	Conditions					Vcc	C(B)					Unit
			1.5 V =	± 0.1 V	1.8 V ±	0.15 V	2.5 V :	± 0.2 V	3.3 V :	± 0.3 V	5.0 V =	± 0.5 V	
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
V _{CC(A)} =	1.4 V to 1.6 V												
t _{PLH}	LOW to HIGH	A to B	2.8	21.3	2.4	17.6	2.0	13.5	1.7	11.8	1.6	10.5	ns
	propagation delay	B to A	2.8	21.3	2.6	19.1	2.3	14.9	2.3	12.4	2.2	12.0	ns
t _{PHL}	HIGH to LOW	A to B	2.6	19.3	2.2	15.3	1.8	11.8	1.7	10.9	1.7	10.8	ns
	propagation delay	B to A	2.6	19.3	2.4	17.3	2.3	13.2	2.2	11.3	2.3	11.0	ns
t _{PHZ}	HIGH to OFF-state	DIR to A	3.0	18.7	3.0	18.7	3.0	18.7	3.0	18.7	3.0	18.7	ns
	propagation delay	DIR to B	3.5	24.8	3.5	23.6	3.0	11.0	3.3	11.3	2.8	10.3	ns
t _{PLZ}	LOW to OFF-state	DIR to A	2.4	11.4	2.4	11.4	2.4	11.4	2.4	11.4	2.4	11.4	ns
	propagation delay	DIR to B	2.8	18.3	3.0	17.2	2.5	9.4	3.0	10.1	2.5	9.4	ns
t _{PZH}	OFF-state to HIGH	DIR to A [1]	-	39.6	-	36.3	-	24.3	-	22.5	-	21.4	ns
	propagation delay	DIR to B [1]	-	32.7	-	29.0	-	24.9	-	23.2	-	21.9	ns
t _{PZL}	OFF-state to LOW	DIR to A [1]	-	44.1	-	40.9	-	24.2	-	22.6	-	21.3	ns
	propagation delay	DIR to B [1]	-	38.0	-	34.0	-	30.5	-	29.6	-	29.5	ns
V _{CC(A)} =	1.65 V to 1.95 V												
t _{PLH}	LOW to HIGH	A to B	2.6	19.1	2.2	17.7	2.2	9.3	1.7	7.2	1.4	6.8	ns
	propagation delay	B to A	2.4	17.6	2.2	17.7	2.3	16.0	2.1	15.5	1.9	15.1	ns
t _{PHL}	HIGH to LOW	A to B	2.4	17.3	2.0	14.3	1.6	8.5	1.8	7.1	1.7	7.0	ns
	propagation delay	B to A	2.2	15.3	2.0	14.3	2.1	12.9	2.0	12.6	1.8	12.2	ns
t _{PHZ}	HIGH to OFF-state	DIR to A	2.9	17.1	2.9	17.1	2.9	17.1	2.9	17.1	2.9	17.1	ns
	propagation delay	DIR to B	3.2	24.1	3.2	21.9	2.7	11.5	3.0	10.3	2.5	8.2	ns
t _{PLZ}	LOW to OFF-state	DIR to A	2.4	10.5	2.4	10.5	2.4	10.5	2.4	10.5	2.4	10.5	ns
	propagation delay	DIR to B	2.5	17.6	2.6	16.0	2.2	9.2	2.7	8.4	2.4	6.4	ns

74LVC_LVCH1T45
Product data sheet

© Nexperia B.V. 2017. All rights reserved

Dual supply translating transceiver; 3-state

Symbol	Parameter	Condition	s					Vco	C(B)					Uni
				1.5 V :	± 0.1 V	1.8 V ±	0.15 V	2.5 V	± 0.2 V	3.3 V :	± 0.3 V	5.0 V :	± 0.5 V	
				Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
PZH	OFF-state to HIGH	DIR to A	[1]	-	35.2	-	33.7	-	25.2	-	23.9	-	21.8	ns
	propagation delay	DIR to B	[1]	-	29.6	-	28.2	-	19.8	-	17.7	-	17.3	ns
PZL	OFF-state to LOW	DIR to A	[1]	-	39.4	-	36.2	-	24.4	-	22.9	-	20.4	ns
	propagation delay	DIR to B	[1]	-	34.4	-	31.4	-	25.6	-	24.2	-	24.1	ns
V _{CC(A)} =	2.3 V to 2.7 V													
PLH	LOW to HIGH	A to B		2.3	17.9	2.3	16.0	1.5	8.5	1.3	6.2	1.1	4.8	ns
	propagation delay	B to A		2.0	13.5	2.2	9.3	1.5	8.5	1.4	8.0	1.0	7.5	ns
PHL	HIGH to LOW	A to B		2.3	15.8	2.1	12.9	1.4	7.5	1.3	5.4	0.9	4.6	ns
	propagation delay	B to A		1.8	11.8	1.9	8.5	1.4	7.5	1.3	7.0	0.9	6.2	ns
PHZ	HIGH to OFF-state	DIR to A		2.1	8.1	2.1	8.1	2.1	8.1	2.1	8.1	2.1	8.1	ns
	propagation delay	DIR to B		3.0	22.5	3.0	21.4	2.5	11.0	2.8	9.3	2.3	6.9	ns
PLZ	LOW to OFF-state	DIR to A		1.7	5.8	1.7	5.8	1.7	5.8	1.7	5.8	1.7	5.8	ns
	propagation delay	DIR to B		2.3	14.6	2.5	13.2	2.0	9.0	2.5	8.4	1.8	5.3	ns
PZH	OFF-state to HIGH	DIR to A	[1]	-	28.1	-	22.5	-	17.5	-	16.4	-	12.8	ns
	propagation delay	DIR to B	[1]	-	23.7	-	21.8	-	14.3	-	12.0	-	10.6	ns
PZL	OFF-state to LOW	DIR to A	[1]	-	34.3	-	29.9	-	18.5	-	16.3	-	13.1	ns
	propagation delay	DIR to B	[1]	-	23.9	-	21.0	-	15.6	-	13.5	-	12.7	ns
V _{CC(A)} =	3.0 V to 3.6 V													
PLH	LOW to HIGH	A to B		2.3	17.1	2.1	15.5	1.4	8.0	0.8	5.6	0.7	4.4	ns
	propagation delay	B to A		1.7	11.8	1.7	7.2	1.3	6.2	0.7	5.6	0.6	5.4	ns
PHL	HIGH to LOW	A to B		2.2	15.6	2.0	12.6	1.3	7.0	0.8	5.0	0.7	4.0	ns
	propagation delay	B to A		1.7	10.9	1.8	7.1	1.3	5.4	0.8	5.0	0.7	4.5	ns
PHZ	HIGH to OFF-state	DIR to A		2.3	7.3	2.3	7.3	2.3	7.3	2.3	7.3	2.7	7.3	ns
	propagation delay	DIR to B		2.9	18.0	2.9	16.5	2.3	10.1	2.7	8.6	2.2	6.3	ns
PLZ	LOW to OFF-state	DIR to A		2.0	5.6	2.0	5.6	2.0	5.6	2.0	5.6	2.0	5.6	ns
	propagation delay	DIR to B		2.3	13.6	2.4	12.5	1.9	7.8	2.3	7.1	1.7	4.9	ns
PZH	OFF-state to HIGH	DIR to A	[1]	-	25.4	-	19.7	-	14.0	-	12.7	-	10.3	ns
	propagation delay	DIR to B	[1]	-	22.7	-	21.1	-	13.6	-	11.2	-	10.0	ns
PZL	OFF-state to LOW	DIR to A	[1]	-	28.9	-	23.6	-	15.5	-	13.6	-	10.8	ns
	propagation delay	DIR to B	[1]	-	22.9	-	19.9	-	14.3	-	12.3	-	11.3	ns
/ _{CC(A)} =	4.5 V to 5.5 V													
PLH	LOW to HIGH	A to B		2.2	16.6	1.9	15.1	1.0	7.5	0.7	5.4	0.5	3.9	ns
	propagation delay	B to A		1.6	10.5	1.4	6.8	1.0	4.8	0.7	4.4	0.5	3.9	ns
PHL	HIGH to LOW	A to B		2.3	15.3	1.8	12.2	1.0	6.2	0.7	4.5	0.5	3.5	ns
	propagation delay	B to A		1.7	10.8	1.7	7.0	0.9	4.6	0.7	4.0	0.5	3.5	ns
PHZ	HIGH to OFF-state	DIR to A		1.7	5.4	1.7	5.4	1.7	5.4	1.7	5.4	1.7	5.4	ns
	propagation delay	DIR to B		2.9	17.3	2.9	16.1	2.3	9.7	2.7	8.0	2.5	5.7	ns

Table 12. Dynamic characteristics for temperature range -40 °C to +85 °C ...continued

74LVC_LVCH1T45 Product data sheet

Dual supply translating transceiver; 3-state

Symbol	Parameter	Conditions					Vcc	(B)					Unit			
			1.5 V ±	± 0.1 V	1.8 V ±	0.15 V	2.5 V ±	10.2 V	3.3 V =	± 0.3 V	5.0 V ±	10.5 V	Ī			
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max				
t _{PLZ}	LOW to OFF-state	DIR to A	1.4	3.7	1.4	3.7	1.3	3.7	1.0	3.7	0.9	3.7	ns			
	propagation delay				DIR to B	2.3	13.1	2.4	12.1	1.9	7.4	2.3	7.0	1.8	4.5	ns
t _{PZH}	OFF-state to HIGH	DIR to A [1]	-	23.6	-	18.9	-	12.2	-	11.4	-	8.4	ns			
	propagation delay	DIR to B [1]	-	20.3	-	18.8	-	11.2	-	9.1	-	7.6	ns			
t _{PZL}		DIR to A [1]	-	28.1	-	23.1	-	14.3	-	12.0	-	9.2	ns			
propagation dalay	DIR to B [1]	-	20.7	-	17.6	-	11.6	-	9.9	-	8.9	ns				

Table 12. Dynamic characteristics for temperature range -40 °C to +85 °C ... continued

Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 8</u>; for wave forms see <u>Figure 6</u> and <u>Figure 7</u>

[1] t_{PZH} and t_{PZL} are calculated values using the formula shown in Section 14.4 "Enable times"

Table 13. Dynamic characteristics for temperature range -40 °C to +125 °C

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7

Symbol	Parameter	Conditions					Vcc	С(В)					Unit
			1.5 V :	± 0.1 V	1.8 V ±	0.15 V	2.5 V :	± 0.2 V	3.3 V :	± 0.3 V	5.0 V :	± 0.5 V	1
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	1
V _{CC(A)} =	1.4 V to 1.6 V	1											
t _{PLH}	LOW to HIGH	A to B	2.5	23.5	2.1	19.4	1.8	14.9	1.5	13.0	1.4	11.6	ns
	propagation delay	B to A	2.5	23.5	2.3	21.1	2.0	16.4	2.0	13.7	1.9	13.2	ns
t _{PHL}	HIGH to LOW	A to B	2.3	21.3	1.9	16.9	1.6	13.0	1.5	12.0	1.5	11.9	ns
	propagation delay	B to A	2.3	21.3	2.1	19.1	2.0	14.6	1.9	12.5	2.0	12.1	ns
t _{PHZ}	HIGH to OFF-state	DIR to A	2.7	20.6	2.7	20.6	2.7	20.6	2.7	20.6	2.7	20.6	ns
	propagation delay	DIR to B	3.1	27.3	3.1	26.0	2.7	12.1	2.9	12.5	2.5	11.4	ns
t _{PLZ}	LOW to OFF-state	DIR to A	2.1	12.6	2.1	12.6	2.1	12.6	2.1	12.6	2.1	12.6	ns
	propagation delay	DIR to B	2.5	20.2	2.7	19.0	2.2	10.4	2.7	11.2	2.2	10.4	ns
t _{PZH}	OFF-state to HIGH	DIR to A [1]	-	43.7	-	40.1	-	26.8	-	24.9	-	23.6	ns
	propagation delay	DIR to B [1]	-	36.1	-	32.0	-	27.5	-	25.6	-	24.2	ns
t _{PZL}	OFF-state to LOW	DIR to A [1]	-	48.6	-	45.1	-	26.7	-	25.0	-	23.5	ns
	propagation delay	DIR to B [1]	-	41.9	-	37.5	-	33.6	-	32.6	-	32.5	ns
V _{CC(A)} =	1.65 V to 1.95 V												
t _{PLH}	LOW to HIGH	A to B	2.3	21.1	1.9	19.5	1.9	10.3	1.5	8.0	1.2	7.5	ns
	propagation delay	B to A	2.1	19.4	1.9	19.5	2.0	17.6	1.8	17.1	1.7	16.7	ns
t _{PHL}	HIGH to LOW	A to B	2.1	19.1	1.8	15.8	1.4	9.4	1.6	7.9	1.5	7.7	ns
	propagation delay	B to A	1.9	16.9	1.8	15.8	1.8	14.2	1.8	13.9	1.6	13.5	ns
t _{PHZ}	HIGH to OFF-state	DIR to A	2.6	18.9	2.6	18.9	2.6	18.9	2.6	18.9	2.6	18.9	ns
	propagation delay	DIR to B	2.8	26.6	2.8	24.1	2.4	12.7	2.7	11.4	2.2	9.1	ns
t _{PLZ}	LOW to OFF-state	DIR to A	2.1	11.6	2.1	11.6	2.1	11.6	2.1	11.6	2.1	11.6	ns
	propagation delay	DIR to B	2.2	19.4	2.3	17.6	1.9	10.2	2.4	9.3	2.1	7.4	ns
t _{PZH}	OFF-state to HIGH	DIR to A [1]	-	38.8	-	37.1	-	27.8	-	26.4	-	24.1	ns
	propagation delay	DIR to B	-	32.7	-	31.1	-	21.9	-	19.6	-	19.1	ns

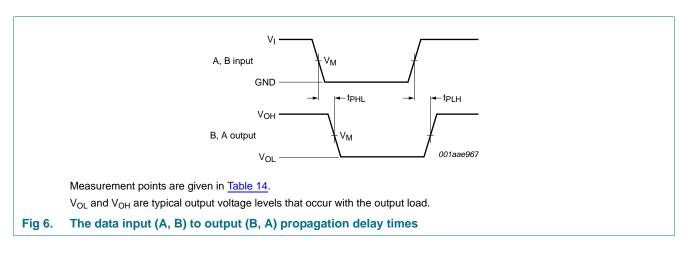
Dual supply translating transceiver; 3-state

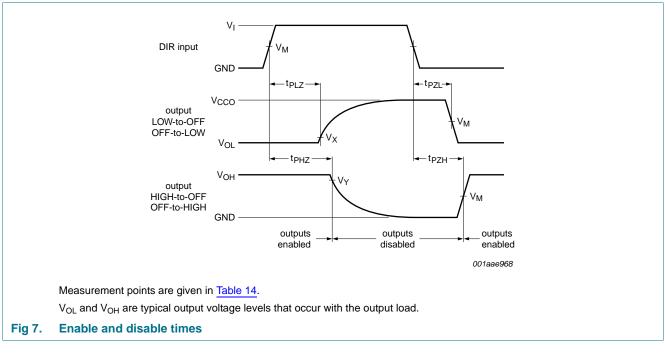
Symbol	Parameter	Conditions					Vcc	C(B)					Uni
			1.5 V	± 0.1 V	1.8 V ±	: 0.15 V	2.5 V :	± 0.2 V	3.3 V :	± 0.3 V	5.0 V :	± 0.5 V	
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
PZL	OFF-state to LOW	DIR to A [1]	-	43.5	-	39.9	-	26.9	-	25.3	-	22.6	ns
	propagation delay	DIR to B	-	38.0	-	34.7	-	28.3	-	26.8	-	26.6	ns
/ _{CC(A)} =	2.3 V to 2.7 V												
PLH	LOW to HIGH	A to B	2.0	19.7	2.0	17.6	1.3	9.4	1.1	6.9	0.9	5.3	ns
	propagation delay	B to A	1.8	14.9	1.9	10.3	1.3	9.4	1.2	8.8	0.9	8.3	ns
PHL	HIGH to LOW	A to B	2.0	17.4	1.8	14.2	1.2	8.3	1.1	6.0	0.8	5.1	ns
	propagation delay	B to A	1.6	13.0	1.7	9.4	1.2	8.3	1.1	7.7	0.8	6.9	ns
PHZ	HIGH to OFF-state	DIR to A	1.8	9.0	1.8	9.0	1.8	9.0	1.8	9.0	1.8	9.0	ns
	propagation delay	DIR to B	2.7	24.8	2.7	23.6	2.2	12.1	2.5	10.3	2.0	7.6	ns
PLZ	LOW to OFF-state	DIR to A	1.5	6.4	1.5	6.4	1.5	6.4	1.5	6.4	1.5	6.4	ns
	propagation delay	DIR to B	2.0	16.1	2.2	14.6	1.8	9.9	2.2	9.3	1.6	5.9	ns
PZH	OFF-state to HIGH	DIR to A	-	31.0	-	24.9	-	19.3	-	18.1	-	14.2	ns
	propagation delay	DIR to B	-	26.1	-	24.0	-	15.8	-	13.3	-	11.7	ns
PZL	OFF-state to LOW	DIR to A	-	37.8	-	33.0	-	20.4	-	18.0	-	14.5	ns
	propagation delay	DIR to B	-	26.4	-	23.2	-	17.3	-	15.0	-	14.1	ns
/ _{CC(A)} =	3.0 V to 3.6 V												
PLH	LOW to HIGH	A to B	2.0	18.9	1.8	17.1	1.2	8.8	0.7	6.2	0.6	4.9	ns
	propagation delay	B to A	1.5	13.0	1.5	8.0	1.1	6.9	0.6	6.2	0.5	6.0	ns
PHL	HIGH to LOW	A to B	1.9	17.2	1.8	13.9	1.1	7.7	0.7	5.5	0.6	4.4	ns
	propagation delay	B to A	1.5	12.0	1.6	7.9	1.1	6.0	0.7	5.5	0.6	5.0	ns
PHZ	HIGH to OFF-state	DIR to A	2.0	8.1	2.0	8.1	2.0	8.1	2.0	8.1	2.4	8.1	ns
	propagation delay	DIR to B	2.6	19.8	2.6	18.2	2.0	11.2	2.4	9.5	1.9	7.0	ns
PLZ	LOW to OFF-state	DIR to A	1.8	6.2	1.8	6.2	1.8	6.2	1.8	6.2	1.8	6.2	ns
	propagation delay	DIR to B	2.0	15.0	2.1	13.8	1.7	8.6	2.0	7.9	1.5	5.4	ns
PZH	OFF-state to HIGH	DIR to A [1]	-	28.0	-	21.8	-	15.5	-	14.1	-	11.4	ns
	propagation delay	DIR to B	-	25.1	-	23.3	-	15.0	-	12.4	-	11.1	ns
PZL	OFF-state to LOW	DIR to A	-	31.8	-	26.1	-	17.2	-	15.0	-	12.0	ns
	propagation delay	DIR to B	-	25.3	-	22.0	-	15.8	-	13.6	-	12.5	ns
/ _{CC(A)} =	4.5 V to 5.5 V												
PLH	LOW to HIGH	A to B	1.9	18.3	1.7	16.7	0.9	8.3	0.6	6.0	0.4	4.3	ns
	propagation delay	B to A	1.4	11.6	1.2	7.5	0.9	5.3	0.6	4.9	0.4	4.3	ns
PHL	HIGH to LOW	A to B	2.0	16.9	1.6	13.5	0.9	6.9	0.6	5.0	0.4	3.9	ns
	propagation delay	B to A	1.5	11.9	1.5	7.7	0.8	5.1	0.6	4.4	0.4	3.9	ns
PHZ	HIGH to OFF-state	DIR to A	1.5	6.0	1.5	6.0	1.5	6.0	1.5	6.0	1.5	6.0	ns
	propagation delay	DIR to B	2.6	19.1	2.6	17.8	2.0	10.7	2.4	8.8	2.2	6.3	ns
PLZ	LOW to OFF-state	DIR to A	1.2	4.1	1.2	4.1	1.1	4.1	0.9	4.1	0.8	4.1	ns
	propagation delay	DIR to B	2.0	14.5	2.1	13.4	1.7	8.2	2.0	7.7	1.6	5.0	ns

Table 13. Dynamic characteristics for temperature range $-40 \,^{\circ}$ C to $+125 \,^{\circ}$ C ...continued

74LVC_LVCH1T45 All information provided in th

All information provided in this document is subject to legal disclaimers.


Dual supply translating transceiver; 3-state


Symbol	Parameter	Conditions	s					Vcc	(B)					Unit
				1.5 V ±	: 0.1 V	1.8 V ±	0.15 V	2.5 V ±	E 0.2 V	3.3 V ±	E 0.3 V	5.0 V ±	E 0.5 V	
				Min	Max	Min	Мах	Min	Мах	Min	Мах	Min	Max	
t _{PZH}	OFF-state to HIGH	DIR to A	[1]	-	26.1	-	20.9	-	13.5	-	12.6	-	9.3	ns
	propagation delay	DIR to B	[1]	-	22.4	-	20.8	-	12.4	-	10.1	-	8.4	ns
t _{PZL}	OFF-state to LOW	DIR to A	[1]	-	31.0	-	25.5	-	15.8	-	13.2	-	10.2	ns
	propagation delay	DIR to B	[1]	-	22.9	-	19.5	-	12.9	-	11.0	-	9.9	ns

13 °C to ±125 °C

[1] t_{PZH} and t_{PZL} are calculated values using the formula shown in Section 14.4 "Enable times"

12. Waveforms

All information provided in this document is subject to legal disclaimers

74LVC_LVCH1T45

74LVC1T45; 74LVCH1T45

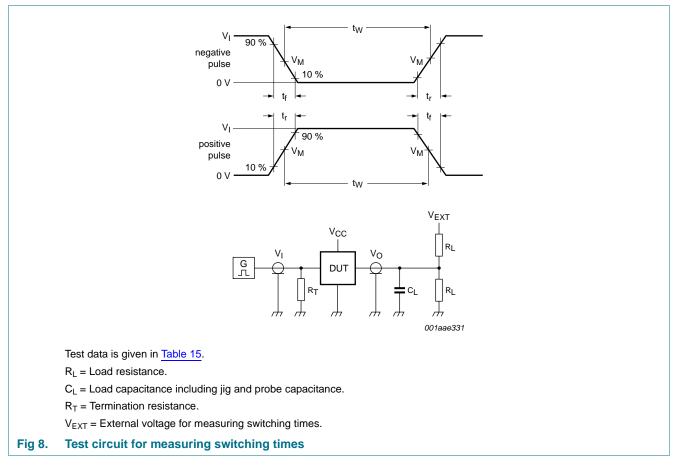

Dual supply translating transceiver; 3-state

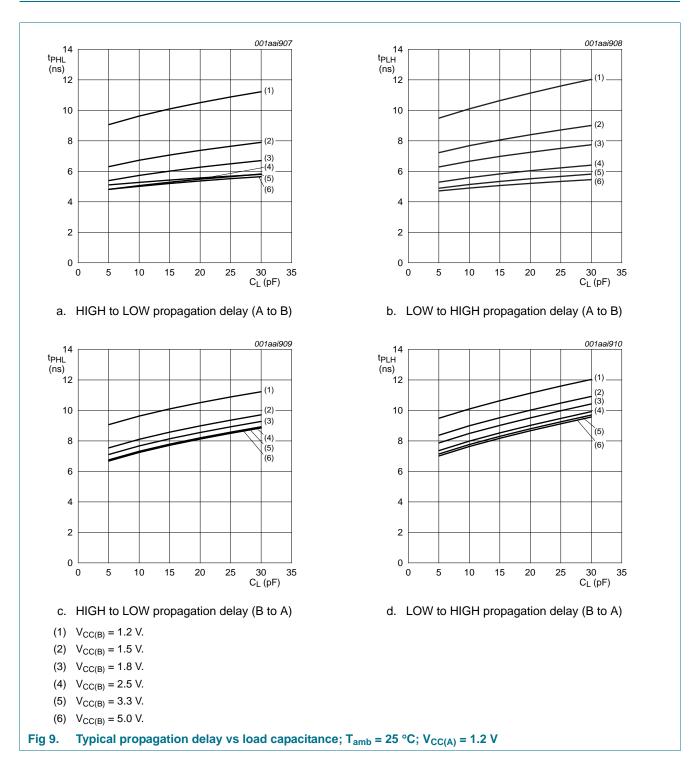
Table 14.Measurement points

Supply voltage	Input ^[1]	Output ^[2]		
V _{CC(A)} , V _{CC(B)}	V _M	V _M	V _X	V _Y
1.2 V to 1.6 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.1 V	V _{OH} – 0.1 V
1.65 V to 2.7 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.15 V	V _{OH} – 0.15 V
3.0 V to 5.5 V	0.5V _{CCI}	$0.5V_{CCO}$	V _{OL} + 0.3 V	V _{OH} – 0.3 V

[1] V_{CCI} is the supply voltage associated with the data input port.

[2] $\,\,$ V_{CCO} is the supply voltage associated with the output port.

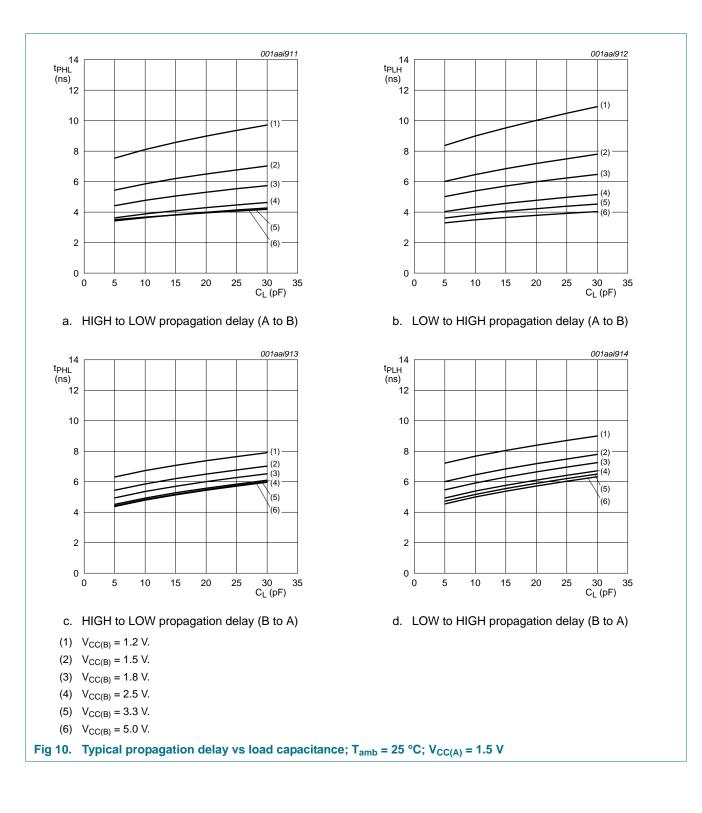
Table 15. Test data

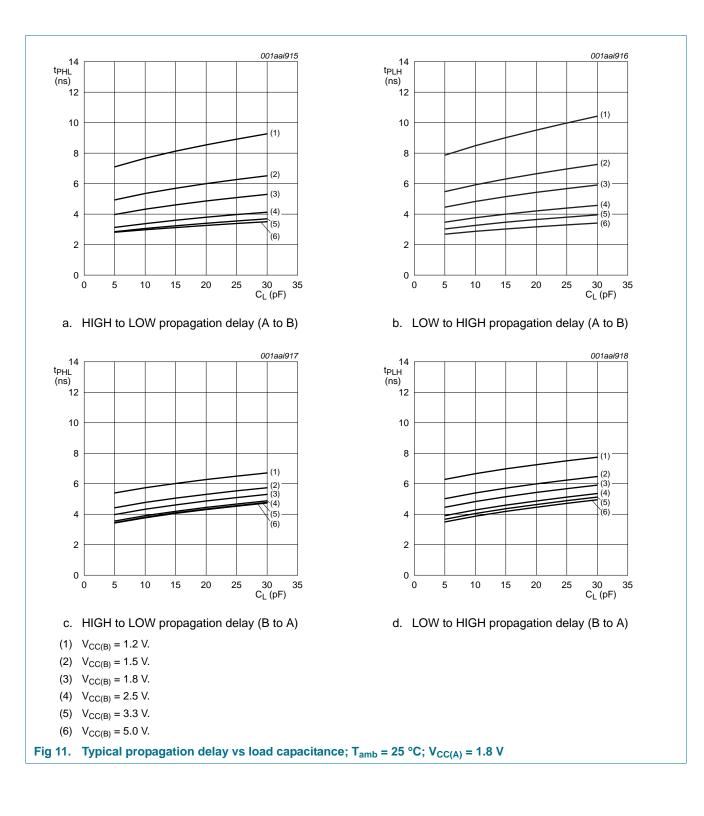

Supply voltage	Input		Load		V _{EXT}		
$V_{CC(A)}, V_{CC(B)}$	V _I [1]	Δt/ΔV ^[2]	CL	RL	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ} [3]
1.2 V to 5.5 V	V _{CCI}	\leq 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}

[1] V_{CCI} is the supply voltage associated with the data input port.

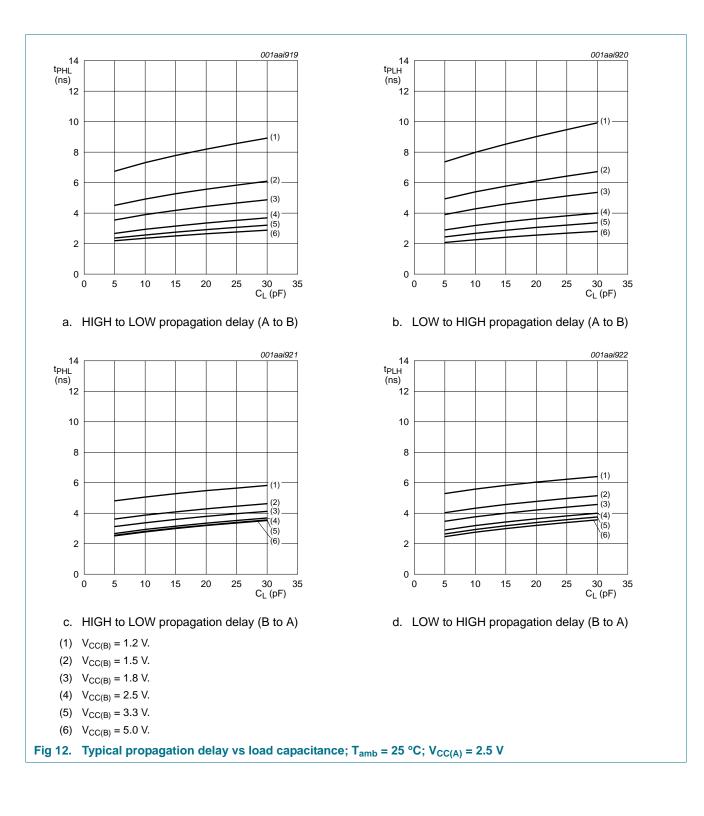
[2] $dV/dt \ge 1.0 V/ns$

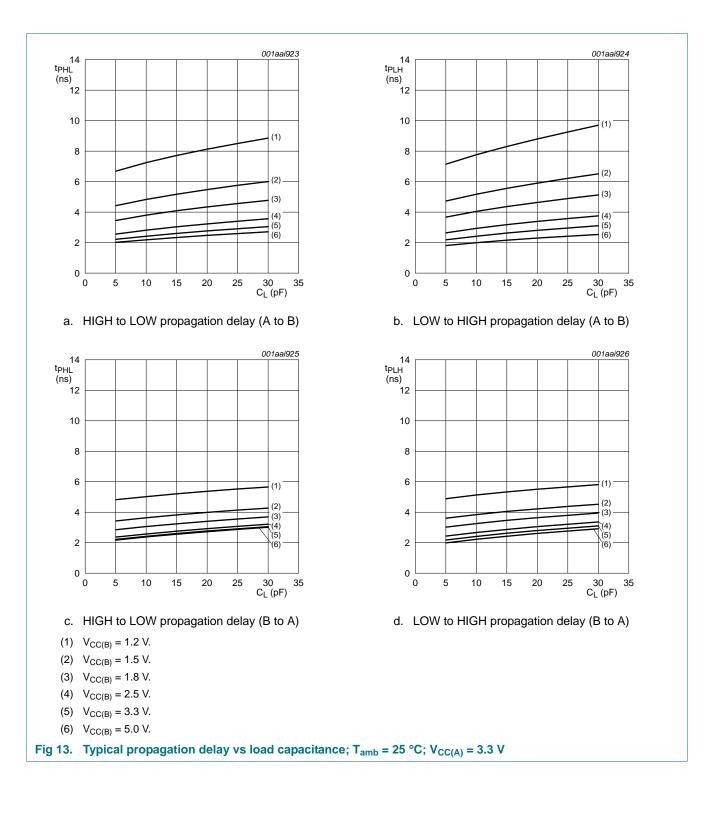
[3] V_{CCO} is the supply voltage associated with the output port.

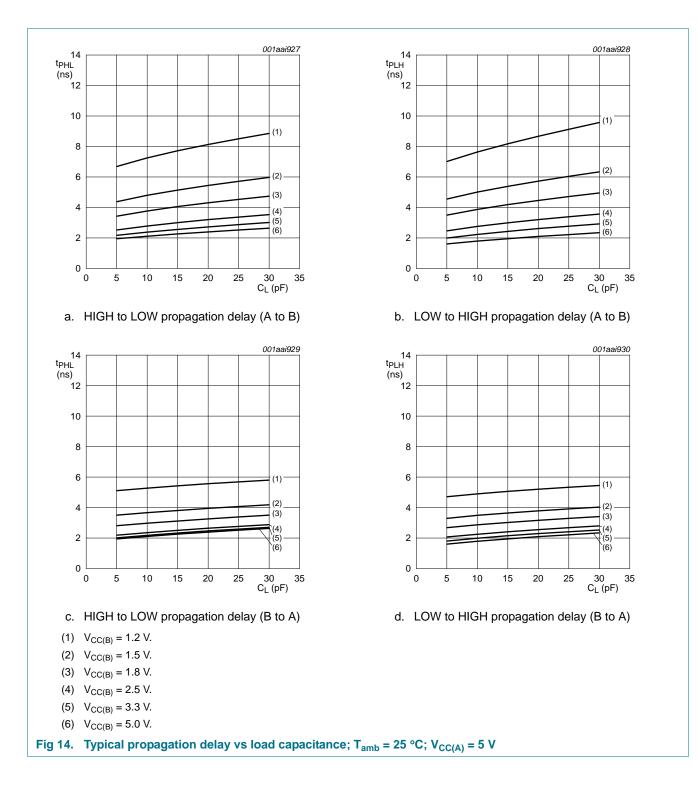

Dual supply translating transceiver; 3-state


13. Typical propagation delay characteristics

74LVC_LVCH1T45
Product data sheet

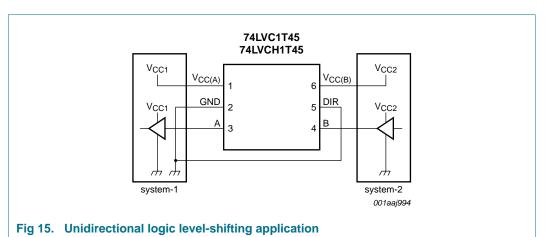

74LVC1T45; 74LVCH1T45


74LVC1T45; 74LVCH1T45


74LVC1T45; 74LVCH1T45

74LVC1T45; 74LVCH1T45

74LVC1T45; 74LVCH1T45

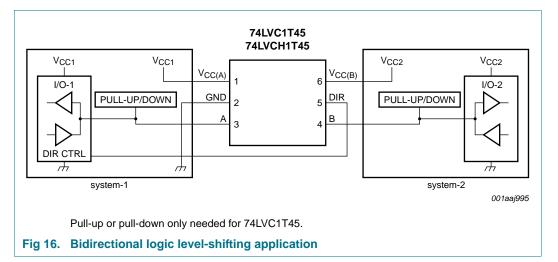


Dual supply translating transceiver; 3-state

14. Application information

14.1 Unidirectional logic level-shifting application

The circuit given in <u>Figure 15</u> is an example of the 74LVC1T45; 74LVCH1T45 being used in a unidirectional logic level-shifting application.


Table 16. Description unidirectional logic level-shifting application

Pin	Name	Function	Description
1	V _{CC(A)}	V _{CC1}	supply voltage of system-1 (1.2 V to 5.5 V)
2	GND	GND	device GND
3	А	OUT	output level depends on V_{CC1} voltage
4	В	IN	input threshold value depends on V_{CC2} voltage
5	DIR	DIR	the GND (LOW level) determines B port to A port direction
6	V _{CC(B)}	V _{CC2}	supply voltage of system-2 (1.2 V to 5.5 V)

Dual supply translating transceiver; 3-state

14.2 Bidirectional logic level-shifting application

Figure 16 shows the 74LVC1T45; 74LVCH1T45 being used in a bidirectional logic level-shifting application. Since the device does not have an output enable pin, the system designer should take precautions to avoid bus contention between system-1 and system-2 when changing directions.

<u>Table 17</u> provides a sequence that illustrates data transmission from system-1 to system-2 and then from system-2 to system-1.

State	DIR CTRL	I/O-1	I/O-2	Description
1	Н	output	input	system-1 data to system-2
2	Η	Z	Z	system-2 is getting ready to send data to system-1. I/O-1 and I/O-2 are disabled. The bus-line state depends on bus hold.
3	L	Z	Z	DIR bit is set LOW. I/O-1 and I/O-2 are still disabled. The bus-line state depends on bus hold.
4	L	input	output	system-2 data to system-1

Table 17. Description bidirectional logic level-shifting application^[1]

[1] H = HIGH voltage level;

L = LOW voltage level;

Z = high-impedance OFF-state.

Dual supply translating transceiver; 3-state

14.3 Power-up considerations

The device is designed such that no special power-up sequence is required other than GND being applied first.

V _{CC(A)}	V _{CC(B)}	Unit				
	0 V	1.8 V	2.5 V	3.3 V	5.0 V	
0 V	0	< 1	< 1	< 1	< 1	μA
1.8 V	< 1	< 2	< 2	< 2	2	μA
2.5 V	< 1	< 2	< 2	< 2	< 2	μA
3.3 V	< 1	< 2	< 2	< 2	< 2	μA
5.0 V	< 1	2	< 2	< 2	< 2	μA

Table 18. Typical total supply current (I_{CC(A)} + I_{CC(B)})

14.4 Enable times

Calculate the enable times for the 74LVC1T45; 74LVCH1T45 using the following formulas:

- t_{PZH} (DIR to A) = t_{PLZ} (DIR to B) + t_{PLH} (B to A)
- t_{PZL} (DIR to A) = t_{PHZ} (DIR to B) + t_{PHL} (B to A)
- t_{PZH} (DIR to B) = t_{PLZ} (DIR to A) + t_{PLH} (A to B)
- t_{PZL} (DIR to B) = t_{PHZ} (DIR to A) + t_{PHL} (A to B)

In a bidirectional application, these enable times provide the maximum delay from the time the DIR bit is switched until an output is expected. For example, if the 74LVC1T45; 74LVCH1T45 initially is transmitting from A to B, then the DIR bit is switched, the B port of the device must be disabled before presenting it with an input. After the B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified propagation delay.

Dual supply translating transceiver; 3-state

15. Package outline

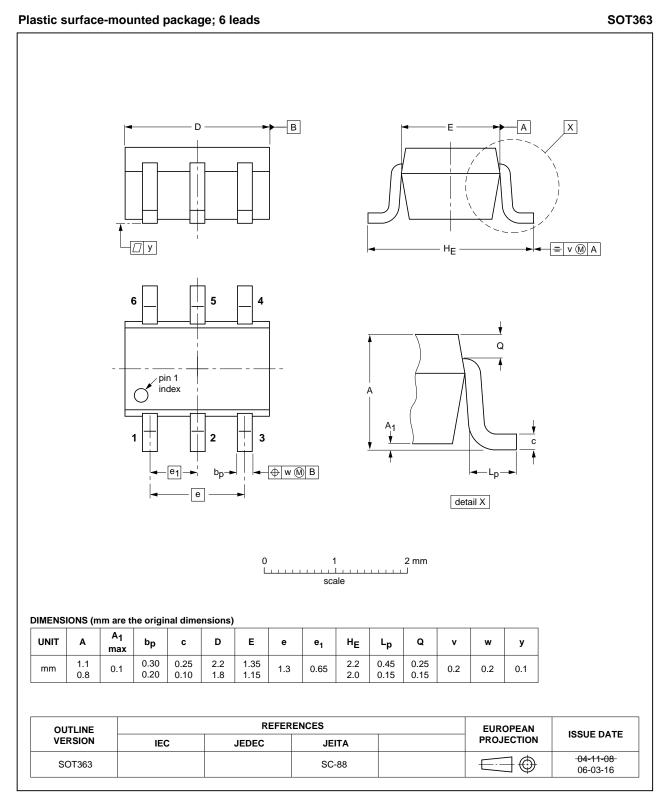
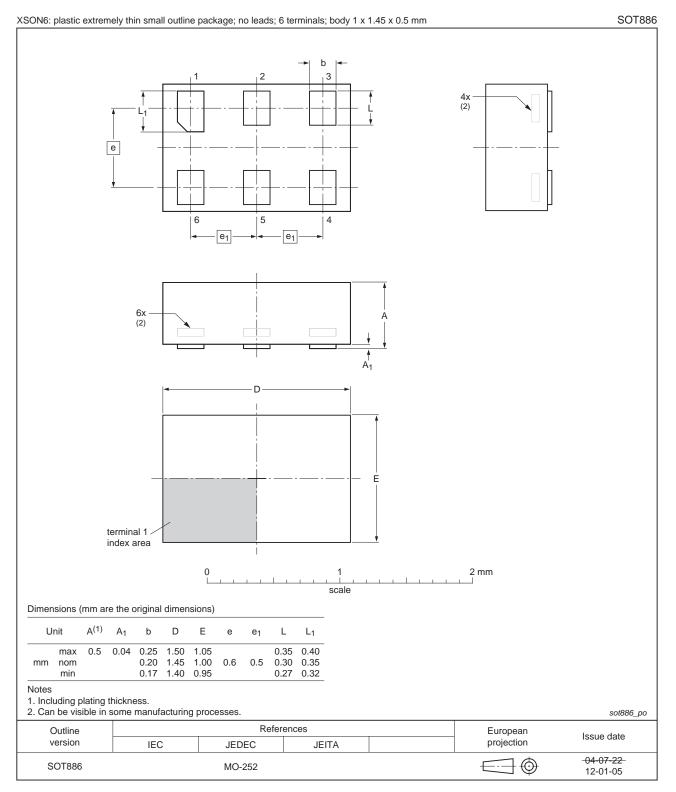



Fig 17. Package outline SOT363 (SC-88)

All information provided in this document is subject to legal disclaimers.

74LVC_LVCH1T45

Dual supply translating transceiver; 3-state

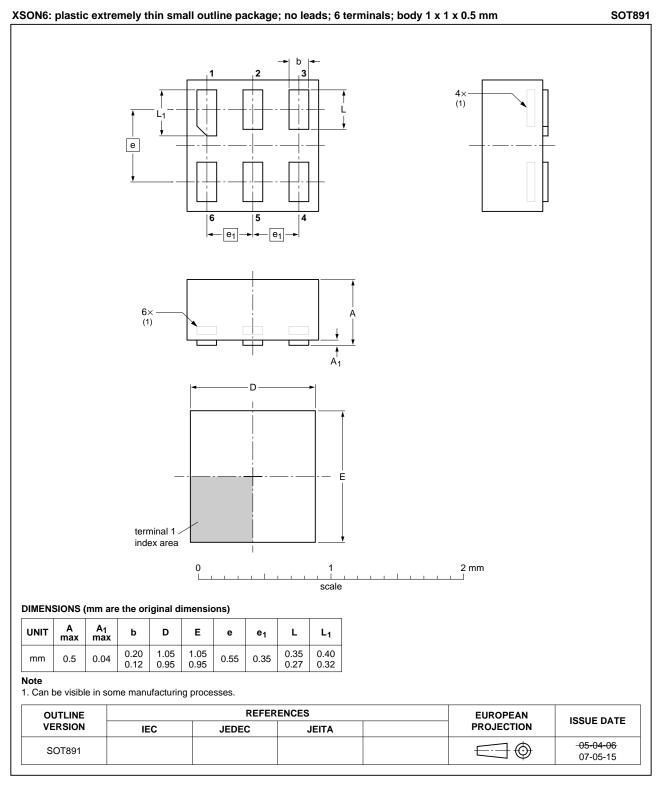


Fig 18. Package outline SOT886 (XSON6)

All information provided in this document is subject to legal disclaimers.

74LVC_LVCH1T45

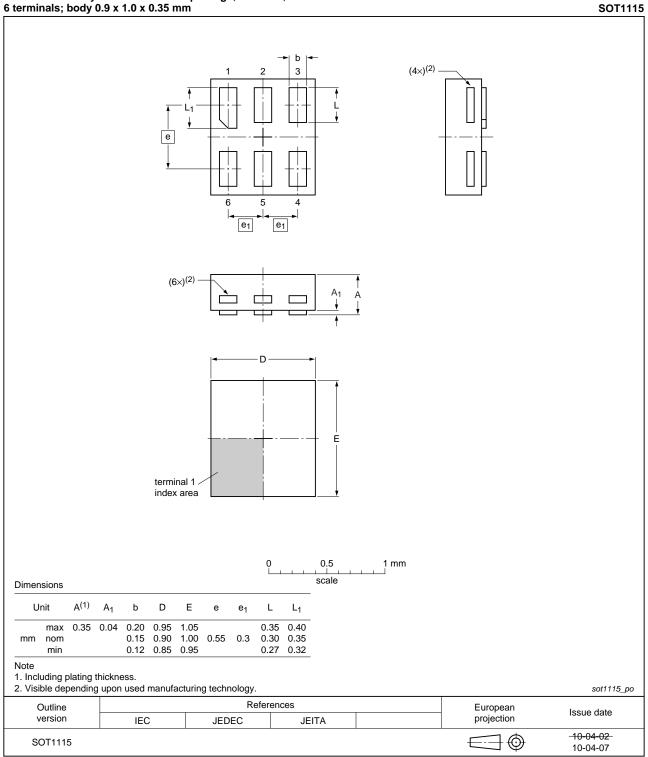

Dual supply translating transceiver; 3-state

Fig 19. Package outline SOT891 (XSON6)

74LVC_LVCH1T45
Product data sheet

Dual supply translating transceiver; 3-state

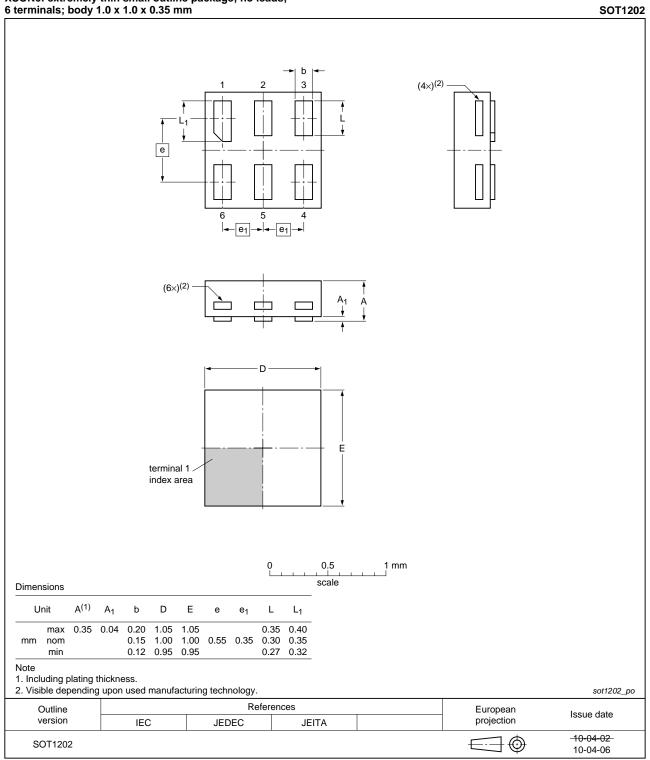

XSON6: extremely thin small outline package; no leads; 6 terminals; body 0.9 x 1.0 x 0.35 mm

Fig 20. Package outline SOT1115 (XSON6)

All information provided in this document is subject to legal disclaimers.

74LVC_LVCH1T45

Dual supply translating transceiver; 3-state

XSON6: extremely thin small outline package; no leads; 6 terminals; body 1.0 x 1.0 x 0.35 mm

Fig 21. Package outline SOT1202 (XSON6)

All information provided in this document is subject to legal disclaimers.

74LVC_LVCH1T45

Dual supply translating transceiver; 3-state

16. Abbreviations

Table 19. Abbreviations			
Acronym	Description		
CDM	Charged Device Model		
DUT	Device Under Test		
ESD	ElectroStatic Discharge		
HBM	Human Body Model		

17. Revision history

Table 20.Revision history

	•			
Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVC_LVCH1T45 v.6	20120806	Product data sheet	-	74LVC_LVCH1T45 v.5
Modifications:	 Package out 	line drawing of SOT886 (Figu	re 18) modified.	
74LVC_LVCH1T45 v.5	20111219	Product data sheet	-	74LVC_LVCH1T45 v.4
Modifications:	 Legal pages 	updated.		
74LVC_LVCH1T45 v.4	20110927	Product data sheet	-	74LVC_LVCH1T45 v.3
74LVC_LVCH1T45 v.3	20100819	Product data sheet	-	74LVC_LVCH1T45 v.2
74LVC_LVCH1T45 v.2	20100119	Product data sheet	-	74LVC_LVCH1T45 v.1
74LVC_LVCH1T45 v.1	20090511	Product data sheet	-	-

Dual supply translating transceiver; 3-state

18. Legal information

18.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any

representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

18.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Product data sheet

Dual supply translating transceiver; 3-state

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of

non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

18.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

19. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

74LVC LVCH1T45

Dual supply translating transceiver; 3-state

20. Contents

1	General description	. 1
2	Features and benefits	. 1
3	Ordering information	. 2
4	Marking	. 2
5	Functional diagram	. 3
6	Pinning information	. 3
6.1	Pinning	. 3
6.2	Pin description	. 3
7	Functional description	. 4
8	Limiting values	. 4
9	Recommended operating conditions	. 4
10	Static characteristics	. 5
11	Dynamic characteristics	. 9
12	Waveforms	
13	Typical propagation delay characteristics	16
14	Application information.	22
14.1	Unidirectional logic level-shifting application .	22
14.2	Bidirectional logic level-shifting application	23
14.3	Power-up considerations	24
14.4	Enable times	24
15	Package outline	25
16	Abbreviations	30
17	Revision history	30
18	Legal information	31
18.1	Data sheet status	31
18.2	Definitions	31
18.3	Disclaimers	31
18.4	Trademarks	32
19	Contact information	32
20	Contents	33

© Nexperia B.V. 2017. All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for nxp manufacturer:

Other Similar products are found below :

MC13211R2 PCA9518PW,112 LFSTBEB865X MIMXRT1064DVL6A MC33399PEFR2 PCA9551PW,112 MC34825EPR2 CBTW28DD14AETJ PCF8583P MC68340AB16E MC8640DTVJ1250HE EVBCRTOUCH MC9S08PT8AVTG MC9S08SH32CTL MCF54415CMJ250 MCIMX6Q-SDB MCIMX6S5EVM10ACR MCIMX6SX-SDB 74ALVC125BQ,115 74HC4050N 74HC4514N MK21FN1M0AVLQ12 MKV30F128VFM10 FRDM-K66F FRDM-KW40Z FRDM-MC-LVBLDC PESD18VF1BSFYL PMF63UNEX PSMN4R0-60YS,115 HEF4028BPN RAPPID-567XFSW MPC565MVR56 MPC574XG-176DS MPC8548VJAUJD MPC860PCVR66D4 BCV61A,215 BFU520XAR BT137-600E BUK7628-100A118 P5020NSE7VNB S12ZVML12EVBLIN SCC2692AC1N40 LPC1785FBD208K LPC2124FBD64/01 LS1020ASN7KQB LS1020AXN7HNB LS1020AXN7KQB LS1043ASE7PQA T1023RDB-PC FRDM-KW24D512