SPECIFICATION

SPEC. No. C-General-b

D A T E: 2014 June.

To

Non-Controlled Copy

CUSTOMER'S PRODUCT NAME

TDK PRODUCT NAME

MULTILAYER CERAMIC CHIP CAPACITORS

C Series / Commercial Grade

General (Up to 50V)

Mid voltage (100 to 630V)

Please return this specification to TDK representatives.

If orders are placed without returned specification, please allow us to judge that specification is accepted by your side.

RECEIPT CONFIRMATION

DATE: YEAR MONTH DAY

TDK Corporation
Sales
Electronic Components
Sales & Marketing Group

TDK-EPC Corporation

Engineering

Ceramic Capacitors Business Group

APPROVED	Person in charge

APPROVED	CHECKED	Person in charge

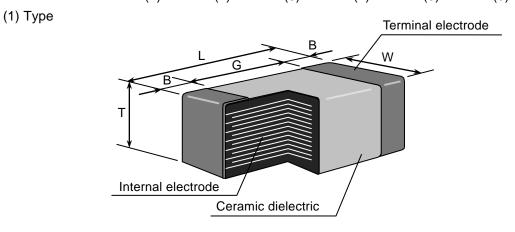
1. SCOPE

This specification is applicable to chip type multilayer ceramic capacitors with a priority over the other relevant specifications.

Production places defined in this specification shall be TDK-EPC Corporation Japan,

TDK (Suzhou) Co., Ltd and TDK Components U.S.A. Inc.

EXPLANATORY NOTE:


This specification warrants the quality of the ceramic chip capacitors. The chips should be evaluated or confirmed a state of mounted on your product.

If the use of the chips goes beyond the bounds of the specification, we can not afford to guarantee.

2. CODE CONSTRUCTION

(Example)

Catalog Number : (Web)	C2012 (1)	X7R (2)	1E (3)	<u>105</u> (4)	<u>K</u> (5)	<u>125</u> (6)	<u>A</u> <u>A</u> (8)
Item Description :	C2012 (1)	X7R (2)	<u>1E</u> (3)	<u>105</u> (4)	<u>K</u> (5)	<u>T</u> (9)	<u>xxxx</u> (10)

Please refer to product list for the dimension of each product.

(2) Temperature Characteristics (Details are shown in table 1 No.7 and No.8 at page 5)

(3) Rated Voltage

Symbol	Rated Voltage
2 J	DC 630 V
2 W	DC 450 V
2 V	DC 350 V
2 E	DC 250 V
2 A	DC 100 V
1 H	DC 50 V
1 V	DC 35 V
1 E	DC 25 V
1 C	DC 16 V
1 A	DC 10 V
0 J	DC 6.3 V
0 G	DC 4V

(4) Rated Capacitance

Stated in three digits and in units of pico farads (pF).

The first and Second digits identify the first and second significant figures of the capacitance, the third digit identifies the multiplier.

R is designated for a decimal point.

Example 2R2 → 2.2pF

 $105 \rightarrow 1,000,000pF$

(5) Capacitance tolerance

Tolerance	Capacitance
± 0.1 pF	
± 0.25 pF	10pF and under
± 0.5 pF	
± 5%	
± 10 %	Over 10pF
± 20 %	
	± 0.1 pF ± 0.25 pF ± 0.5 pF ± 5 % ± 10 %

- (6) Thickness code (Only Catalog Number)
- (7) Package code (Only Catalog Number)
- (8) Special code (Only Catalog Number)
- (9) Packaging (Only Item Description)

Symbol	Packaging
В	Bulk
Т	Taping

(10) Internal code (Only Item Description)

3. RATED CAPACITANCE AND CAPACITANCE TOLERANCE

3.1 Standard combination of rated capacitance and tolerances

Class	Temperature Characteristics	Capacitance tolerance		Rated capacitance						
		10pF and	B (±0.1 pF) C (±0.25pF)	0.5, 1, 1.5, 2, 2.2, 3, 3.3, 4, 4.7, 5						
1	СН	under	D (±0.5pF)	6, 6.8, 7, 8, 9, 10						
ı	C0G	12pF to 10,000pF	•	E – 12 series						
								Over 10,000pF	K (± 10 %)	E – 6 series
	J B X5R	10uF and	K (± 10 %)							
2	2 X6S X7R X7S X7T			E – 6 series						
2		X7S Over 10uF M (:	M (± 20 %)	E - 0 series						

3.2 Capacitance Step in E series

E series	Capacitance Step											
E- 3	1.0				2.2				4.7			
E- 6	1.	.0	1	.5	2.	.2	3	.3	4.	.7	6.	.8
E-12	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2

4. OPERATING TEMPERATURE RANGE

T.C.	Min. operating Temperature	Max. operating Temperature	Reference Temperature
C H J B	-25°C	85°C	20°C
X5R	-55°C	85°C	25°C
X6S	-55°C	105°C	25°C
X7R X7S X7T C0G	-55°C	125°C	25°C

5. STORING CONDITION AND TERM

5 to 40°C at 20 to 70%RH

6 months Max.

6. P.C. BOARD

When mounting on an aluminum substrate, large case sizes such as C3225, C4532 and C5750 types are more likely to be affected by heat stress from the substrate.

Please inquire separate specification for the large case sizes when mounted on the substrate.

7. INDUSTRIAL WASTE DISPOSAL

Dispose this product as industrial waste in accordance with the Industrial Waste Law.

8. PERFORMANCE

table 1

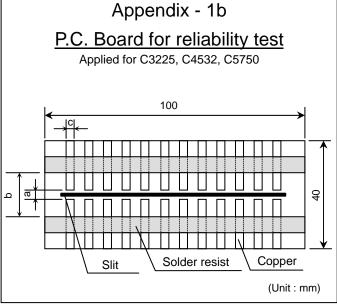
No.	Item	Perforr	nance		Test or inspe	ection meth	nod
1	External Appearance	No defects which performance.	-	with magnify 2 and C0603 0×)		•	
2	Insulation Resistance	$10,000 M\Omega$ or $500 M$ (As for the capacity voltage 16, $10 V$ DO $10,000 M\Omega$ or $100 M$ whichever smaller.	ors of rated C and lower, MΩ·μF min.,)	Apply ra	ted voltage f	or 60s.	
3	Voltage Proof	Withstand test volt	age without		1		
		insulation breakdo	wn or other	Class	Rated volta	ge Appl	y voltage
		damage.			100V and un	der 3 x rat	ted voltage
				Class1	Over 100\ 500V and un	1 1 5 v rs	ated voltage
					Over 500\	/ 1.3 × ra	ated voltage
					100V and un	der 2.5 x ra	ated voltage
				Class2	Over 100\ 500V and un	15 x ra	ated voltage
					Over 500\		ated voltage
					C voltage sh	nall be appl	ied for
				1s. Charge / exceed 5	discharge c 50mA.	urrent shal	l not
4	Capacitance	Within the specifie	d tolerance.				
				Class	Rated Capacitance	Measuring frequency	Measuring voltage
				Class1	1000pF and under Over 1000pF	1MHz±10% 1kHz±10%	- 0.5-5 Vms.
					10uF and	1kHz±10%	0.5±0.2Vms.
				Class2	under	TKI 12±1070	1.0±0.2Vms.
					Over 10uF	120Hz±20%	0.5±0.2Vms.
				measurir	mation whicl ng voltage, p presentative.	lease cont	
5	Q (Class1)	Rated Capacitance	Q	See No.4	4 in this table	e for measu	uring
	(Classi)	30pF and over	1,000 min.	Condition	1.		
		Under 30pF	400+20×C min.				
		C : Rated capacita	nce (pF)				
6	Dissipation Factor (Class2)	T.C.	D.F.	See No.4	4 in this table	e for measu	uring
		J B X5R X6S X7R X7S X7T	0.025 max. 0.03 max. 0.05 max. 0.075 max. 0.10 max. 0.15 max.	For infor Dissipati	mation whicl on Factor, pl presentative.	lease conta	

No.	Item	Perfo	rmance	Test or inspection method
7	Temperature Characteristics of Capacitance (Class1)	T.C. C H C0G Capacitance dri Within ± 0.2% whichever large	or ±0.05pF,	Temperature coefficient shall be calculated based on values at 25°C and 85°C temperature. Measuring temperature below 20°C shall be -10°C and -25°C.
9	Temperature Characteristics of Capacitance (Class2) Robustness of Terminations	No voltage applied J B: ±10 X5R: ±15 X6S: ±22 X7R: ±15 X7S: ±22 X7T: +22 -33		Capacitance shall be measured by the steps shown in the following table after thermal equilibrium is obtained for each step. \[\Delta \text{C} \] be calculated ref. STEP3 reading \[\text{Step} \] Temperature(°C) \[\frac{1}{2} \] Min. operating temp. \(\pm 2 \) \[\frac{2}{4} \] Max. operating temp. \(\pm 2 \) \[\frac{2}{4} \] Max. operating temp. \(\pm 2 \) \[\frac{2}{4} \] Measuring voltage: 0.1, 0.2, 0.5, 1.0Vrms. For information which product has which applied voltage, please contact with our sales representative. Reflow solder the capacitors on a P.C.Board shown in Appendix 1a or Appendix 1b and apply a pushing force of 2N (C0603, C1005) or 5N (C1608, C2012, C3216, C3225, C4532, C5750) with 10\(\pm 1 \) s. (Not applicable to C0402.)
10	Bending	No mechanical	damage.	Reflow solder the capacitors on a P.C.Board shown in Appendix 2a or Appendix 2b and bend it for 1mm.

<u> </u>		_ ,	
No.	Item	Performance	Test or inspection method
11	Solderability	(C0402)	Completely soak both terminations in
		Both end faces and the contact areas	solder at 235±5°C for 2 ± 0.5s.
		shall be covered with a smooth and	
		bright solder coating with no more than	Solder : H63A (JIS Z 3282)
		a small amount of scattered	
		imperfections such as pinholes or	Flux: Isopropyl alcohol (JIS K 8839)
		un-wetted or de-wetted areas.	Rosin (JIS K 5902) 25% solid
		These imperfections shall not be	solution.
		concentrated in one area.	
		(Others)	Only reflow soldering applicable to
		New solder to cover over 75% of termination.	C0402.
		25% may have pin holes or rough spots	Peak condition
		but not concentrated in one spot.	Temp. : 235±5°C
		Ceramic surface of A sections shall not	Time: 2±0.5s.
		be exposed due to melting or shifting of	Preheating condition
		termination material.	Temp. : 150±10°C
			Time: 1 to 2min.
		A section	

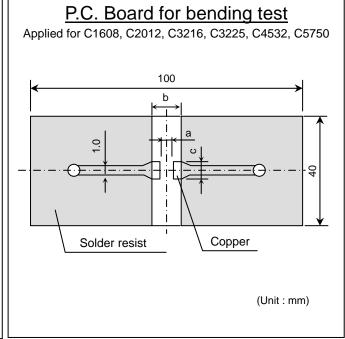
No.	Ite		Perfo	rmance	Test or inspection method	
12	Resistance to solder heat	External appearance	terminati	ons sha	llowed and all be covered at new solder.	Completely soak both terminations in solder at 260±5°C for 5±1s.
		Capacitance	Charact	teristics	Change from the value before test	Preheating condition Temp.: 150±10°C Time: 1 to 2min.
			Class 1	C H COG	Capacitance drift within ±2.5% or ±0.25pF, whichever larger.	Solder : H63A (JIS Z 3282)
			Class 2	J B X5R X6S X7R X7S X7T	±7.5 % ±7.5 % ±7.5 % ±7.5 % ±7.5 %	Flux: Isopropyl alcohol (JIS K 8839) Rosin (JIS K 5902) 25% solid solution.
				7.7.1	11.0 //	Leave the capacitors in ambient condition for 6 to 24h (Class1) or 24±
		Q (Class1)	Rated C	apacitance	e Q	(Class2) before measurement.
			Unde	and over er 30pF	1,000 min. 400+20×C min.	Only reflow soldering applicable to C0402.
			C : Rated capacitance (pF)			Peak condition
	D.F. (Class2)		Meet the	initial s	spec.	Temp. : 235±5°C Time: 2±0.5s.
		Insulation Resistance	Meet the initial spec. No insulation breakdown or other damage.			Preheating condition Temp.: 150±10°C
		Voltage proof				Time : 1 to 2min.
3	Vibration	External appearance	No mech	nanical	damage.	Reflow solder the capacitors on a P.C.Board shown in Appendix 1a or
		Capacitance	Charact	teristics	Change from the value before test	Appendix 1b before testing.
			Class1	CH COG JB	±2.5% or ±0.25pF, whichever larger. ± 7.5 %	Vibrate the capacitors with amplitude of 1.5mm P-P changing the frequencies from 10Hz to 55Hz and
			Class2	X5R X6S X7R X7S X7T	±7.5 % ±7.5 % ±7.5 % ±7.5 % ±7.5 %	back to 10Hz in about 1min. Repeat this for 2h each in 3 perpendicular directions.
		Q				_
		(Class1)		Capacitano		
				and over ler 30pF	1,000 min. 400+20×C min.	
				•	ritance (pF)	
		D.F. (Class2)	Meet the	initial s	spec.	

No.	Ite	em		Perfo	rmance		Test or inspection m	nethod	
14	Temperature cycle	External appearance	No mechanical damage.				Reflow solder the capacitors on a P.C.Board shown in Appendix1a or		
		Capacitance	Characte Class1	whichever larger.		Appendix1b before testing. Expose the capacitors in the condition step1 through step 4 and repeat 5 times consecutively.			
			*Class2	JB X5R X6S X7R X7S X7T	± 7.5 % ± 10 % ± 12.5 %	Leave the capacitors in ambient condition for 6 to 24h (Class 1) or 24±2h (Class 2) before measurement.			
			* Applied for some parts.			Step	Temperature(°C)	Time (min.	
		Q				1	Min. operating	30 ± 3	
		(Class1)	Rated Capacitance Q		Q		temp. ±3		
		(Olassi)	30pF ar	nd over	1,000 min.	2	Reference Temp.	2 - 5	
			Under	30pF	400+20xC min.				
			C : Rated	capaci	tance (pF)	3	Max. operating temp. ±2	30 ± 2	
	D.F. (Class2)	D.F. (Class2)	Meet the i	Meet the initial spec.			Reference Temp.	2 - 5	
		Insulation Resistance	Meet the i	initial s	pec.				
		Voltage proof	No insulat	tion bre	akdown or other				


No.	Ite	em		Perfor	mance	Test or inspection method
15	Moisture Resistance	External appearance	No mecha	nical da	mage.	Reflow solder the capacitors on a P.C.Board shown in Appendix 1a or
	(Steady	Capacitance				Appendix 1b before testing.
	State)		Characte	eristics	Change from the value before test	Leave at temperature 40 ± 2°C, 90 to
			Class1		±5% or ±0.5pF, whichever larger.	95%RH for 500 +24,0h.
			*Class2	JB X5R X6S X7R X7S X7T	± 10 % ± 12.5 % ± 25 %	Leave the capacitors in ambient condition for 6 to 24h (Class1) or 24 ± 2h (Class2) before measurement.
			* Applied fo	r some p	parts.	
		Q				1
		(Class1)	Rated Capacitance Q			
			30pF and over		350 min.	
			10pF and over under 30pF		275+5/2×C min.	
			Under	10pF	200+10×C min.	
			C : Rated	capacita	ance (pF)	
		D.F. (Class2)	200% of in	itial spe	c. max.	-
		Insulation	1,000ΜΩ ο	r 50MΩ· _l	uF min.	1
		Resistance	(As for the	capaci	tors of rated	
			voltage 16	, 10V D	C and lower,	
			1,000 ΜΩ	or 10M	Ω·μF min.,)	
			whichever	smalle		

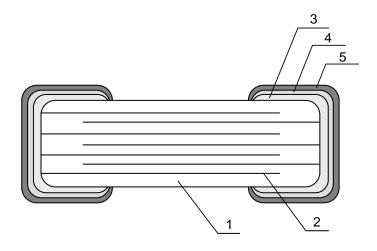
No.	Item			Perfo	rmance	Test or inspection method
16	Moisture Resistance	External appearance	No mecha	nical d	amage.	Reflow solder the capacitors on a P.C.Board shown in Appendix1a or
		Capacitance				Appendix 1b before testing.
			Characte	eristics	Change from the value before test	Apply the rated voltage at temperature 40±2°C and 90 to
			Class1	C H C0G	±7.5% or ±0.75pF, whichever larger.	95%RH for 500 +24,0h.
				JB X5R	± 10 %	Charge/discharge current shall not exceed 50mA.
			*Class2	X6S X7R	± 12.5 %	Leave the capacitors in ambient
				X7S X7T	± 25 %	condition for 6 to 24h (Class1) or 24±2h (Class2) before measurement
			* Applied fo	or some	parts.	,
		Q				Voltage conditioning (only for class 2
		(Class1)	Rated Capacitance		ce Q	Voltage treat the capacitors under
			30pF a	nd over	200 min.	testing temperature and voltage for 1
			Unde	r 30pF	100+10/3×C min.	hour.
			C : Rated	capacit	tance (pF)	Leave the capacitors in ambient condition for 24±2h before
		D.F. (Class2)	200% of ir	nitial spe	ec. max.	measurement. Use this measurement for initial
		Insulation	500MΩ or	25ΜΩ	μF min.	value.
		Resistance	(As for the	е сарас	itors of rated	
			voltage 16	6, 10V [OC and lower, 500	
			$M\Omega$ or 5M smaller.	Ω·µF m	nin.,) whichever	

No.	Item			Perfo	rmance	Test or inspection method			
17	Life	External appearance	No mecha	nical da	amage.	Reflow solder the capacitors on a P.C.Board shown in Appendix1a or Appendix 1b before testing.			
		Capacitance	Characte	eristics	Change from the value before test	Below the voltage shall be applied at maximum operating temperature ±2°C			
			Class1	C H C0G	±3% or ±0.3pF, whichever larger.	for 1,000 +48, 0h.			
				JB		Applied voltage			
			*Class2	X5R X6S	± 10 % ± 12.5 %	Rated voltage x2			
			Classz	X7R X7S	± 12.5 % ± 25 %	Rated voltage x1.5			
				X7T		Rated voltage x1.2			
			* Applied fo	r some	oarts.	Rated voltage x1			
		Q (Class1)	Rated Ca	apacitance	. Q	For information which product has			
		(-	and over	350 min.	which applied voltage, please contact			
			•	over unde	275+5/2×C min.	with our sales representative.			
			-	OpF er 10pF	200+10×C min.	Charge/discharge current shall not			
			C : Rated capacitance (pF)			exceed 50mA.			
		D.F.	200% of in	nitial spe	ec. max.	Leave the capacitors in ambient condition for 6 to 24h (Class1) or			
		(Class2)	200,001			24±2h (Class2) before measurement.			
		Insulation	1,000ΜΩ ο	r 50MΩ·	μF min.	Voltage conditioning (only for class 2)			
		Resistance	`	•	tors of rated	Voltage treat the capacitors under			
			_		C and lower,	testing temperature and voltage for 1			
					Ω·μF min.,) r	hour.			
			whichever smaller.			Leave the capacitors in ambient			
						condition for 24±2h before measurement.			
						Use this measurement for initial value.			
						Ose this measurement for initial value.			


^{*}As for the initial measurement of capacitors (Class2) on number 8,12,13,14 and 15, leave capacitors at 150 -10,0 $^{\circ}$ C for 1 hour and measure the value after leaving capacitors for 24 ± 2h in ambient condition.

Appendix - 1a P.C. Board for reliability test Applied for C0402, C0603, C1005, C1608, C2012, C3216

Appendix - 2b


Appendix - 2a P.C. Board for bending test Applied for C0402, C0603, C1005

TDV /FIA atula)	Dime	ensions (r	nm)
TDK (EIA style)	а	b	С
C0402 (CC01005)	0.2	0.8	0.2
C0603 (CC0201)	0.3	0.8	0.3
C1005 (CC0402)	0.4	1.5	0.5
C1608 (CC0603)	1.0	3.0	1.2
C2012 (CC0805)	1.2	4.0	1.65
C3216 (CC1206)	2.2	5.0	2.0
C3225 (CC1210)	2.2	5.0	2.9
C4532 (CC1812)	3.5	7.0	3.7
C5750 (CC2220)	4.5	8.0	5.6

9. INSIDE STRUCTURE AND MATERIAL

No.	NAME	MATERIAL					
NO.	INAIVIE	Class1	Class2				
1	Dielectric	CaZrO ₃ BaTiO ₃					
2	Electrode	Nickel (Ni)					
3		Copper (Cu)					
4	Termination	Nickel (Ni)					
5		Tin (Sn)					

10. RECOMMENDATION

As for C3225, C4532 and C5750 types, It is recommended to provide a slit (about 1mm wide) in the board under the components to improve washing Flux. And please make sure to dry detergent up completely before.

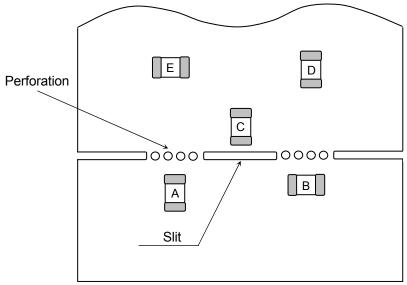
11. SOLDERING CONDITION

As for C0402, C0603, C1005, C3225, C4532 and C5750 types, reflow soldering only.

12. Caution

No.	Process	Condition						
1		1-1. Storage						
•	Operating Condition (Storage, Transportation)	 The capacitors must be stored in an ambient temperature of 5 to 40°C with a relative humidity of 20 to 70%RH. The products should be used within 6 months upon receipt. The capacitors must be operated and stored in an environment free of dew condensation and these gases such as Hydrogen Sulphide, Hydrogen Sulphate, Chlorine, Ammonia and sulfur. Avoid storing in sun light and falling of dew. Do not use capacitors under high humidity and high and low atmospheric pressure which may affect capacitors reliability. Capacitors should be tested for the solderability when they are stored for long time. Handling in transportation In case of the transportation of the capacitors, the performance of the capacitors may be deteriorated depending on the transportation condition. (Refer to JEITA RCR-2335B 9.2 Handling in transportation) 						
2	Circuit design ⚠ Caution	2-1. Operating temperature Operating temperature should be followed strictly within this specification, especially be careful with maximum temperature. 1) Do not use capacitors above the maximum allowable operating temperature. 2) Surface temperature including self heating should be below maximum operating temperature. (Due to dielectric loss, capacitors will heat itself when AC is applied. Especially at high frequencies around its SRF, the heat might be so extreme that it may damage itself or the product mounted on. Please design the circuit so that the maximum temperature of the capacitors including the self heating to be below the maximum allowable operating temperature. Temperature rise at capacitor surface shall be below 20°C) 3) The electrical characteristics of the capacitors will vary depending on the temperature. The capacitors should be selected and designed in taking the temperature into consideration. 2-2. Operating voltage across the terminals should be below the rated voltage. When AC and DC are super imposed, V _{0-P} must be below the rated voltage. — (1) and (2) AC or pulse with overshooting, V _{P-P} must be below the rated voltage. — (3), (4) and (5) When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use the capacitors within rated voltage containing these Irregular voltage. Voltage Voltage (1) DC voltage (2) DC+AC voltage Voltage (3) AC voltage						

No.	Process				Condi	tion				
2	Circuit design A Caution	Even below the reliability of the reliability		-	epetitive	high f	requen	cy AC or	pul	se is applied, the
	ZZ Gadion	The capacitor	 The effective capacitance will vary depending on applied DC and AC voltages. The capacitors should be selected and designed in taking the voltages into consideration. 							
		2-3. Frequency When the capacitors (Class 2) are used in AC and/or pulse voltages, the capacitors may vibrate themselves and generate audible sound.								
3	Designing P.C.board	capacitors. 1) The greater the and the more	 The greater the amount of solder, the higher the stress on the chip capacitors, and the more likely that it will break. When designing a P.C.board, determine the shape and size of the solder lands to have proper amount of solder on the terminations. 							
		solder land fo	r each termin	ations.	•		minatio	no ana pi	OVIC	ac marviada
		3) Size and reco	mmended lar	nd dim	ensions.					
				Chip	capacit	ors s	older la	ind		
		Solder resist								
		A								-)
		Flow solder Type			T 6	2012		C321	(mm	1)
		Symbol	(CC060		_	C0805)	(CC120		
		A	0.7 - 1	.0	1.	0 - 1.3		2.1 - 2	.5	
		B	0.8 - 1	.0	1.	0 - 1.2		1.1 - 1	.3	
		C	0.6 - 0	.8	0.	8 - 1.1		1.0 - 1	.3	
		Reflow sold	erina							(mm)
		Туре	C0402	C	0603	C1	005	C160	8	C2012
		Symbol	(CC01005)	·	0201)	,	0402)	(CC060		(CC0805)
		A	0.15 - 0.25		- 0.35		- 0.5	0.6 - 0		0.9 - 1.2
		B C	0.15 - 0.25 0.15 - 0.25		- 0.3 - 0.35		- 0.45 - 0.6	0.6 - 0 0.6 - 0		0.7 - 0.9 0.9 - 1.2
			0.15 - 0.25	0.23	- 0.33	0.4	- 0.0	0.0 - 0	.0	0.9 - 1.2
		Type C3216 C3225 C4532 C5750 (CC1206) (CC1210) (CC1812) (CC2220)								
		A	2.0 - 2.4		2.0 - 2	2.4	3.1	- 3.7		4.1 - 4.8
		В	1.0 - 1.2		1.0 - 1			- 1.4		1.2 - 1.4
		C	1.1 - 1.6		1.9 - 2	2.5	2.4	- 3.2		4.0 - 5.0

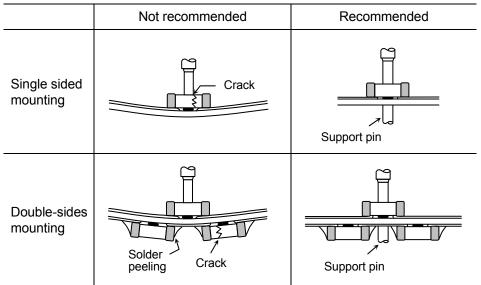

No.								
3	Designing P.C.board	4) Recommended	4) Recommended chip capacitors layout is as following.					
			Disadvantage against bending stress	Advantage against bending stress				
		Mounting face	Perforation or slit	Perforation or slit				
			Break P.C.board with mounted side up.	Break P.C.board with mounted side down.				
			Mount perpendicularly to perforation or slit	Mount in parallel with perforation or slit				
		Chip arrangement (Direction)	Perforation or slit	Perforation or slit				
			Closer to slit is higher stress	Away from slit is less stress				
		Distance from slit	$(\ell_1 < \ell_2)$	$(\ell_1 < \ell_2)$				

No. Process

Condition

3 Designing P.C.board

5) Mechanical stress varies according to location of chip capacitors on the P.C.board.



The stress in capacitors is in the following order. A > B = C > D > E

6) Layout recommendation

Example	Use of common solder land	Soldering with chassis	Use of common solder land with other SMD
Need to avoid	Lead wire Chip Solder PCB Adhesive Solder land	Chassis Excessive solder	Solder land Excessive solder Missing solder land
Recommen- dation	Solder resist	Solder resist \mathcal{L}^{2} $\mathcal{L}^{2} > \mathcal{L}^{1}$	Solder resist

No.	Process		Condition					
4	Mounting	capacitors to result of the capacitors to result of the capacitors to result of the capacitors the capacitors to result of the capacitors of the capacitor	ead is adjusted too low, it may in all in cracking. Please take following mead center of the mounting he press it. Inting head pressure to be 1 to 3N impact energy from mounting head bottom side of the P.C.board.	ng precautions. ead to reach on the P.C.board of static weight.				
			Not recommended	Recommended				

When the centering jaw is worn out, it may give mechanical impact on the capacitors to cause crack. Please control the close up dimension of the centering jaw and provide sufficient preventive maintenance and replacement of it.

4-2. Amount of adhesive

Example: C2012 (CC0805), C3216 (CC1206)

а	0.2mm min.
b	70 - 100µm
С	Do not touch the solder land

No.	Process		Co	ondition		
5	Soldering	5-1. Flux selection Although highly-activat activity may also degra degradation, it is recon 1) It is recommended to Strong flux is not reconstructed.	nde the insulation nmended following ouse a mildly acommended. one avoided. Plea	n of the chip cang. ctivated rosin for the provide pr	pacitors. To avoice and the pacitors and the pacitors are also as also as a pacitor are also as also as also as also as a	oid such .1wt% chlorine).
		3) When water-soluble f	iux is usea, eno	ugn wasning is	necessary.	
		5-2. Recommended sold	ering profile by v	arious method		
		Wave sold	•		Reflow solde	ering Ildering
		Preheating	Natural cooling	→	Preheating	Natural cooling
		Peak Temp O Over 60 sec. Peak Ten Manual s (Solde 300 O) dwa Preheating	oldering	APPL As for and C solder As for C1005 (CC18 reflow	r 60 sec.	plied to wave ering. C0603 (CC0201), (CC1210), C4532
		5-3. Recommended sold	ering peak temp	and peak tem	p duration	
		Temp./Duration	Wave so	oldering	Reflow so	oldering
		Solder	Peak temp(°C)	Duration(sec.)	Peak temp(°C)	Duration(sec.)
		Sn-Pb Solder	250 max.	3 max.	230 max.	20 max.
		Lead Free Solder	260 max.	5 max.	260 max.	10 max.
		Recommended solde Sn-37Pb (Sn-Pb sol Sn-3.0Ag-0.5Cu (Le	lder)			

	Process		Condition	
5	Soldering	5-4. Avoiding thermal shock	k	
		1) Preheating condition		
		Soldering	Туре	Temp. (°C)
		Wave soldering	C1608(CC0603), C2012(C	
		Reflow soldering	C0402(CC01005),C0603(0 C1005(CC0402), C1608(C C2012(CC0805), C3216(C	CC0603),
		Treflow Soldering	C3225(CC1210), C4532(C C5750(CC2220)	CC1812), ΔT ≤ 130
		Manual soldering	C0402(CC01005),C0603(CC1005(CC0402), C1608(CC0402), C3216(CC0805),	CC0603),
			C3225(CC1210), C4532(CC5750(CC2220)	CC1812), ΔT ≤ 130
		5-5. Amount of solder Excessive solder v temperature change	-	e force in chip capacitors o cracking. In sufficient solde
		Excessive solder		Higher tensile force in chip capacitors to caus crack
		Adequate		Maximum amount
		=		Minimum amount
		Insufficient solder		Low robustness may cause contact failure or chip capacitors come of the P.C.board.
		5-6. Solder repair by solder 1) Selection of the solderir Tip temperature of sold land size. The higher theat shock may cause Please make sure the time in accordance with	ng iron tip der iron varies by its type, the tip temperature, the qu e a crack in the chip capac tip temp. before soldering	Low robustness may cause contact failure or chip capacitors come of the P.C.board. P.C.board material and soldericker the operation. Howevitors. and keep the peak temp and condition. (Please preheat the condition)
		5-6. Solder repair by solder 1) Selection of the solderir Tip temperature of sold land size. The higher theat shock may cause Please make sure the time in accordance with chip capacitors with the Recommended solder.	ng iron tip der iron varies by its type, the tip temperature, the qu e a crack in the chip capac tip temp. before soldering th following recommended the condition in 5-4 to avoid er iron condition (Sn-Pb So	Low robustness may cause contact failure or chip capacitors come of the P.C.board. P.C.board material and solder icker the operation. However, and keep the peak temp and condition. (Please preheat to the thermal shock.)
		5-6. Solder repair by solder 1) Selection of the solderir Tip temperature of sold land size. The higher theat shock may cause Please make sure the time in accordance with chip capacitors with the	ng iron tip der iron varies by its type, the tip temperature, the qu e a crack in the chip capac tip temp. before soldering th following recommended the condition in 5-4 to avoid er iron condition (Sn-Pb So	Low robustness may cause contact failure or chip capacitors come of the P.C.board. P.C.board material and solder icker the operation. Howevitors. and keep the peak temp and condition. (Please preheat to the thermal shock.)

No.	Process	Condition
5	Soldering	 Direct contact of the soldering iron with ceramic dielectric of chip capacitors may cause crack. Do not touch the ceramic dielectric and the terminations by solder iron. Sn-Zn solder Sn-Zn solder sproduct reliability. Please contact TDK in advance when utilize Sn-Zn solder. Countermeasure for tombstone The misalignment between the mounted positions of the capacitors and the land patterns should be minimized. The tombstone phenomenon may occur especially the capacitors are mounted (in longitudinal direction) in the same direction of the reflow soldering. (Refer to JEITA RCR-2335B Annex 1 (Informative) Recommendations to prevent the tombstone phenomenon)
6	Cleaning	 If an unsuitable cleaning fluid is used, flux residue or some foreign articles may stick to chip capacitors surface to deteriorate especially the insulation resistance. If cleaning condition is not suitable, it may damage the chip capacitors. Insufficient washing Terminal electrodes may corrode by Halogen in the flux. Halogen in the flux may adhere on the surface of capacitors, and lower the insulation resistance. Water soluble flux has higher tendency to have above mentioned problems (1) and (2). Excessive washing When ultrasonic cleaning is used, excessively high ultrasonic energy output can affect the connection between the ceramic chip capacitor's body and the terminal electrode. To avoid this, following is the recommended condition. Power: 20 Wl max. Frequency: 40 kHz max.

	_			
No.	Process	4)) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Condition	
7	Coating and molding of the P.C.board	2) Please ve emission	e P.C.board is coated, please verify the prify carefully that there is no harmful during curing which may damage the prify the curing temperature.	decomposing or reaction gas
8	Handling after chip mounted A Caution	2) When fur to be adjusted and bence	ay attention not to bend or distort the the chip capacitors may crack. Bend Inctional check of the P.C.board is perusted higher for fear of loose contact the P.C.board, it may crack the chip se adjust the check pins not to bend	t. But if the pressure is excessive capacitors or peel the terminations
		Item Board bending	Not recommended Termination peeling Check pin	Support pin Check pin
9	Handling of loose chip capacitors	the large handle wi		e or handling, the corner of the P.C.

No.	Process	Condition
10	Capacitance aging	The capacitors (Class 2) have aging in the capacitance. They may not be used in precision time constant circuit. In case of the time constant circuit, the evaluation should be done well.
11	Estimated life and estimated failure rate of capacitors	As per the estimated life and the estimated failure rate depend on the temperature and the voltage. This can be calculated by the equation described in JEITA RCR-2335B Annex 6 (Informative) Calculation of the estimated lifetime and the estimated failure rate (Voltage acceleration coefficient: 3 multiplication rule, Temperature acceleration coefficient: 10°C rule) The failure rate can be decreased by reducing the temperature and the voltage but they will not be guaranteed.
12	Others <u>∧</u> Caution	The products listed on this specification sheet are intended for use in general electronic equipment (AV equipment, telecommunications equipment, home appliances, amusement equipment, computer equipment, personal equipment, office equipment, measurement equipment, industrial robots) under a normal operation and use condition.
		The products are not designed or warranted to meet the requirements of the applications listed below, whose performance and/or quality require a more stringent level of safety or reliability, or whose failure, malfunction or trouble could cause serious damage to society, person or property. Please understand that we are not responsible for any damage or liability caused by use of the products in any of the applications below or for any other use exceeding the range or conditions set forth in this specification sheet. If you intend to use the products in the applications listed below or if you have special requirements exceeding the range or conditions set forth in this specification, please contact us.
		 (1) Aerospace/Aviation equipment (2) Transportation equipment (cars, electric trains, ships, etc.) (3) Medical equipment (4) Power-generation control equipment (5) Atomic energy-related equipment (6) Seabed equipment (7) Transportation control equipment (8) Public information-processing equipment (9) Military equipment (10) Electric heating apparatus, burning equipment (11) Disaster prevention/crime prevention equipment (12) Safety equipment (13) Other applications that are not considered general-purpose applications
		When designing your equipment even for general-purpose applications, you are kindly requested to take into consideration securing protection circuit/device or providing backup circuits in your equipment.

13. Packaging label

Packaging shall be done to protect the components from the damage during transportation and storing, and a label which has the following information shall be attached.

- 1) Inspection No.
- 2) TDK P/N
- 3) Customer's P/N
- 4) Quantity

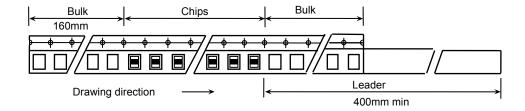
*Composition of Inspection No.

Example
$$\underline{M}$$
 $\underline{2}$ \underline{A} - \underline{OO} - \underline{OOO} (a) (b) (c) (d) (e)

- a) Line code
- b) Last digit of the year
- c) Month and A for January and B for February and so on. (Skip I)
- d) Inspection Date of the month.
- e) Serial No. of the day

14. Bulk packaging quantity

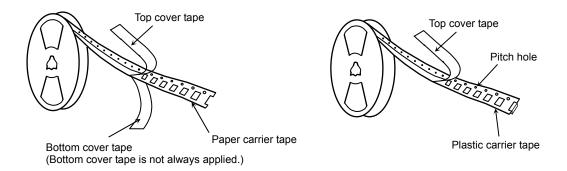
Total number of components in a plastic bag for bulk packaging: 1,000pcs. As for C0402, C0603 and C1005 types, not available for bulk packaging.


15. TAPE PACKAGING SPECIFICATION

1. CONSTRUCTION AND DIMENSION OF TAPING

1-1. Dimensions of carrier tape

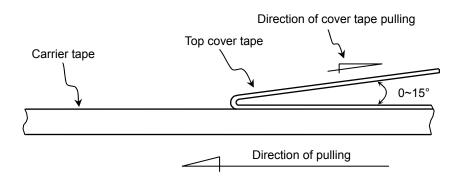
Dimensions of paper tape shall be according to Appendix 3, 4. Dimensions of plastic tape shall be according to Appendix 5, 6.


1-2. Bulk part and leader of taping

1-3. Dimensions of reel

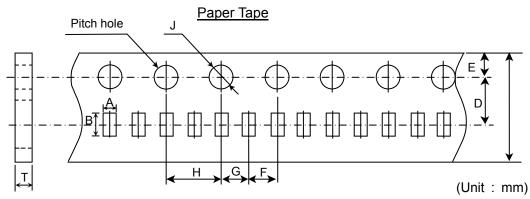
Dimensions of Ø178 reel shall be according to Appendix 7, 8. Dimensions of Ø330 reel shall be according to Appendix 9, 10.

1-4. Structure of taping



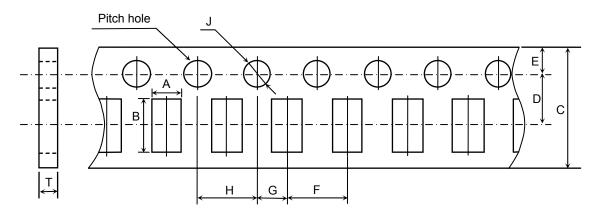
2. CHIP QUANTITY

Туре	Thickness	Taping	Chip quantity (pcs.)		
туре	of chip	Material	φ178mm reel	φ330mm reel	
C0402	0.20 mm	Paper	20,000	-	
C0603	0.30 mm	Paper	15,000	-	
C1005	0.50 mm	Paper	10,000	50,000	
C1608	0.80 mm	Paper	4,000	10,000	
	0.60 mm	Paper	4 000		
C2012	0.85 mm	Paper or Plastic	4,000	10,000	
	1.25 mm	Plastic	2,000		
	0.60 mm	Paper	4,000		
	0.85 mm	Paper or Plastic	4,000	10,000	
C3216	1.15 mm			10,000	
	1.30 mm	Plastic	2,000		
	1.60 mm			8,000	
	1.15 mm		2,000	10,000	
	1.25 mm				
	1.30 mm		2,000	8,000	
C3225	1.60 mm	Plastic			
	2.00 mm			5,000	
	2.30 mm		1,000		
	2.50 mm				
	1.60 mm		1,000		
	2.00 mm		1,000	3,000	
C4532	2.30 mm	Plastic		0,000	
04302	2.50 mm	1 lastic	500		
	2.80 mm		300	2,000	
	3.20 mm			2,000	
	2.00 mm				
C5750	2.30 mm	Plastic	500	3,000	
00700	2.50 mm	i idolio	300		
	2.80 mm			2,000	


3. PERFORMANCE SPECIFICATIONS

3-1. Fixing peeling strength (top tape) 0.05-0.7N. (See the following figure.)

- 3-2. Carrier tape shall be flexible enough to be wound around a minimum radius of 30mm with components in tape.
- 3-3. The missing of components shall be less than 0.1%
- 3-4. Components shall not stick to fixing tape.
- 3-5. The fixing tapes shall not protrude beyond the edges of the carrier tape not shall cover the sprocket holes.

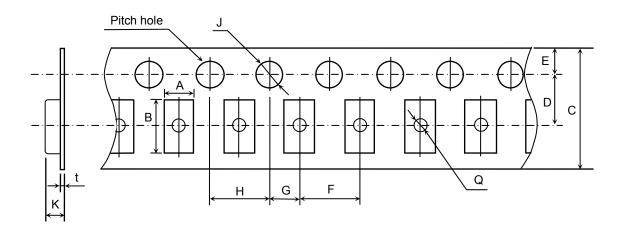


Symbol Type	А	В	С	D	E	F
C0402 (C01005)	(0.25)	(0.45)				
C0603 (CC0201)	(0.38)	(0.68)	8.00 ± 0.30	3.50 ± 0.05	1.75 ± 0.10	2.00 ± 0.05
C1005 (CC0402)	(0.65)	(1.15)				

Symbol Type	G	Н	J	Т
C0402 (C01005)				0.29 min.
C0603 (CC0201)	2.00 ± 0.05	4.00 ± 0.10	Ø 1.5 ^{+0.10}	0.40 min.
C1005 (CC0402)				0.60±0.15

^{*} The values in the parentheses () are for reference.

Paper Tape



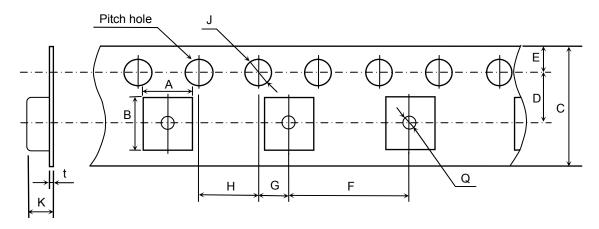
(Unit: mm)

Symbol Type	Α	В	С	D	E	F
C1608 (CC0603)	(1.10)	(1.90)				
C2012 (CC0805)	(1.50)	(2.30)	8.00 ± 0.30	3.50 ± 0.05	1.75 ± 0.10	4.00 ± 0.10
C3216 (CC1206)	(1.90)	(3.50)				
Symbol Type	G	Н	J	Т		
C1608 (CC0603)						
C2012 (CC0805)	2.00 ± 0.05	4.00 ± 0.10	Ø 1.5 +0.10	1.10 max.		
C3216 (CC1206)						

^{*} The values in the parentheses () are for reference.

Plastic Tape

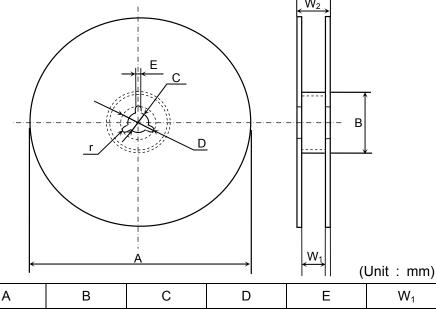
(Unit:mm)


Symbol Type	А	В	С	D	E	F
C2012 (CC0805)	(1.50)	(2.30)	0.00 + 0.20	3 50 1 0 05		
C3216 (CC1206)	(1.90)	(3.50)	8.00 ± 0.30 [12.0 ± 0.30]	3.50 ± 0.05 [5.50 ± 0.05]	1.75 ± 0.10	4.00 ± 0.10
C3225 (CC1210)	(2.90)	(3.60)	[12.0 ± 0.00]	[5.50 ± 6.65]		
Symbol Type	G	Н	J	К	t	Q
C2012 (CC0805) C3216			G 1 5 +0.10	2.50 max.	0.30 max.	~ ~ ~ .
(CC1206)	2.00 ± 0.05	4.00 ± 0.10	Ø 1.5 +0.10			Ø 0.50 min.

^{*} The values in the parentheses () are for reference.

^{*} As for 2.5mm thickness products, apply values in the brackets [].

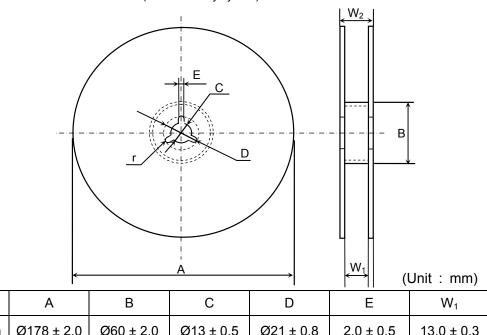
Plastic Tape


(Unit:mm)

Symbol Type	А	В	С	D	E	F
C4532 (CC1812)	(3.60)	(4.90)	12.0 ± 0.30	5.50 ± 0.05	1.75 ± 0.10	8.00 ± 0.10
C5750 (CC2220)	(5.40)	(6.10)	12.0 1 0.50	3.30 ± 0.03	1.73 ± 0.10	0.00 ± 0.10
Symbol Type	G	Н	J	К	t	Q
	G 2.00 ± 0.05	H 4.00 ± 0.10	J Ø 1.5 ^{+0.10}	K 6.50 max.	t 0.60 max.	Q Ø 1.50 min.

^{*} The values in the parentheses () are for reference.

C0402, C0603, C1005, C1608, C2012, C3216, C3225 (As for C3225 type, any thickness of the item except 2.5mm) (Material : Polystyrene)

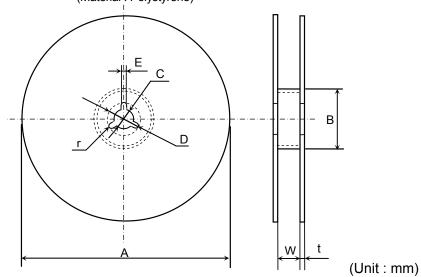


Symbol	Α	В	С	D	Е	W_1
Dimension	Ø178 ± 2.0	Ø60 ± 2.0	Ø13 ± 0.5	Ø21 ± 0.8	2.0 ± 0.5	9.0 ± 0.3

Symbol	W_2	r
Dimension	13.0 ± 1.4	1.0

Appendix 8

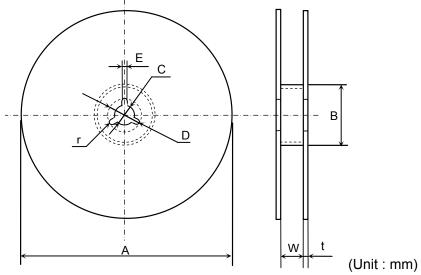
C3225, C4532, C5750 (As for C3225 type, applied to 2.5mm thickness products) (Material : Polystyrene)



Symbol	Α	В	С	D	E	W_1
Dimension	Ø178 ± 2.0	Ø60 ± 2.0	Ø13 ± 0.5	Ø21 ± 0.8	2.0 ± 0.5	13.0 ± 0.3
	1		•			

Symbol	W_2	r
Dimension	17.0 ± 1.4	1.0

C0603, C1005, C1608, C2012, C3216, C3225 (As for C3225 type, any thickness of the item except 2.5mm) (Material : Polystyrene)



Symbol	А	В	С	D	E	W
Dimension	Ø382 max. (Nominal Ø330)	Ø50 min.	Ø13 ± 0.5	Ø21 ± 0.8	2.0 ± 0.5	10.0 ± 1.5

Symbol	t	r
Dimension	2.0 ± 0.5	1.0

Appendix 10

C3225, C4532, C5750 (As for C3225 type, applied to 2.5mm thickness products) (Material : Polystyrene)

Symbol	Α	В	С	D	E	W
Dimension	Ø382 max. (Nominal Ø330)	Ø50 min.	Ø13 ± 0.5	Ø21 ± 0.8	2.0 ± 0.5	14.0 ± 1.5

Symbol	t	r
Dimension	2.0 ± 0.5	1.0

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:

Click to view products by TDK manufacturer:

Other Similar products are found below:

M39014/01-1467 M39014/02-1218V M39014/02-1225V M39014/02-1262V M39014/02-1301 M39014/22-0631 1210J5000102JCT

1210J2K00102KXT 1210J5000103KXT 1210J5000223KXT D55342E07B379BR-TR D55342E07B523DR-T/R 1812J1K00103KXT

1812J1K00473KXT 1812J2K00680JCT 1812J4K00102MXT 1812J5000102JCT 1812J5000103JCT 1812J5000682JCT NIN-FB391JTRF

NIN-FC2R7JTRF NPIS27H102MTRF C1206C101J1GAC C1608C0G1E472JT000N C2012C0G2A472J 2220J2K00101JCT

KHC201E225M76N0T00 LRC-LRF1206LF-01R025FTR1K 1812J1K00222JCT 1812J2K00102KXT 1812J2K00222KXT

1812J2K00472KXT 2-1622820-7-CUT-TAPE 2220J3K00102KXT 2225J2500824KXT CCR07CG103KM CGA2B2C0G1H010C

CGA2B2C0G1H040C CGA2B2C0G1H050C CGA2B2C0G1H060D CGA2B2C0G1H070D CGA2B2C0G1H151J CGA2B2C0G1H1R5C

CGA2B2C0G1H2R2C CGA2B2C0G1H3R3C CGA2B2C0G1H680J CGA2B2C0G1H6R8D CGA2B2X8R1H221K CGA2B2X8R1H472K

CGA3E1X7R1C474K