

NPN Darlington Power Silicon Transistor 2N6300 & 2N6301

Features

- Available in JAN, JANTX, and JANTXV per MIL-PRF-19500/539
- TO-66 (TO-213AA) Package

Maximum Ratings

Ratings	Symbol	2N6300 2N6301		Units
Collector - Emitter Voltage	V _{CEO}	60	80	Vdc
Collector - Base Voltage	r - Base Voltage V _{CBO} 60 80		80	Vdc
Emitter - Base Voltage	V _{EBO}	5.0		Vdc
Base Current	ΙB	120		mAdc
Collector Current	IC	8.0		Adc
Total Power Dissipation @ $T_C = +0 ^{\circ}C$ @ $T_C = +100 ^{\circ}C$	P _T	75 37		W
Operating & Storage Temperature Range	T _{op} , T _{stg}	-55 to +200		°C

Thermal Characteristics

Characteristics	Symbol	Maximum	Units
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	2.66	°C/W

Electrical Characteristics ($T_C = 25$ °C unless otherwise noted)

OFF Characteristics		Symbol	Mimimum	Maximum	Units
Collector - Emitter Breakdown Voltag	e 2N6300 2N6301	V _(BR) CEO	60 80		Vdc
Collector - Emitter Cutoff Current $V_{CE} = 30 \text{ Vdc}$ $V_{CE} = 40 \text{ Vdc}$	2N6300 2N6301	ICEO		0.5 0.5	mAdc
Collector - Emitter Cutoff Current $V_{CE} = 60 \text{ Vdc}, V_{BE} = -1.5 \text{ Vdc}$ $V_{CE} = 80 \text{ Vdc}, V_{BE} = -1.5 \text{ Vdc}$	2N6300 2N6301	ICEX		10 10	μAdc
Emitter - Base Cutoff Current $V_{EB} = 5.0 \text{Vdc}$		I _{EBO}		5.0	mAdc

Revision Date: 10/12/2011

New Product

Electrical Characteristics -con't

	(2)				
ON Characteristics		Symbol	Minimum	Maximum	Unit
Forward Current Trans $I_C = 1.0 \text{ Adc, } V_{CF} = 1.0 \text{ Adc}$			500		
$I_C = 4.0 \text{ Adc, } V_{CF} = 4.0 \text{ Adc, } $		H _{FE}	750	18,000	
$I_C = 8.0 \text{ Adc, } V_{CF} = 1.0 \text{ Adc, } $		_E	100	10,000	
Collector - Emitter Sati		+			
$I_C = 4.0 \text{ Adc}, I_B =$	3	V _{CE(sat)}		2.0	Vdc
$I_C = 8.0 \text{ Adc}, I_B = 8.0 \text{ Adc}$		CEISau		3.0	,
Base - Emitter Saturati	on Voltage				
$I_C = 8.0 \text{ Adc}, I_B = 8.0 \text{ Adc}$	80 mVdc	V _{BE(sat)}		4.0	Vdc
Base-Emitter Voltage					
$I_C = 4.0 \text{ Adc}, V_{CE}$	= 3.0 Vdc	V _{BE(on)}		2.8	Vdc
DYNAMIC Charact	eristics				
	n Emitter Small-Signal Short-Circuit				
Forward Current Transfer Ratio $I_C = 3.0 \text{ Adc}, V_{CF} = 3.0 \text{ Vdc}, f = 1.0 \text{ MHz}$		h _{fe}	25	350	
0 02		''fe	20	330	
Small-Signal Short-Circuit Forward Current Transfer Ratio $I_C = 3.0$ Adc, $V_{CF} = 3.0$ Vdc, $f = 1.0$ kHz		h _{fe}	300		
Output Capacitance		1			
$V_{CB} = 10 \text{ Vdc}, I_E = 0, 100 \text{ kHz } \le f \le 1.0 \text{ MHz}$		C _{obo}		200	pF
Switching Characte	eristics				
Tum-on Time					
$V_{CC} = 30 \text{ Vdc}, I_{C} = 4.0 \text{ Adc}, I_{B1} = 16 \text{ mAdc}$		τon		2.0	μs
Tum-Off Time	- 4 0 Ado I — 16 mAdo			0.0	
SAFE OPERATING A	= 4.0 Adc, I _{B1} = 16 mAdc	τoff		8.0	μs
DC Tests:	$T_C = +25 ^{\circ}\text{C}$, 1 Cycle, $t = 1.0 ^{\circ}\text{s}$				
Test 1: Test 2:	$V_{CE} = 8.0 \text{ Vdc}, I_{C} = 8.0 \text{ Adc}$ $V_{CF} = 20 \text{ Vdc}, I_{C} = 2.0 \text{ Adc}$				
Test 2:	$V_{CE} = 20 \text{ Vdc}, I_{C} = 2.0 \text{ Adc}$ $V_{CF} = 60 \text{ Vdc}, I_{C} = 100 \text{ mAdc}$	2N6300			
16313.	$V_{CE} = 80 \text{ Vdc}, I_{C} = 100 \text{ mAdc}$ $V_{CF} = 80 \text{ Vdc}, I_{C} = 100 \text{ mAdc}$	2N6300 2N6301			
	√CE = 00 √dc, 1C = 100 IIIAdc	2110301			

(1) Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

2

Outline Drawing

NOTE: Dimensions in Inches [mm]

Aeroflex / Metelics, Inc.

975 Stewart Drive, Sunnyvale, CA 94085 Tel: (408) 737-8181 Fax: (408) 733-7645

Sales: 888-641-SEMI (7364)

Hi-Rel Components
9 Hampshire Street,

Lawrence, MA 01840 Tel: (603) 641-3800 Fax: (978) 683-3264

www.aeroflex.com/metelics-hirelcomponents

54 Grenier Field Road, Londonderry, NH 03053 Tel: (603) 641-3800 Fax: (603)-641-3500

www.aeroflex.com/metelics

metelics-sales@aeroflex.com

Aeroflex / Metelics, Inc. reserves the right to make changes to any products and services herein at any time without notice. Consult Aeroflex or an authorized sales representative to verify that the information in this data sheet is current before using this product. Aeroflex does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by Aeroflex; nor does the purchase, lease, or use of a product or service from Aeroflex convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of Aeroflex or of third parties.

Copyright 2011 Aeroflex / Metelics. All rights reserved.

ISO 9001: 2008 certified companies

Our passion for performance is defined by three attributes represented by these three icons: solution-minded, performance-driven and customer-focused.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for aeroflex manufacturer:

Other Similar products are found below:

69A-30-11 1444-2 57-40-33 980-2 40-3-34 M1406A 3M-6 3M-6 3M-40 4H-3 ACT4404N-201 1N4744A 18A-05 18A-04 23A-03 5085 18A-06 JANTX1N6642U 18B10W-06 1N5313-1JANTX 18A-30 PPT1250-400-50R0J JANS1N6638US JANTXV2N6301 6AH-15 JANTXV2N3715 JANTX1N4150-1 6AH-10 18A-10 6AH-30 JANTX2N2222AUB 40AH-03 18AH-20 JAN1N752AUR-1 A3WH09-5R JANTX1N5524B-1 PCA-3 PCAF-10 JANTXV1N6638U JANTXV1N827-1 18AH-04 18AH-08 18AH-00 PPA20-5 JANTX2N3715 JANTXV1N4106UR-1 18AH-09 PCAF-16 PCAF-3 40AH-10 18AH-07