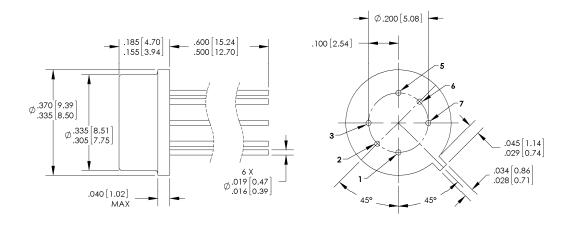
Hi-Reliability Optically Coupled Isolator JAN / JANTX / JANTXV 4N22, 4N23, 4N24 [A]

Features:

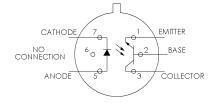
- TO-78 hermetically sealed package
- High current transfer ratio
- 1 kV electrical isolation
- Base contact provided for conventional transistor biasing
- JAN, JANTX and JANTXV devices processed to MIL-PRF-19500
- Patent No. 4124860

Description:

Each isolator in this series consists of an infrared emitting diode and a NPN silicon phototransistor, which are mounted in a hermetically sealed TO-78 package. Devices are designed for military and/or harsh environments. The suffix letter "A" denotes the collector is electrically isolated from the case.


The JAN / JANTX / JANTXV 4N22, 4N22A, 4N23, 4N23A, 4N24, and 4N24A devices are processed to MIL-PRF-19500/486.

This series of 4N products are JEDEC registered, DSCC qualified.


Please contact your local representative or OPTEK for more information.

Applications:

- · High-voltage isolation between input and output
- · Electrical isolation in dirty environments
- · Industrial equipment
- Medical equipment
- Office

DIMENSIONS ARE IN INCHES [MIM]

Pin#	Function	Pin#	Function
3	Collector	5	Anode
2	Base	6	Open
1	Emitter	7	Cathode

BOTTOM VIEW

This product is built, tested and shipped from the USA

Hi-Reliability Optically Coupled Isolator JAN / JANTX / JANTXV 4N22, 4N23, 4N24 [A]

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Storage Temperature Range	-65° C to +150° C
Operating Temperature Range	-55° C to +125° C
Input-to-Output Isolation Voltage	± 1.00 kVDC ⁽¹⁾
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 seconds with soldering iron]	260° C ⁽²⁾
ESD Class	1C

Input Diode

Forward DC Current (65° C or below)	40 mA
Reverse Voltage	2 V
Peak Forward Current (1 µs pulse width, 300 pps)	1 A
Power Dissipation	60 mW ⁽³⁾

Output Sensor:

Continuous Collector Current	50 mA
Collector-Emitter Voltage	40 V
Collector-Base Voltage	45 V
Emitter-Base Voltage	4 V
Power Dissipation	300 mW ⁽⁴⁾

- 1. Measured with input leads shorted together and output leads shorted together.
- 2. RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
- Derate linearly 1.0 mW/° C above 65° C. Derate linearly 3.0 mW/° C above 25° C.

Ordering Information					
Part Number	Isolation Voltage (kV)	I _F (mA) Typ / Max	V _{CE} (Volts) Max	Processing MIL-PRF- 195000	
JAN4N22 or JAN4N22A					
JANTX4N22 or JANTX4N22A					
JANTXV4N22 or JANTXV4N22A					
JAN4N23 or JAN4N23A					
JANTX4N23 or JANTX4N23A	1	10 / 40	40	486	
JANTXV4N23 or JANTXV4N23A					
JAN4N24 or JAN4N24A					
JANTX4N24 or JANTX4N24A					
JANTXV4N24 or JANTXV4N24A					

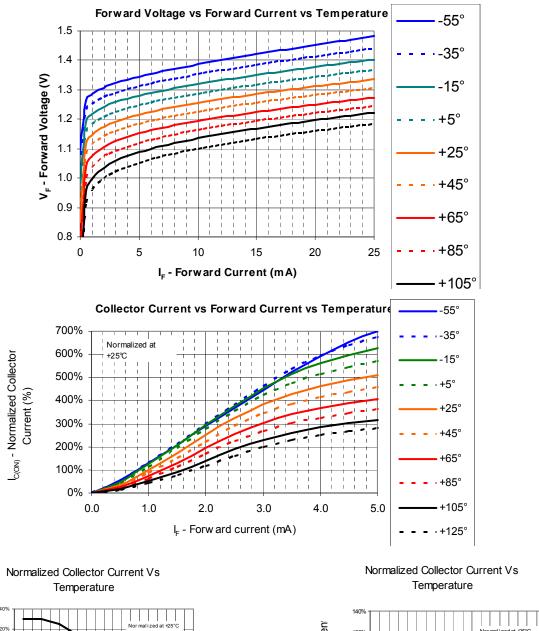
This product is built, tested and shipped from the USA

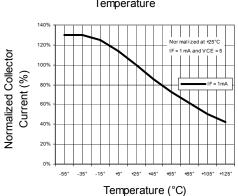
Hi-Reliability Optically Coupled Isolator JAN / JANTX / JANTXV 4N22, 4N23, 4N24 [A]

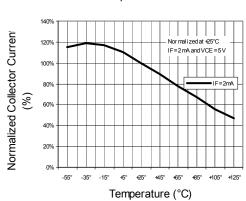
Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Onput Di	ode	•	•	•	•	
V_{F}	Forward Voltage	0.80 1.00 0.70	- - -	1.50 1.70 1.30	V	I_F = 10.0 mA I_F = 10.0 mA, T_A = -55° $C^{(1)}$ I_F = 10.0 mA, T_A = +100° $C^{(1)}$
I _R	Reverse Current	-	-	100	μA	V _R = 2.0 V
Output P	hototransistor					
$V_{(BR)CEO}$	Collector-Emitter Breakdown Voltage	40	-	-	V	I _C = 1.0 mA, I _B = 0, I _F = 0
V _{(BR)CBO}	Collector-Base Breakdown Voltage	45	-	-	V	I _C = 100 μA, I _B = 0, I _F = 0
$V_{(BR)EBO}$	Emitter-Base Breakdown Voltage	7	-	-	V	I _E = 100 μA, I _C = 0, I _F = 0
I _{C(OFF)}	Collector-Emitter Dark Current	-	-	100 100	nΑ μΑ	V _{CE} = 20 V, I _B = 0, I _F = 0 V _{CE} = 20 V, I _B = 0, I _F = 0, T _A = 100°C
$I_{CB(OFF)}$	Collector-Base Dark Current	-	-	100	nA	$V_{CB} = 20 \text{ V}, I_{E} = 0, I_{F} = 0$
Coupled						
	On-State Collector Current JAN / JANTX / JANTXV 4N22 [A]	0.15 2.50 1.00 1.00	- - -	- - -		$\begin{split} I_F &= 2.0 \text{ mA} \text{ , } V_{CE} = 5 \text{ V, } I_B = 0 \\ I_F &= 10.0 \text{ mA} \text{ , } V_{CE} = 5 \text{ V, } I_B = 0 \\ I_F &= 10.0 \text{ mA} \text{ , } V_{CE} = 5 \text{ V, } I_B = 0, T_A = -55^{\circ} \text{ C}^{(1)} \\ I_F &= 10.0 \text{ mA} \text{ , } V_{CE} = 5 \text{ V, } I_B = 0, T_A = 100^{\circ} \text{ C}^{(1)} \end{split}$
I _{C(ON)}	JAN / JANTX / JANTXV 4N23 [A]	0.20 6.00 2.50 2.50	- - -	- - -	mA	$\begin{split} I_F &= 2.0 \text{ mA} \text{ , } V_{CE} = 5 \text{ V, } I_B = 0 \\ I_F &= 10.0 \text{ mA , } V_{CE} = 5 \text{ V, } I_B = 0 \\ I_F &= 10.0 \text{ mA , } V_{CE} = 5 \text{ V, } I_B = 0, T_A = -55^{\circ} \text{ C}^{(1)} \\ I_F &= 10.0 \text{ mA , } V_{CE} = 5 \text{ V, } I_B = 0, T_A = 100^{\circ} \text{ C}^{(1)} \end{split}$
	JAN / JANTX / JANTXV 4N24 [A]	0.40 10.0 4.00 4.00	- - -	- - -		$\begin{split} I_F &= 2.0 \text{ mA} \text{ , } V_{CE} = 5 \text{ V, } I_B = 0 \\ I_F &= 10.0 \text{ mA , } V_{CE} = 5 \text{ V, } I_B = 0 \\ I_F &= 10.0 \text{ mA , } V_{CE} = 5 \text{ V, } I_B = 0, T_A = -55^{\circ} \text{ C}^{(1)} \\ I_F &= 10.0 \text{ mA , } V_{CE} = 5 \text{ V, } I_B = 0, T_A = 100^{\circ} \text{ C}^{(1)} \end{split}$
V _{CE(SAT)}	Collector-Emitter Saturation Voltage JAN / JANTX / JANTXV 4N22 [A] JAN / JANTX / JANTXV 4N23 [A] JAN / JANTX / JANTXV 4N24 [A]		- - -	0.30 0.30 0.30	V	$I_F = 20 \text{ mA}$, $I_C = 2.5 \text{ mA}$, $I_B = 0$ $I_F = 20 \text{ mA}$, $I_C = 5.0 \text{ mA}$, $I_B = 0$ $I_F = 20 \text{ mA}$, $I_C = 10.0 \text{ mA}$, $I_B = 0$
H _{FE}	DC Current Gain	100	-	-	V	V_{CE} = 5.0 V , I_{C} = 10.0 mA, I_{F} = 0 mA
R _{IO}	Resistance (Input-to-Output)	10 ¹¹	-	-	Ω	$V_{10} = \pm 1.0 \text{ VDC}^{(3)}$
C _{IO}	Capacitance (Input-to-Output)	-	-	5	pF	V _{I-O} = 0 V, f = 1.0 MHz ⁽³⁾
$T_{R,}T_{F}$	Output Rise and Fall Time	-	-	20.0	μs	V_{CC} = 10.0 V , I_F = 10.0 mA, R_L = 100 Ω

Notes:


- Guaranteed but not tested.
- 2. Sample tested, LTPD = 10.
- 3. Measured with input leads shorted together and output leads shorted together.


This product is built, tested and shipped from the USA



Typical Performance Curves

This product is built, tested and shipped from the USA

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for High Speed Optocouplers category:

Click to view products by TT Electronics manufacturer:

Other Similar products are found below:

6N136F PS8502L2-AX ACNW261L-000E ACPL-344JT-000E ACPL-K49T-500E ACPL-K75T-000E ACPL-W21L-560E ACPL-K44T-500E TLP187(TPL,E(T TLP2601(TP1,F) 610737H 6N137A-X001 6N137A-X017T 6N139-X007T HCPL2630M HCPL2731SM TLP555(F) HCPL2630SM PS2841-4A-F3-AX PS9817A-1-F3-AX PS9821-2-F3-AX ORPC-817D ORPC-817M/C ORPC-817M/B PT17-51C/L129(BIN2) TLP521-4GBSM UMW817C 6N137S1(TA) TLP521GB TLP521GB-S PS2501 PS2501-S TLP785GB TLP785GB-S LTV-214-G TLP2766A(E TLP2766A(LF4,E LCR-0202 EL814S1(TA)-V PC817X4NSZ2B CYPC817 OR-MOC3023 TLP267J(TPL,E(T TLP109(TPL,E(O EL2514S1(TU)(CLW)-G EL816S2(C)(TU)-F TLP281-4 MOC3023M ACPL-K49T-060E ACPL-K75T-500E