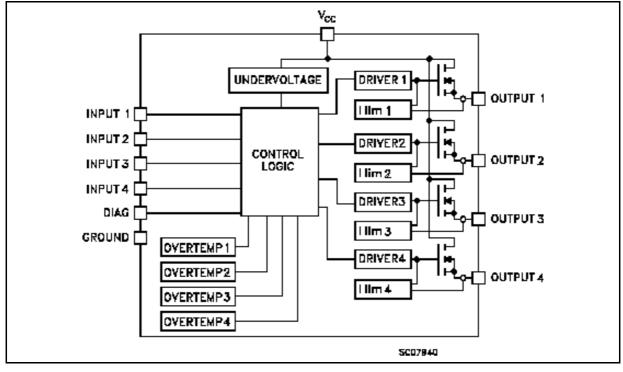

VN330SP-E

Quad high side smart Power solid state relay

Features


Туре	V _{demag} ⁽¹⁾	R _{DSon} ⁽¹⁾	I _{out} ⁽¹⁾	v _{cc}
VN330SP-E	V _{CC} -55V	0.32Ω ⁽²⁾	0.7A	36V

- 1. Per channel.
- 2. At $T_J = 85^{\circ}C$
- Output current : 0.7A per channel
- Digital input clamped at 32V minimum voltage
- Shorted load and overtemperature protections
- Built-in current limiter
- Undervoltage shut-down
- Open drain diagnostic output
- Fast demagnetization of inductive loads
- Conforms to IEC 61131-2

Description

The VN330SP-E is a monolithic device made using STMicroelectronics VIPower technology, intended for driving four indipendent resistive or inductive loads, with one side connected to ground. Active current limitation avoids dropping the system power supply in case of shorted load. Built-in thermal shut-down protects the chip from overtemperature and short circuit. The open drain diagnostic output indicates overtemperature conditions.

Figure 1. Block diagram

Contents

1	Maximum ratings
2	Pin connections
3	Electrical characteristics 5
4	Test circuits
5	Switching time waveforms and truth table
6	Package mechanical data 10
7	Order code
8	Revision history

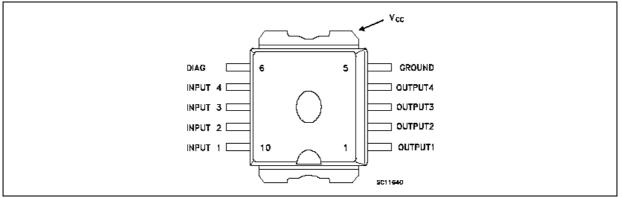
1 Maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Power supply voltage	45	V
-V _{CC}	Reverse supply voltage	-0.3	V
I _{OUT}	Output current (continuos)	Internally limited	Α
I _R	Reverse output current (per channel)	-6	Α
I _{IN}	Input current (per channel)	± 10	mA
I _{DIAG}	Diag pin current	± 10	mA
V _{ESD}	Electrostatic discharge (R = $1.5K\Omega$; C = $100pF$)	2000	V
E _{AS}	Single pulse avalanche energy per channel not simultaneously <i>Figure 4.</i>	400	mJ
P _{tot}	Power dissipation at $T_c = 25^{\circ}C$	Internally limited	w
TJ	Junction operating temperature	Internally limited	°C
T _{STG}	Storage temperature	-55 to 150	°C

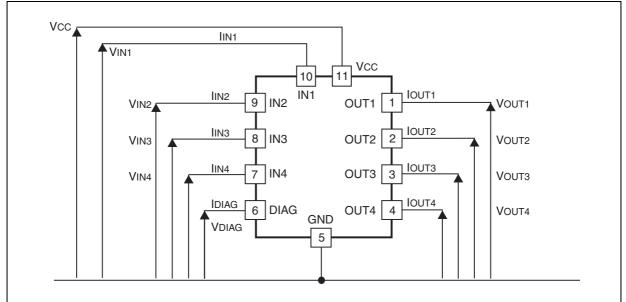
Table 1. Absolute maximum rating

Table 2. Thermal data

Symbol	Parameter		Max Value	Unit
R _{thJC}	Thermal resistance junction-case (1)	Max	2	°C/W
R _{thJA}	Thermal resistance junction-ambient ⁽²⁾	Max	50	°C/W


1. Per channel

2. When mounted using minimum recommended pad size on FR-4 board



2 Pin connections

Figure 3. Current and voltage conventions

3 Electrical characteristics

 $10V < V_{CC} < 36V;$ -40°C < $T_J < 125^\circ C;$ unless otherwise specified

Table 5. Fower Section	Table 3.	Power section
------------------------	----------	---------------

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{CC}	Supply voltage		10		36	V
		$I_{OUT} = 0.5A; T_{J} = 25^{\circ}C$			0.2	Ω
R _{ON}	On state resistance	I _{OUT} = 0.5A; T _J = 85°C			0.32	Ω
		I _{OUT} = 0.5A; T _J = 125°C			0.4	Ω
		All channels OFF			1	mA
۱ _S	Supply current	On state; V _{IN} = 30V; I _{OUT} = 0V				
		(T _J = 125°C)			6	mA
V _{demag}	Output voltage at turn-off	I _{OUT} = 0.5A; L _{LOAD} >= 1mH	V _{CC} -65	V _{CC} -55	V _{CC} -45	V

Table 4. Switching ($V_{CC} = 24V$)

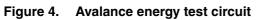
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _{d(ON)}	Turn-on delay time of Output current	$I_{OUT} = 0.5A$, Resistive Load Input rise time < 0.1 μ s, $T_J = 25^{\circ}$ C $T_J = 125^{\circ}$ C		30	40 60	μs μs
t _r	Rise time of Output current	$I_{OUT} = 0.5A$, Resistive Load Input rise time < 0.1 μ s, $T_J = 25^{\circ}$ C $T_J = 125^{\circ}$ C		50	100 115	μs μs
t _{d(OFF)}	Turn-off delay time of Output current	$I_{OUT} = 0.5A$, Resistive Load Input rise time < 0.1 μ s, $T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$		20	30 40	μs μs
t _f	Fall time of Output current	$I_{OUT} = 0.5A$, Resistive Load Input rise time < 0.1 μ s, $T_J = 25^{\circ}$ C $T_J = 125^{\circ}$ C		8	15 20	μs μs
(di/dt) _{on}	Turn-on current slope	$I_{OUT} = 0.5A,$ $I_{OUT} = I_{LIM}, T_J = 25^{\circ}C$			0.5 2	A/μs A/μs
(di/dt) _{off}	Turn-off current slope	$I_{OUT} = 0.5A,$ $I_{OUT} = I_{LIM}, T_J = 25^{\circ}C$			2 4	A/μs A/μs

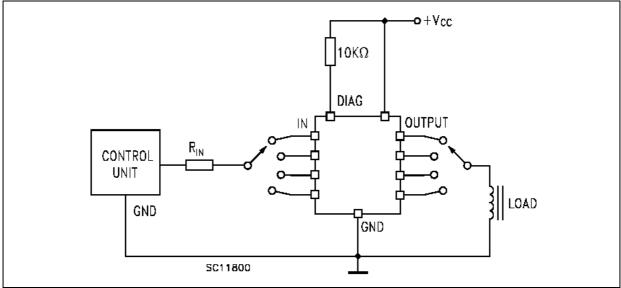
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{IL}	Input low level voltage				2	V
V _{IH}	Input high level voltage (1)		3.5			V
V _{I(HYST)}	Input hysteresis voltage			0.5		V
I _{IN}	Input current	$V_{IN} = 0$ to 30V			600	μΑ
I _{LGND}	Output current in ground disconnection	$V_{CC} = V_{INn} = GND = DIAG = 24V;$ T _J = 25°C			25	mA
V _{ICL}	Input clamp voltage (1)	$I_{IN} = 1mA$ $I_{IN} = -1mA$	32	36 -0.7		V V

Table 5. Logical input

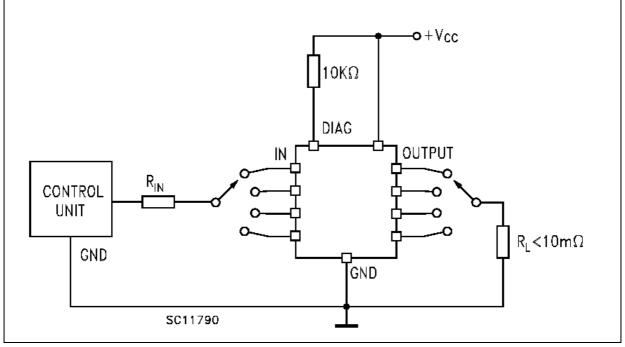
1. The input voltage is internally clamped at 32V minimum, however, it is possible to connect the input pins to an higher voltage via an external resistor that is calculated not to exceed 10mA.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{DIAG} ⁽¹⁾	Status voltage output low	$I_{DIAG} = 5mA$ (Fault condition)			1	V
V _{SCL} ⁽¹⁾	Status alamp voltage	I _{DIAG} = 1mA	32	36		V
VSCL ⁽¹⁾	Status clamp voltage	I _{DIAG} = -1mA		-0.7		V
V _{USD}	Undervoltage shut down		5		8	V
V _{OL}	Low state output voltage	$V_{IN} = V_{IL}; R_{LOAD} < 10m\Omega$			1.5	V
I _{LIM}	DC Short circuit current	$V_{CC} = 24V; R_{LOAD} < 10m\Omega$	0.7		2.5	А
I _{OVPK}	Peak Short circuit current	$V_{CC} = 24V; V_{IN} = 30; R_{LOAD} < 10m\Omega$			4	А
I _{DIAGH}	Leakage on DIAG pin in high state	V _{DIAG} = 24V			100	μΑ
I _{LOAD}	Output leakage current	V_{CC} = 10 to 36V; $V_{IN} = V_{IL}$			50	μΑ
t _{SC}	Delay time of current limiter				100	μs
T _{TSD}	Thermal shutdown temperature		150	170		°C
T _R	Thermal reset temperature		135	155		°C

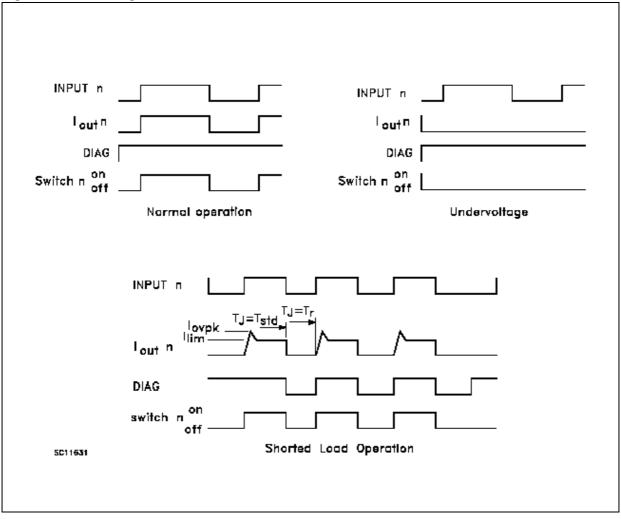

Table 6. Protection and diagnostic


1. Status determination > 100μ s after the switching edge.

Note: If INPUT pin is floating the corrisponding channel will automatically switch OFF. If GND pin is disconnected, the channel will switch OFF provided V_{CC} not exceed 36V.



4 Test circuits



5 Switching time waveforms and truth table

Table 7.	Truth table

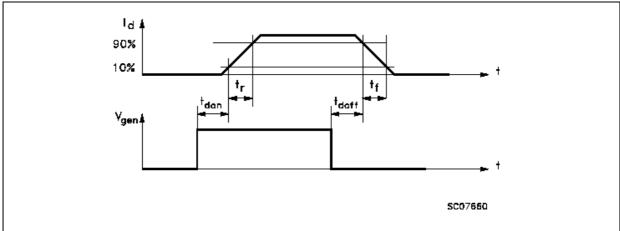
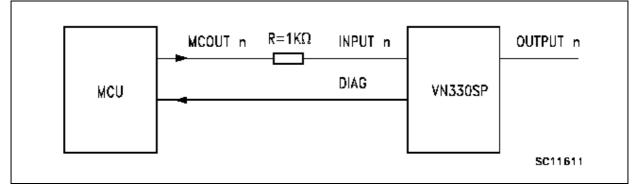
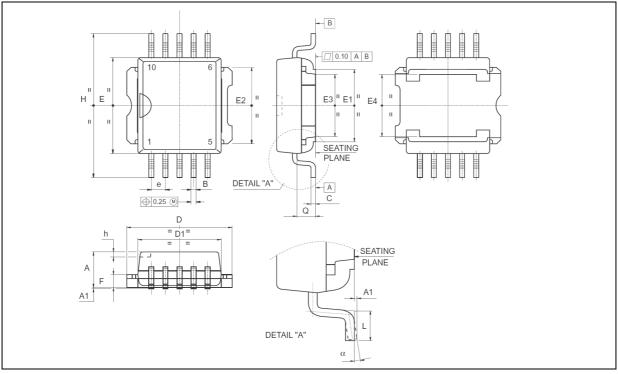

	INPUTn	OUTPUTn	Diagnostic
Normal operation	L H	L H	H H
Overtemperature	L H	L	H L
Undervoltage	L H	L	H H
Shorted load (Current limitation)	L H	L H	H H

Figure 6. Switching waveforms



6 Package mechanical data


In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

Dim		Mm			Inch	
Dim	Min	Тур	Мах	Min	Тур	Мах
А	3.35		3.65	0.132		0.144
A1	0.00		0.10	0.000		0.004
В	0.40		0.60	0.016		0.024
С	0.23		0.32	0.009		0.012
D	9.40		9.60	0.370		0.378
D1	7.40		7.60	0.291		0.300
Е	9.30		9.50	0.366		0.374
E1	7.20		7.40	0.283		0.291
E2	7.20		7.60	0.283		0.300
E3	6.10		6.35	0.240		0.250
E4	5.90		6.10	0.232		0.240
е		1.27			0.050	
F	1.25		1.35	0.049		0.053
Н	13.80		14.40	0.543		0.567
h		0.50			0.002	
L	1.20		1.80	0.047		0.071
q		1.70			0.067	
а	0°		8°			

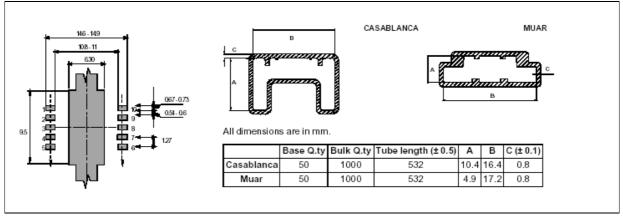
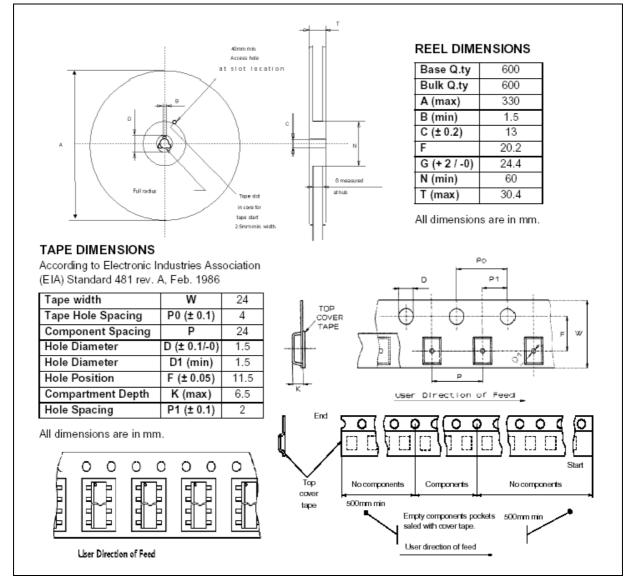

 Table 8.
 PowerSO-10 Mechanical data

Figure 9. Package dimension


57

57

7 Order code

Table 9.Order code

Part number	Package	Packaging
VN330SP-E	PowerSO-10 TM	Tube
VN330SPTR-E	PowerSO-10 TM	Tape and reel

8 Revision history

Table 10. Revision history

Date	Revision	Changes	
6-Sep-2005	1	Initial release	
31-Oct-2006	2	Typo in Electrical characteristics temperature conditions updated on page 5	
27-Mar-2007	3	Document reformatted, typo in Note 1 on page 6	

57

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LED Lighting Drivers category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

LV5235V-MPB-H MB39C602PNF-G-JNEFE1 FAN5701UMP20X FAN5702UMP30X MIC2871YMK-T5 MP1518DJ-LF-P MP3202DG-LF-P MP3304BDD-LF-P MP3306EG-LF-P MP3398AGY MP4033GK AL1676-10BS7-13 AL1676-20AS7-13 MX877RTR NCL30085BDR2G ICL8201 IS31BL3506B-TTLS2-TR PAM2841GR A8519KLPTR-T FAN5701UMP08X FAN5702UMP20X AL3157F-7 AL8807BQMP-13 LV52204MTTBG MP2488DN-LF MP24893DQ-LF-P MP24894GJ-P MP24895GJ-P MP3308DL-LF-Z MP3393EF-LF MP3394SGF MP3802DQ-LF-P MP4008GS MP4031GS MP4032-1GS MP4034GS MP46885DN-LF SLG7NT4082V SLG7NT4082VTR PCA9955BTWQ900J TLD5095EL LED6001TR STP4CMPQTR BD1604MVV-E2 MC10SX1130DG MAX16832CASAT MAX16814CATP+ NCL30086BDR2G NCL30088BDR2G IS31LT3350-V1SDLS2-EB3CH