L6219

Stepper motor driver

Features

- Able to drive both windings of bipolar stepper motor

■ Output current up to 750 mA each winding
■ Wide voltage range: 10 V to 46 V

- Half-step, full-step and microstepping mode
- Built-in protection diodes

■ Internal PWM current control
■ Low output saturation voltage

- Designed for unstabilized motor supply voltage

■ Internal thermal shutdown

Description

The L6219 is a bipolar monolithic integrated circuits intended to control and drive both winding of a bipolar stepper motor or bidirectionally control two DC motors.

The L6219 with a few external components form a complete control and drive circuit for LS-TTL or microprocessor controlled stepper motor system. The power stage is a dual full bridge capable of sustaining 46 V and including four diodes for current recirculation.

A cross conduction protection is provided to avoid simultaneous cross conduction during switching current direction.

An internal pulse-width-modulation (PWM) controls the output current to 750 mA with peak startup current up to 1 A .

Wide range of current control from 750 mA (each bridge) is permitted by means of two logic inputs and an external voltage reference. A phase input to each bridge determines the load current direction. A thermal protection circuitry disables the outputs if the chip temperature exceeds safe operating limits.

Table 1. Device summary

Part number	Package	Packing
E-L6219	PDIP24	Tube
E-L6219DS	SO24	Tube
E-L6219DS013TR	SO24	Tape \& reel

Contents

1 Block diagram 5
2 Functional description 9
2.1 Input logic (IO and I1) 9
2.2 Phase 9
2.3 Current sensor 9
2.4 Single-pulse generator 10
2.5 Output stage 10
2.6 VS, VSS, VRef 11
3 Application informations 12
4 Package information 13
5 Revision history 15

List of tables

Table 1. Device summary 1
Table 2. Absolute maximum rating 5
Table 3. Pin functions 6
Table 4. Thermal data 7
Table 5. Electrical characteristcs 8
Table 6. Current levels 9
Table 7. Document revision history 15

List of figures

Figure 1. Block diagram 5
Figure 2. SO24/PDIP24 pins connection (top view). 6
Figure 3. Timing diagram 7
Figure 4. Principle operating sequence 10
Figure 5. Typical application circuit 12
Figure 6. SO24 mechanical data and package dimensions. 13
Figure 7. PDIP24 mechanical data and package dimensions 14

1

Block diagram

Figure 1. Block diagram

Table 2. Absolute maximum rating

Parameter	Description	Value	Unit
V_{s}	Supply voltage	50	V
I_{O}	Output current (peak)	± 1	A
I_{O}	Output current (continuous)	± 0.75	A
$\mathrm{~V}_{\mathrm{ss}}$	Logic supply voltage	7	V
$\mathrm{~V}_{\text {in }}$	Logic input voltage range	-0.3 to +7	V
$\mathrm{~V}_{\text {sense }}$	Sense output voltage	1.5	V
$\mathrm{~T}_{\mathrm{j}}$	Junction temperature	+150	${ }^{\circ} \mathrm{C}$
T_{op}	Operating temperature range	-20 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-55 to +150	${ }^{\circ} \mathrm{C}$

Figure 2. SO24/PDIP24 pins connection (top view)

Table 3. Pin functions

Pin \#	Name	Description
1,2	Output A	See pins 5, 21
3,23	Sense resistor	Connection to lower emitters of output stage for insertion of current sense resistor
4,22	Comparator input	Input connected to the comparators. The voltage across the sense resistor is feedback to this input throught the low pass filter RC CC. The higher power transistors are disabled when the sense voltage exceeds the reference voltage of the selected comparator. When this occurs the current decays for a time set by RT CT (toff = 1.1 RT CT). See Figure 3.
5,21	Output B	Output connection. The output stage is a H bridge formed by four transistors and four diodes suitable for switching applications
6,19	Ground	See pins 7, 18
7,18	Input 0	Ground connection. With pins 6 and 19 also conducts heat from die to printed circuit copper
8,20	Input 1	See Input 1 (pins 9, 17) These pins and pins 8, 20 (input 0) are logic inputs which select the outputs of the comparators to set the current level. Current also depends on the sensing resistor and reference voltage. See functional description
9,17		

Table 3. Pin functions (continued)

Pin \#	Name	Description
10,16	Phase	This TTL-compatible logic inputs sets the direction of current flow through the load. A high level causes current to flow from output A (source) to output B (sink). A schmitt trigger on this input provides good noise immunity and a delay circuit prevents output stage short circuits during switching
11,15	Reference voltage	A voltage applied to this pin sets the reference voltage of the comparators, this determining the output current (also thus depending on Rs and the two inputs input 0 and input 1)
12,14	RC	A parallel RC network connected to this pin sets the OFF time of the higher power transistors. The pulse generator is a monostable triggered by the output of the comparators (toff = 1.1 RT CT)
13	$\mathrm{~V}_{\mathrm{SS}}$ - Logic supply	Supply voltage input for logic circuitry
24	$\mathrm{~V}_{\mathrm{S}}$ - Load supply	Supply voltage input for the output stages

Note: $\quad E S D$ on $G N D, V_{S}, V_{S S}$, OUT 1 A and OUT 2 A is guaranteed up to 1.5 KV (human body model, 1500 W, 100 pF).

Figure 3. Timing diagram

Table 4. Thermal data

Parameter	Description		PDIP	SO	Unit
$\mathrm{R}_{\mathrm{thj} \text {-case }}$	Thermal resistance junction-case	max.	14	18	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\mathrm{thj} \text {-amb }}$	Thermal resistance junction-ambient	max.	$60^{(1)}$	$75^{(1)}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

1. With minimized copper area.

Table 5. Electrical characteristcs
($\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=46 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=5 \mathrm{~V}$, unless otherwise specified) See Figure 5

Parameter	Description	Test condition	Min.	Typ.	Max.	Unit
Output drivers ($\mathrm{OUT}_{\text {A }}$ or OUT ${ }_{\text {B }}$)						
V_{S}	Motor supply range		10		46	V
$I_{\text {CEX }}$	Output leakage current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=\mathrm{Vs}, \\ & \mathrm{~V}_{\text {OUT }}=0 \end{aligned}$		$\begin{aligned} & <1 \\ & <-1 \end{aligned}$	$\begin{gathered} 50 \\ -50 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{V}_{\text {CE(sat) }}$	Output saturation voltage	Sink driver, $\mathrm{I}_{\text {OUT }}=+500 \mathrm{~mA}$ Sink driver, $\mathrm{I}_{\text {OUT }}=+750 \mathrm{~mA}$ Source driver, $\mathrm{I}_{\text {OUT }}=-500 \mathrm{~mA}$ Source driver, $\mathrm{I}_{\text {OUT }}=-750 \mathrm{~mA}$		$\begin{aligned} & \hline 0.3 \\ & 0.7 \\ & 1.1 \\ & 1.3 \end{aligned}$	$\begin{gathered} \hline 0.6 \\ 1 \\ 1.4 \\ 1.6 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
I_{R}	Clamp diode leakage current	$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$	-	<1	50	$\mu \mathrm{A}$
V_{F}	Clamp diode forward voltage	Sink diode Source diode $I_{F}=750 \mathrm{~mA}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\mathrm{S} \text { (on) }}$	Driver supply current	Both bridges ON, no load	-	8	15	mA
$\mathrm{I}_{\text {S(off) }}$	Driver supply current	Both bridges OFF	-	6	10	mA
Control logic						
$\mathrm{V}_{\text {IN(H) }}$	Input voltage	All inputs	2.4	-	-	V
$\mathrm{V}_{\mathrm{IN}(\mathrm{L})}$	Input voltage	All inputs	-	-	0.8	V
$\mathrm{I}_{\mathrm{IN}(\mathrm{H})}$	Input current	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$	-	<1	20	$\mu \mathrm{A}$
$\mathrm{I}_{\operatorname{IN}(\mathrm{L})}$	Input current	$\mathrm{V}_{\text {IN }}=0.84 \mathrm{~V}$	-	-3	-200	$\mu \mathrm{A}$
$\mathrm{V}_{\text {REF }}$	Reference voltage	Operating ${ }^{(1)}$	1.5	-	7.5	V
$\mathrm{I}_{\text {SS(ON) }}$	Total logic supply current	$\mathrm{I}_{0}=\mathrm{I}_{1}=0.8 \mathrm{~V}$, no load	-	64	74	mA
$\mathrm{I}_{\text {SS(OFF) }}$	Total logic supply current	$\mathrm{I}_{0}=\mathrm{I}_{1}=2.4 \mathrm{~V}$, no load	-	10	14	mA
Comparators						
$\mathrm{V}_{\text {REF }} / \mathrm{V}_{\text {sense }}$	Current limit threshold (at trip point)	$\mathrm{I}_{0}=\mathrm{I}_{1}=0.8 \mathrm{~V}$	9.5	10	10.5	-
		$\mathrm{I}_{0}=2.4 \mathrm{~V}, \mathrm{I}_{1}=0.8 \mathrm{~V}$	13.5	15	16.5	-
		$\mathrm{I}_{0}=0.8 \mathrm{~V}, \mathrm{I}_{1}=2.4 \mathrm{~V}$	25.5	30	34.5	-
$\mathrm{t}_{\text {off }}$	Cutoff time	$\mathrm{R}_{\mathrm{t}}=56 \mathrm{~K} \Omega \mathrm{C}_{\mathrm{t}}=820 \mathrm{pF}$	-	50		$\mu \mathrm{s}$
t_{d}	Turn off delay	Figure 3	-	1		$\mu \mathrm{s}$
Protection						
T_{J}	Thermal shutdown temperature		-	170	-	${ }^{\circ} \mathrm{C}$

1. To reduce the switching losses the base bias of the bridge's low side NPN transistor is proportional to the DAC output, then the output current driving capability is also proportional to the DAC output voltage, having as reference 750 mA with $\mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V}$ and $\mathrm{DAC}=100 \%$. For example using $\mathrm{V}_{\mathrm{REF}}=2 \mathrm{~V}$ and $\mathrm{DAC}=67 \%$ the output maximum current driving capability will become $750 \mathrm{~mA}^{\star}\left(2 \mathrm{~V}^{*} 0.67\right) /\left(5 \mathrm{~V}^{\star} 1\right)=200 \mathrm{~mA}$.

2 Functional description

The circuit is intended to drive both windings of a bipolar stepper motor.
The peak current control is generated through switch mode regulation. There is a choice of three different current levels with the two logic inputs I01-I11 for winding 1 and I02-I12 for winding 2.

The current can also be switched off completely.

2.1 Input logic (I_{0} and I_{1})

The current level in the motor winding is selected with these inputs. (See Figure 4). If any of the logic inputs is left open, the circuit will treat it has a high level input.

Table 6. Current levels

$\mathbf{I 0}$	$\mathbf{I 1}$	Current level
H	H	No current
L	H	Low current $1 / 3$ IO max
H	L	Medium current $2 / 3$ IO max
L	L	Maximum current IO max

2.2 Phase

This input determines the direction of current flow in the windings, depending on the motor connections. The signal is fed through a schmidt-trigger for noise immunity, and through a time delay in order to guarantee that no short-circuit occurs in the output stage during phase-shift. High level on the phase input causes the motor current flow from out A through the winding to out B.

2.3 Current sensor

This part contains a current sensing resistor $\left(R_{S}\right)$, a low pass filter (R_{C}, C_{C}) and three comparators. Only one comparator is active at a time. It is activated by the input logic according to the current level chosen with signals I_{0} and I_{1}. The motor current flows through the sensing resistor RS. When the current has increased so that the voltage across R_{S} becomes higher than the reference voltage on the other comparator input, the comparator goes high, which triggers the pulse generator.

The max peak current Imax can be defined by:

$$
I_{\max }=\frac{V_{\mathrm{ref}}}{10 R_{\mathrm{s}}}
$$

2.4 Single-pulse generator

The pulse generator is a monostable triggered on the positive going edge of the comparator output. The monostable output is high during the pulse time, toff, which is determined by the time components Rt and Ct.

$$
t_{\text {off }}=1.1 \cdot R_{t} C_{t}
$$

The single pulse switches off the power feed to the motor winding, causing the winding current to decrease during $t_{\text {off. }}$ If a new trigger signal should occur during $t_{\text {off }}$, it is ignored.

2.5 Output stage

The output stage contains four darlington transistors (source drivers) four saturated transistors (sink drivers) and eight diodes, connected in two H bridge.

Figure 4. Principle operating sequence

The source transistors are used to switch the power supplied to the motor winding, thus driving a constant current through the winding. It should be noted however, that is not permitted to short circuit the outputs.

Internal circuitry is added in order to increase the accuracy of the motor current particularly with low current levels.

$2.6 \quad \mathrm{~V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\text {Ref }}$

The circuit will stand any order of turn-on or turn-off the supply voltages V_{S} and V_{SS}. Normal $\mathrm{dV} / \mathrm{dt}$ values are then assumed.

Preferably, $\mathrm{V}_{\text {Ref }}$ should be tracking V_{SS} during power-on and power-off if V_{S} is established.

3 Application informations

Some stepper motors are not designed for contin-uous operation at maximum current. As the circuit drives a constant current through the motor, its temperature might increase exceedingly both at low and high speed operation. Also, some stepper motors have such high core losses that they are not suited for switch mode current regulation.

Unused inputs should be connected to proper voltage levels in order to get the highest noise immunity. As the circuit operates with switch mode current regulation, interference generation problems might arise in some applications. A good measure might then be to decouple the circuit with a 100 nF capacitor, located near the package between power line and ground. The ground lead between Rs, and circuit GND should be kept as short as possible. A typical application circuit is shown in Figure 5. Note that C_{t} must be NPO type or similar else. To sense the winding current, paralleled metal film resistors are recommended (R_{s}).

Figure 5. Typical application circuit

4 Package information

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Figure 6. SO24 mechanical data and package dimensions

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	2.35		2.65	0.093		0.104
A1	0.10		0.30	0.004		0.012
B	0.33		0.51	0.013		0.200
C	0.23		0.32	0.009		0.013
D ${ }^{(1)}$	15.20		15.60	0.598		0.614
E	7.40		7.60	0.291		0.299
e		1.27			0.050	
H	10.0		10.65	0.394		0.419
h	0.25		0.75	0.010		0.030
L	0.40		1.27	0.016		0.050
k	0° (min.), 8° (max.)					
ddd			0.10			0.004
(1) "D" dimension does not include mold flash, protusions or gate burrs. Mold flash, protusions or gate burrs shall not exceed 0.15 mm per side.						

Figure 7. PDIP24 mechanical data and package dimensions

5 Revision history

Table 7. Document revision history

Date	Revision	Changes
30-Oct-2001	7	First Issue on the EDOCS DMS.
11-May-2005	8	Changed the look \& feel layout. Modified Table 6 on page 9.
14-Sep-2005	9	Change in the Features sections: Wide voltage range 10 V to 46 V Output current up to 750 mA each winding.
19-Dec-2005	10	Corrected in the Table 5 the max. value of the V REF $^{\prime}$ parameter from 2 V to 7.5 V.
28-Mar-2006	11	Corrected I ISS(ON) values in the Table 5.
18-Mar-2008	12	Document reformatted.
01-Sep-2008	13	Added note 1 in Table 5 on page 8.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for AC, DC \& Servo Motors category:
Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :
805470B40040MY R88M-G10030H-S2 R88MK15K015CS2 R88MK1K520HS2 R88MK3K030FBS2 R88MK1K530HBS2
R88MK75030TS2 1032 M4E068-CF01-01 80510503 805470A403.6MY 805470B40020MY $80627003 \underline{82800003} \underline{82830009}$
R88MK2K030FS2 KDE4014XF-380 (D5) R88A-RG08UA 828100178286101989850008 R88M-K75030H R88M-G10030L-OS2 R88M-
GP20030L-OS2 R88M-K90010F-S2 R88M-GP40030L-OS2 R88M-K1K030H-S2 R88M-GP20030H-BO R88M-G10030L-BO R88M-
GP20030S-OS 2 R88M-K20030H-B R88M-G40030H-BS2 R88M-GP20030H-O R88M-G40030T-S2 R88M-K10030L 8284000382840004
R88M-GP20030L R88M-GP20030H-BS2 R88M-GP10030S R88M-GP20030L-S2 R88M-G40030H R88M-GP20030L-O R88M-GP20030L-
BS2 R88M-GP20030T-OS2 8286901189850007 R88M-K1K020F 82524021 R88M-K1K520F

