Quad 8-Bit CMOS D/A Converter with Internal 10 V Reference

1.1 Scope.

This specification covers the detail requirement for a quad 8-bit CMOS digital-to-analog converter with output voltage amplifiers and internal 10 V voltage reference. The internal latches provide direct interface for most microprocessors. The DAC-8426 operates with either a dual or single power supply.
It is highly recommended that this data sheet be used as a baseline for new military or aerospace specification control drawings.

1.2 Part Number.

The complete part numbers per Table 1 of this specification is as follows:

Device	Part Number	Package
-1	DAC-8426AR/883	R

1.2.3 Case Outline.

Letter Case Outline (Lead Finish per MIL-M-38510)
R 20-Lead Ceramic Dual-in-Line Package (Cerdip)
1.3 Absolute Maximum Ratings. ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

1.5 Thermal Characteristics.

Thermal Resistance $\theta_{\mathrm{JC}}=7^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\mathrm{JA}}=70^{\circ} \mathrm{C} / \mathrm{W} \max$

DAC-8426 - SPECIFICATIONS

Table 1.

Test	Symbol	Device Types	Limits		Group \mathbf{A} Subgroups	Conditions ${ }^{1}$	Units
			Min	Max			
Resolution	N	All	8		1,2,3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C} \&+125^{\circ} \mathrm{C}$	Bits
Total Unadjusted Error	TUE	-1		± 1	1,2, 3	Includes Reference ${ }^{2}$$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C} \&+125^{\circ} \mathrm{C}$	LSB
		-2		± 2	1,2,3		
Relative Accuracy	INL	-1		$\pm 1 / 2$	1,2, 3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C} \&+125^{\circ} \mathrm{C}$	LSB
		-2		± 1	1,2, 3		
Differential Nonlinearity	DNL	All		± 1	1,2,3	Note 3; $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C} \&+125^{\circ} \mathrm{C}$	LSB
Zero Scale Error	$\mathrm{V}_{\text {ZSE }}$	All		20	1,2, 3	$\begin{aligned} & \mathrm{V}_{\mathrm{ss}}=-5 \mathrm{~V} ; \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C} \&+125^{\circ} \mathrm{C} \end{aligned}$	mV
Reference Output Voltage	$\mathrm{V}_{\text {REFOUT }}$	-1	9.96		1,2,3	No Load;$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C} \&+125^{\circ} \mathrm{C}$	V
		-2	9.92	10.08			
Reference Load Regulation	$\mathrm{LD}_{\text {REG }}$	All		0.1	1,2,3	$\begin{aligned} & \Delta \mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA} ; \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C} \&+125^{\circ} \mathrm{C} \end{aligned}$	\%/mA
Reference Line Regulation	$\mathrm{LN}_{\text {REG }}$	All		0.04	1,2,3	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{DD}}= \pm 10 \% ; \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C} \&+125^{\circ} \mathrm{C} \end{aligned}$	\%/mA
Reference Output Current	$\mathrm{I}_{\text {Refout }}$	All	5		1, 2, 3	$\begin{aligned} & \Delta \mathrm{V}_{\text {REFOUT }}<40 \mathrm{mV} ; \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C} \&+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	mA
Logic Input "0"	$\mathrm{V}_{\text {INL }}$	All		0.8	1,2,3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C} \&+125^{\circ} \mathrm{C}$	V
Logic Input "1"	$\mathrm{V}_{\text {INH }}$	All	2.4		1,2,3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C} \&+125^{\circ} \mathrm{C}$	V
Logic Input Current	$\mathrm{I}_{\text {IN }}$	All		10	1,2, 3	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} ; \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C} \&+125^{\circ} \mathrm{C} \end{aligned}$	$\mu \mathrm{A}$
Positive Supply Current ${ }^{3}$	I_{DD}	All		14	1,2,3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C} \&+125^{\circ} \mathrm{C}$	mA
Negative Supply Current ${ }^{3}$	$\mathrm{I}_{\text {ss }}$	All		10	1,2,3	$\begin{aligned} & \text { Dual Supply, } \mathrm{V}_{\text {SS }}=-5 \mathrm{~V} ; \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C} \&+125^{\circ} \mathrm{C} \end{aligned}$	mA
Power Supply Sensitivity	PSS	All		0.01	1,2,3	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{DD}}= \pm 10 \% ; \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C} \&+125^{\circ} \mathrm{C} \end{aligned}$	\%/\%
Output Source Current	$\mathrm{I}_{\text {Out }}$	All	10		1,2,3	Digital Inputs All Ones; $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C} \&+125^{\circ} \mathrm{C}$	mA
Output Sink Current	$\mathrm{I}_{\text {OUT - }}$	All	0.35		1,2,3	Digital Inputs All Zeros	mA
$\begin{aligned} & \overline{\mathrm{V}}_{\text {OUT }} \text { Settling Time } \\ & \text { (Positive or Negative) } \end{aligned}$	t_{s}	All		5	9	To $\pm 1 / 2 \mathrm{LSB} ; \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	μs
Address to Write Setup Time	t_{As}	All	0		9, 10, 11	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C} \&+125^{\circ} \mathrm{C}$	ns
Address to Write Hold Time	t_{AH}	All	0		9, 10, 11	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C} \&+125^{\circ} \mathrm{C}$	ns
Data Valid to Write Setup Time	t_{DS}	All	70		9, 10, 11	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C} \&+125^{\circ} \mathrm{C}$	ns
Data Valid to Write Hold Time	t_{DH}	All	10		9, 10, 11	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C} \&+125^{\circ} \mathrm{C}$	ns
Write Pulse Width	t_{wR}	All	50		9, 10, 11	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C} \&+125^{\circ} \mathrm{C}$	ns
Minimum Load Resistance	$\mathrm{R}_{\mathrm{L} \text { (MIN) }}$	All	2		1,2,3	Digital Inputs All Ones; $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C} \&+125^{\circ} \mathrm{C}$	k Ω
V Out Slew Rate	SR	All	2.5		7	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{V} / \mu \mathrm{s}$

NOTES

${ }^{1} \mathrm{~V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{AGND}=0 \mathrm{~V}, \mathrm{DGND}=0 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$ unless otherwise specified.
${ }^{2}$ Includes full-scale error, relative accuracy, and zero code error.
${ }^{3}$ Digital inputs $V_{\text {IN }}=V_{\text {INL }}$ or $V_{\text {INH }} ; V_{\text {OUT }}$ and $V_{\text {REFOUT }}$ unloaded.

Table 2. Electrical Test Requirements for Class B Devices

MIL-STD-883 Test Requirements	Subgroups (See Table 3)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	$1, \star 2,3$
Group A Test Requirements	$1,2,3,7,9,10,11$

NOTE
*PDA applies to Subgroup 1 only. No other subgroups are included in PDA.

Table 3. Control Table

Logic Control			DAC-8426 Operation
WR	A1	A0	
H	X	X	No Operation Device Not Selected
L	L	L	DAC A Transparent
5	L	L	DAC A Latched
L	L	H	DAC B Transparent
5	L	H	DAC B Latched
L	H	L	DAC C Transparent
5	H	L	DAC C Latched
L	H	H	DAC D Transparent
5	H	H	DAC D Latched

$$
\text { L = Low State, } \mathrm{H}=\text { High State, } \mathrm{X}=\text { Don't Care. }
$$

Write Timing Diagram

DAC-8426

3.2.1 Functional Block Diagram and Terminal Assignments.

$\mathrm{V}_{\text {OUT }} \mathrm{B}$-1		$20 \mathrm{v}_{\text {OUT }} \mathrm{c}$
$\mathrm{V}_{\text {OUT }}{ }^{\text {A }} 2$		$19 \mathrm{~V}_{\text {out }} \mathrm{D}$
$\mathrm{v}_{\mathrm{ss}} 3$		18 V DD
$V_{\text {REFOUT }} 4$		17 AO
AGND 5	DAC-8426	16 A1
DGND 6	(Not to Scale)	15 WR
DB7 (MSB) 7		14.080 (LSB)
DB6 8		13 DB1
DB5 9		$12 \mathrm{DB2}$
DB4 10		11 D83

3.2.4 Microcircuit Technology Group.

This microcircuit is covered by technology group 80.

4.2.1 Life Test/Burn-In Circuit.

Steady state life test is per MIL-STD-883 Method 1005. Burn-in is per MIL-STD-883 Method 1015 test condition (B).

20-Lead Ceramic DIP

(R Suffix)

20-Lead Ceramic DIP
(R Suffix)

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A		0.200		5.08	
b	0.014	0.023	0.36	0.58	
b_{1}	0.030	0.070	0.76	1.78	2
c	0.008	0.015	0.20	0.38	
D		1.060		26.92	4
E	0.220	0.310	5.59	7.87	4
E_{1}	0.290	0.320	7.37	8.13	7
e	0.1	BSC	2.5	BSC	5
L	0.125	0.200	3.18	5.08	
L_{1}	0.150		3.81		
0	0.015	0.060	0.38	1.52	3
S		0.080		2.03	6
S_{1}	0.005		0.13		6
$\boldsymbol{\alpha}$	0°	15°	0°	15°	

NOTES

1. Index area; a notch or a lead one identification mark is located adjacent to lead one.
2. The minimum limit for dimension b_{1} may be $0.023^{\prime \prime}$ (0.58 mm) for all four corner leads only.
3. Dimension \mathbf{Q} shall be measured from the seating plane to the base plane.
4. This dimension allows for off-center lid, meniscus and glass overrun.
5. The basic lead spacing is $0.100^{\prime \prime}(\mathbf{2} .54 \mathrm{~mm})$ between centerlines.
6. Applies to all four corners.
7. Leads center when α is 0°. E_{1} shall be measured at the centerline of the leads.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital to Analog Converters - DAC category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
5962-8871903MYA 5962-8876601LA 5962-89697013A 5962-89932012A 5962-9176404M3A PM7545FPCZ AD5311BRMZ-REEL7
AD5311RBRMZ-RL7 AD558SE/883B AD5681RBCPZ-1RL7 AD664TE/883B AD667SE AD7845SE/883B AD9115BCPZRL7 AD9162BBCA DAC08RC/883C JM38510/11302BEA AD5449YRUZ-REEL7 AD664AJ AD664BJ AD667SE/883B AD7534JPZ TCC-103A-RT 057536E 5962-87700012A 5962-87700032A 5962-87789022A 5962-89657023A 702423BB AD664BE MAX5853ETL+T MAX5801AUB+ AD9116BCPZRL7 MAX5110GTJ+ MAX5702BAUB+ DS4412U+T\&R MAX5364EUT+T MAX5858AECM+D AD5821ABCBZ-REEL7 MX7528KP+ MAX5858ECM+D MAX5138BGTE+T MAX5856AECM+D AD9164BBCA AD7545AUE $\underline{\text { MX7528JP+ TCC-303A-RT MAX5112GTJ+ DS3911T+T MAX5805BAUB+T }}$

