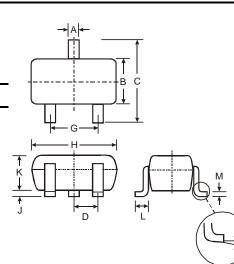


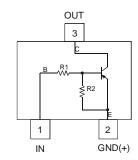


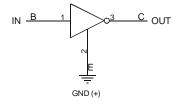
# DDTA (R1 = R2 SERIES)

PNP PRE-BIASED SMALL SIGNAL SURFACE MOUNT TRANSIS


#### Features

- Epitaxial Planar Die Construction •
- Complementary NPN Types Available (DDTC) .
- Built-In Biasing Resistors, R1 = R2
- Lead Free/RoHS Compliant (Note 2)
- "Green" Device, Note 3 and 4


#### **Mechanical Data**


- Case: SC-59 •
- Case Material: Molded Plastic, "Green" Molding Compound, Note 4. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020C
- Terminals: Solderable per MIL-STD-202, Method 208
- Lead Free Plating (Matte Tin Finish annealed over Copper leadframe).
- Terminal Connections: See Diagram
- Marking Information: See Table Below & Page 4
- Ordering Information: See Page 4
- Weight: 0.008 grams (approximate)

| P/N        | R1, R2 (NOM) | Type Code |
|------------|--------------|-----------|
| DDTA123EKA | 2.2KΩ        | P04       |
| DDTA143EKA | 4.7KΩ        | P08       |
| DDTA114EKA | 10KΩ         | P13       |
| DDTA124EKA | <b>22K</b> Ω | P17       |
| DDTA144EKA | 47ΚΩ         | P20       |
| DDTA115EKA | 100KΩ        | P24       |



|         | SC-59                |      |  |  |  |  |  |  |  |  |
|---------|----------------------|------|--|--|--|--|--|--|--|--|
| Dim     | Min                  | Max  |  |  |  |  |  |  |  |  |
| Α       | 0.35                 | 0.50 |  |  |  |  |  |  |  |  |
| в       | 1.50                 | 1.70 |  |  |  |  |  |  |  |  |
| С       | 2.70                 | 3.00 |  |  |  |  |  |  |  |  |
| D       | 0.95                 |      |  |  |  |  |  |  |  |  |
| G       | 1.90                 |      |  |  |  |  |  |  |  |  |
| н       | 2.90                 | 3.10 |  |  |  |  |  |  |  |  |
| J       | 0.013                | 0.10 |  |  |  |  |  |  |  |  |
| К       | 1.00                 | 1.30 |  |  |  |  |  |  |  |  |
| L       | 0.35                 | 0.55 |  |  |  |  |  |  |  |  |
| М       | 0.10                 | 0.20 |  |  |  |  |  |  |  |  |
| α       | 0°                   | 8°   |  |  |  |  |  |  |  |  |
| All Dir | All Dimensions in mm |      |  |  |  |  |  |  |  |  |





Equivalent Inverter Circuit

Schematic and Pin Configuration

#### **Maximum Ratings** @T<sub>A</sub> = 25°C unless otherwise specified

| Characteristic                          |                                                                                                | Symbol                            | Value                                                                            | Unit |  |
|-----------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------|------|--|
| Supply Voltage, (3) to (2)              |                                                                                                | V <sub>CC</sub>                   | -50                                                                              | V    |  |
| Input Voltage, (1) to (2)               | DDTA123EKA<br>DDTA143EKA<br>DDTA114EKA<br>DDTA124EKA<br>DDTA124EKA<br>DDTA144EKA<br>DDTA115EKA | V <sub>IN</sub>                   | +10 to -12<br>+10 to -30<br>+10 to -40<br>+10 to -40<br>+10 to -40<br>+10 to -40 | V    |  |
| Output Current                          | DDTA123EKA<br>DDTA143EKA<br>DDTA114EKA<br>DDTA124EKA<br>DDTA124EKA<br>DDTA144EKA<br>DDTA115EKA | lo                                | -100<br>-100<br>-50<br>-30<br>-100<br>-20                                        | mA   |  |
| Output Current                          | All                                                                                            | I <sub>C</sub> (Max)              | -100                                                                             | mA   |  |
| Power Dissipation                       |                                                                                                | Pd                                | 200                                                                              | mW   |  |
| Thermal Resistance, Junction to Ambient | $R_{	ext{	heta}}JA$                                                                            | 625                               | °C/W                                                                             |      |  |
| Operating and Storage Temperature Rang  | e                                                                                              | T <sub>j</sub> , T <sub>STG</sub> | -55 to +150                                                                      | °C   |  |

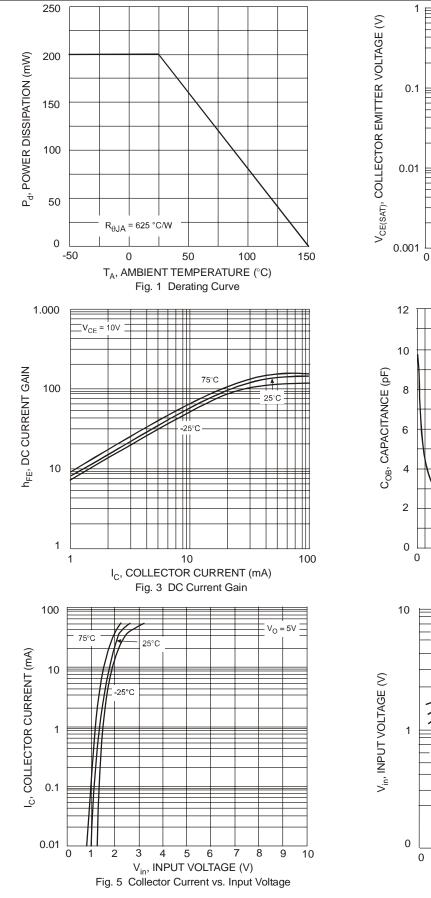
Notes: 1 Mounted on FR4 PC Board with recommended pad layout at http://www.diodes.com/datasheets/ap02001.pdf.

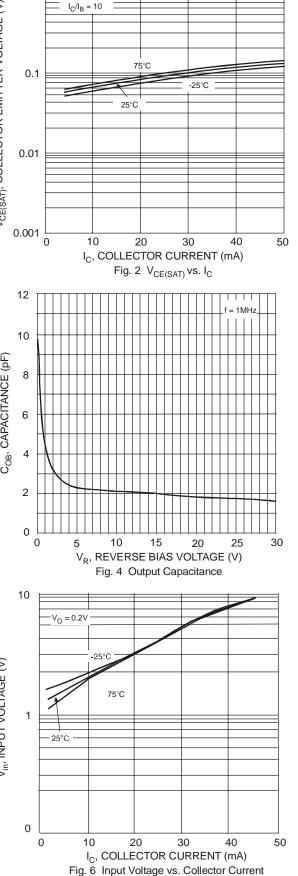
2. No purposefully added lead.

3.

Product manufactured with Date Code 0627 (week 27, 2006) and newer are built with Green Molding Compound. Product manufactured prior to 4. Date Code 0627 are built with Non-Green Molding Compound and may contain Halogens or Sb2O3 Fire Retardants.




### **Electrical Characteristics** @T<sub>A</sub> = 25°C unless otherwise specified


| Characteristic                                                                                               | Symbol                                                                                         | Min Typ             |                                  | Max  | Unit                                             | Test Condition                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------|----------------------------------|------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                              | V <sub>l(off)</sub>                                                                            | -0.5                | -1.1                             | _    |                                                  | V <sub>CC</sub> = -5V, I <sub>O</sub> = -100μA                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                            |
| Input Voltage                                                                                                | V <sub>I(on)</sub>                                                                             |                     | -1.9                             | -3   | V                                                | $\label{eq:VO} \begin{array}{l} V_{O} = -0.3V, \ I_{O} = -20mA, \ DDTA123EKA \\ V_{O} = -0.3V, \ I_{O} = -20mA, \ DDTA143EKA \\ V_{O} = -0.3V, \ I_{O} = -10mA, \ DDTA114EKA \\ V_{O} = -0.3V, \ I_{O} = -5mA, \ DDTA124EKA \\ V_{O} = -0.3V, \ I_{O} = -2mA, \ DDTA144EKA \\ V_{O} = -0.3V, \ I_{O} = -1mA, \ DDTA115EKA \end{array}$ |                                                                                                                                                                                                                                                                                                                                                                            |
| Output Voltage                                                                                               |                                                                                                | V <sub>O(on)</sub>  | _                                | -0.1 | -0.3                                             | V                                                                                                                                                                                                                                                                                                                                      | I <sub>O</sub> /I <sub>I</sub> = -10mA/-0.5mA, DDTA123EKA<br>I <sub>O</sub> /I <sub>I</sub> = -10mA/-0.5mA, DDTA143EKA<br>I <sub>O</sub> /I <sub>I</sub> = -10mA/-0.5mA, DDTA114EKA<br>I <sub>O</sub> /I <sub>I</sub> = -10mA/-0.5mA, DDTA124EKA<br>I <sub>O</sub> /I <sub>I</sub> = -10mA/-0.5mA, DDTA144EKA<br>I <sub>O</sub> /I <sub>I</sub> = -5mA/-0.25mA, DDTA115EKA |
| Input Current                                                                                                | DDTA123EKA<br>DDTA143EKA<br>DDTA114EKA<br>DDTA124EKA<br>DDTA124EKA<br>DDTA114EKA<br>DDTA115EKA | I                   |                                  |      | -3.8<br>-1.8<br>-0.88<br>-0.36<br>-0.18<br>-0.15 | mA                                                                                                                                                                                                                                                                                                                                     | V <sub>1</sub> = -5V                                                                                                                                                                                                                                                                                                                                                       |
| Output Current                                                                                               |                                                                                                | I <sub>O(off)</sub> |                                  |      | -0.5                                             | μΑ                                                                                                                                                                                                                                                                                                                                     | $V_{CC} = -50V, V_I = 0V$                                                                                                                                                                                                                                                                                                                                                  |
| DDTA123EKA<br>DDTA143EKA<br>DDTA143EKA<br>DDTA114EKA<br>DDTA124EKA<br>DDTA124EKA<br>DDTA144EKA<br>DDTA115EKA |                                                                                                | Gı                  | 20<br>20<br>30<br>56<br>68<br>82 |      |                                                  |                                                                                                                                                                                                                                                                                                                                        | $V_{O} = -5V, I_{O} = -20mA$<br>$V_{O} = -5V, I_{O} = -10mA$<br>$V_{O} = -5V, I_{O} = -5mA$<br>$V_{O} = -5V, I_{O} = -5mA$<br>$V_{O} = -5V, I_{O} = -5mA$<br>$V_{O} = -5V, I_{O} = -5mA$                                                                                                                                                                                   |
| Input Resistor (R <sub>1</sub> ) Tolerance                                                                   |                                                                                                | $\Delta R_1$        | -30                              | _    | +30                                              | %                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                          |
| Resistance Ratio                                                                                             |                                                                                                | $R_2/R_1$           | 0.8                              | 1    | 1.2                                              | —                                                                                                                                                                                                                                                                                                                                      | —                                                                                                                                                                                                                                                                                                                                                                          |
| Gain-Bandwidth Product*                                                                                      |                                                                                                | f <sub>T</sub>      |                                  | 250  |                                                  | MHz                                                                                                                                                                                                                                                                                                                                    | V <sub>CE</sub> = -10V, I <sub>E</sub> = 5mA,<br>f = 100MHz                                                                                                                                                                                                                                                                                                                |

\* Transistor - For Reference Only

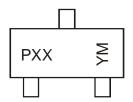


#### **Typical Curves – DDTA143EKA**





3 of 4 www.diodes.com DDTA (R1 = R2 SERIES) KA © Diodes Incorporated




#### Ordering Information (Note 4 & 5)

| Device         | Packaging | Shipping         |  |  |
|----------------|-----------|------------------|--|--|
| DDTA123EKA-7-F | SC-59     | 3000/Tape & Reel |  |  |
| DDTA143EKA-7-F | SC-59     | 3000/Tape & Reel |  |  |
| DDTA114EKA-7-F | SC-59     | 3000/Tape & Reel |  |  |
| DDTA124EKA-7-F | SC-59     | 3000/Tape & Reel |  |  |
| DDTA144EKA-7-F | SC-59     | 3000/Tape & Reel |  |  |
| DDTA115EKA-7-F | SC-59     | 3000/Tape & Reel |  |  |

Notes: 5. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

#### **Marking Information**



 $\begin{array}{l} \mathsf{PXX}=\mathsf{Product}\ \mathsf{Type}\ \mathsf{Marking}\ \mathsf{Code},\ \mathsf{See}\ \mathsf{Table}\ \mathsf{on}\ \mathsf{Page}\ \mathsf{1}\\ \mathsf{YM}=\mathsf{Date}\ \mathsf{Code}\ \mathsf{Marking}\\ \mathsf{Y}=\mathsf{Year}\ \mathsf{ex:}\ \mathsf{T}=2006\\ \mathsf{M}=\mathsf{Month}\ \mathsf{ex:}\ \mathsf{9}=\mathsf{September} \end{array}$ 

Date Code Key

| Year  | 2002 | 2003 | 2004 | 2005 | 5 200 | )6 2 | 007 | 20 | 800 | 2009 | 2010 | 2011 | 2012 |
|-------|------|------|------|------|-------|------|-----|----|-----|------|------|------|------|
| Code  | Ν    | Р    | R    | S    | Т     | U    |     |    | V   | W    | Х    | Y    | Z    |
| Month | Jan  | Feb  | Mar  | Apr  | Мау   | Jun  | J   | ul | Aug | Sep  | Oct  | Nov  | Dec  |
| Code  | 1    | 2    | 3    | 4    | 5     | 6    | 7   | 7  | 8   | 9    | 0    | N    | D    |

#### IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

#### LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - Pre-Biased category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below :

MMUN2217LT1G FP101-TL-E RN1607(TE85L,F) DRC9A14E0L DTA124GKAT146 DTA144WETL DTA144WKAT146 DTC113EET1G DTC115TETL DTC115TKAT146 DTC124TETL DTC144ECA-TP DTC144VUAT106 MUN5241T1G BCR158WH6327XTSA1 NSBA114TDP6T5G NSBA143TF3T5G NSBA143ZF3T5G NSBC114EF3T5G NSBC114YF3T5G NSBC123TF3T5G NSBC143TF3T5G NSVMUN2212T1G NSVMUN5111DW1T3G NSVMUN5314DW1T3G NSVUMC2NT1G SMMUN2134LT1G SMUN2212T1G SMUN5235T1G SMUN5330DW1T1G SSVMUN5312DW1T2G 2SC3650-TD-E RN1303(TE85L,F) RN4605(TE85L,F) BCR135SH6327XT TTEPROTOTYPE79 UMC3NTR DTA113EET1G EMA2T2R EMH15T2R SDTA114YET1G SMMUN2111LT3G SMMUN2113LT1G SMMUN2114LT1G SMMUN2211LT3G SMUN2214T3G SMUN5113DW1T1G SMMUN5335DW1T1G NSBA114YF3T5G NSBC114TF3T5G