Display Elektronik GmbH

DATA SHEET

LCD MODULE

DEM 24252 SYH-LY

Product specification

Version: 1

DOCUMENT REVISION HISTORY

Version	DATE	DESCRIPTION	CHANGED BY
00	18.08.2007	First issue	-
01	22.08.2007	Modify the Viewing direction	MH
		_	

CONTENTS

- 1. FUNCTIONS & FEATURES
- 2. MECHANICAL SPECIFICATION
- 3. BLOCK DIAGRAM
- 4. DIMENSIONAL OUTLINE
- **5. PIN DESCRIPTION**
- 6. MAXIMUM ABSOLUTE LIMIT
- 7. ELECTRICAL CHARACTERISTICS
- 8. BACKLIGHT CHARACTERISTICS
- 9. ELECTRO-OPTICAL CHARACTERISTICS
- 10. TIMING CHARACTERISTICS
- 11. CONTROL AND DISPLAY COMMANDS
- 12. CHARACTER ROM
- 13. HANDLING AND PRECAUTIONS

1. FUNCTIONS & FEATURES

Format : 24x2 Characters

LCD Mode : STN Yellow-Green Positive Transflective Mode

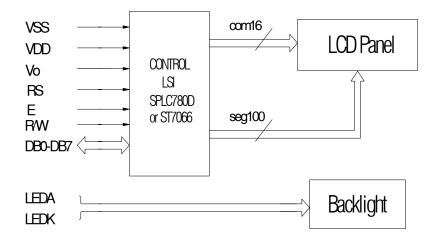
Viewing Direction : 6 o'clock

Driving Scheme : 1/16 Duty, 1/5 Bias

Power Supply Voltage (V_{DD}) : 5.0 Volt

LCD Driving Voltage (Vop) : 4.2 Volt (Reference for best contrast)

Operation Temperature : -20~70°C Storage Temperature : -30~80°C


Backlight Color : Yellow-Green, Lightbox

2. MECHANICAL SPECIFICATIONS

Module Size : 118.00 x 36.00 x 13.50 mm (max)

Viewing Area $: 94.40 \times 18.20 \text{ mm}$ Character Pitch $: 3.70 \times 7.15 \text{ mm}$ Character Size $: 3.20 \times 6.35 \text{ mm}$ Dot Pitch $: 0.65 \times 0.80 \text{ mm}$ Dot Size $: 0.60 \times 0.75 \text{ mm}$

3. BLOCK DIAGRAM

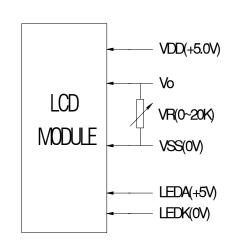
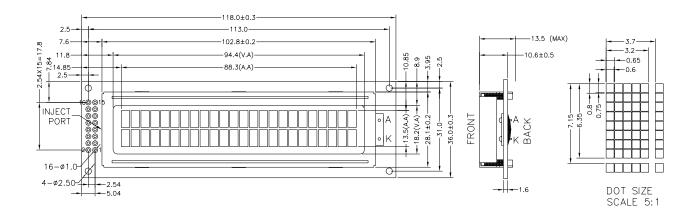



Figure 2. Block diagram

4. DIMENSIONAL OUTLINE

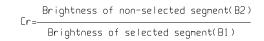
5. PIN DESCRIPTION

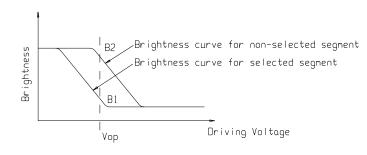
No.	Symbol	Function
1	VSS	GND (0 Volt)
2	VDD	Power supply for Logic (+5.0 Volt)
3	V0	Power supply for LCD drive
4	RS	Register selection (H: Data register, L:Instruction register)
5	R/W	Read/write selection (H: Read , L: Write)
6	Е	Enable signal for LCM
7-14	DB0~DB7	Data Bus lines
15	LED+(A)	Power supply for backlight (5.0 Volt)
16	LED- (K)	Power supply for backlight (0 Volt)

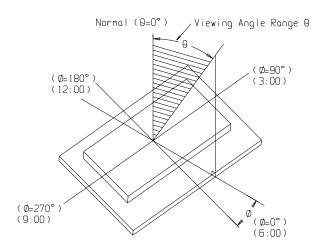
6. MAXIMUM ABSOLUTE LIMIT

Item	Symbol	MIN	MAX	Unit
Supply Voltage for Logic	$ m V_{DD}$	-0.3	7.0	V
Supply Voltage for LCD	V0	V _{DD} -15.0	V _{DD} +0.3	V
Input Voltage	Vin	-0.3	V _{DD} +0.3	V
Supply Current for Backlight	$I_F(Ta = 25^{\circ}C)$		150+150*20%	mA
Reverse Voltage for Backlight	$V_R(Ta = 25^{\circ}C)$		10	V
Operating Temperature	Тор	-20	70	°C
Storage Temperature	Tst	-30	80	°C

7. ELECTRICAL CHARACTERISTICS


Item	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage for Logic	V _{DD} -V _{SS}	$Ta = 25^{\circ}C$	4.75	5.0	5.25	V
Input High Voltage	V_{IH}	$Ta = 25^{\circ}C$	$0.7V_{\mathrm{DD}}$		$V_{ m DD}$	V
Input Low Voltage	$V_{\rm IL}$	Ta = 25°C	0		$0.3V_{\mathrm{DD}}$	V
Output High Voltage	Voh	Ta = 25°C	2.4			V
Output Low Voltage	Vol	$Ta = 25^{\circ}C$			0.4	V
Supply Current	Idd	$Ta = 25^{\circ}C$		2.0		mA


8. BACKLIGHT CHARACTERISTICS Ta = 25°C


Item	Symbol	Condition	Min	Тур	Max	Unit				
Forward Voltage	VF	IF=150mA	3.9	4.1	4.3	V				
Reverse Current	IR	VR=10V		150	800	uA				
Luminous Intensity (With LCD dots off)	IV	IF=150mA				Cd/m ²				
Wave length(Without LCD)	λρ			568		nm				
Color	Yellow-green									

9. ELECTRO-OPTICAL CHARACTERISTICS ($V_{OP} = 8.0V$, Ta = 25°C)

(VOF 0.0 V, 1a 25 C)						
Item	Symbol	Condition	Min	Тур	Max	Unit
		Ta = -20°C	4.3			
Operating Voltage	Vop	$Ta = 25^{\circ}C$	4.0		4.7	V
		$Ta = 70^{\circ}C$	4.0			
Response time	Tr	Ta = 25°C		185		ms
Kesponse time	Tf	1a-25 C		200		ms
Contrast	Cr	$Ta = 25^{\circ}C$		4		
Viewing angle range	θ	Cr≥2	-40		+40	deg
viewing angle range	Ф	C1 <u>~</u> 2	-40		+40	deg

10. TIMING CHARACTERISTICS (Please refer SPLC780 DATASHEETS)

Mode	Characteristic	Symbol	Min.	Тур.	Max.	Unit		
	E Cycle Time	tc	500	-	-			
	E Rise / Fall Time	t _R ,t _F	-	-	20			
	E Pulse Width (High, Low)	tw	230	-	-			
Write Mode (Refer to Fig-6)	R/W and RS Setup Time	tsu1	40	-	-	ns		
(Itelel to Fig-o)	R/W and RS Hold Time	t _{H1}	10	-	-			
	Data Setup Time	tsu2	80	-	-			
	Data Hold Time	t _{H2}	10	-	-			
	E Cycle Time	tc	500	-	-			
	E Rise / Fall Time	t_R, t_F	-	-	20			
	E Pulse Width (High, Low)	tw	230	-	-			
Read Mode (Refer to Fig-7)	R/W and RS Setup Time	tsu	40	-	-	ns		
(Itelel to Fig-7)	R/W and RS Hold Time	t _H	10	-	-			
	Data Output Delay Time	t _D	-	-	120			
	Data Hold Time	t _{DH}	5	-	-			

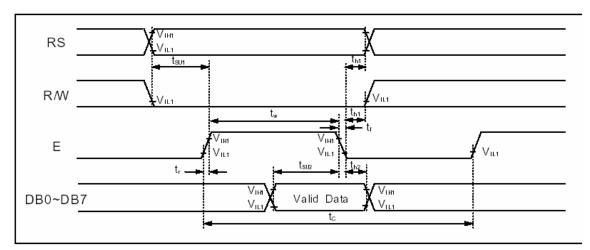


Figure 6. Write Mode Timing Diagram

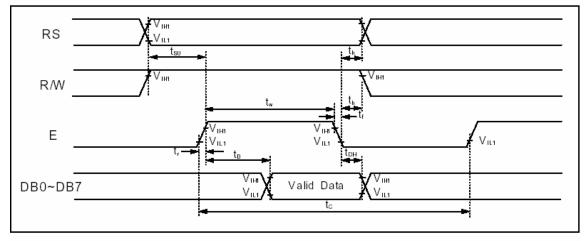


Figure 7. Read Mode Timing Diagram

11. CONTROL AND DISPLAY INSTRUCTION (Please refer SPLC780 DATASHEETS)

la stantina				Ins	tructi	on C	ode				Description	Execution time
Instruction	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	(fosc=270KHz)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM and set DDRAM address to "00H" from AC	1.52ms
Return Home	0	0	0	0	0	0	0	0	1	-	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.52ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	S	Assign cursor moving direction and enable the shift of entire display	38µs
Display ON/ OFF Control	0	0	0	0	0	0	1	D	С	В	Set display(D), cursor(C), and blinking of cursor(B) on/off control bit.	38µs
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	-	-	Set cursor moving and display shift control bit, and the direction, without changing of DDRAM data.	38µs
Function Set	0	0	0	0	1	DL	N	F	-	-	Set interface data length (DL: 8-bit/4-bit), numbers of display line (N: 2-line/1-line) and, display font type (F:5x10 dots/5x8 dots)	38µs
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	38µs
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in counter	38µs
Read Busy Flag and Address Counter	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	38µs
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	38µs

Page 5 Version: 4

12.CHARACTER ROM

Upper																
4 bit Lower 4 bit	LLLL	LLLH	LLHL	LLHH	LHLL	LHLH	LHHL	LHHH	HLLL	HLLH	HLHL	HLHH	HHLL	HHLH	HHHL	нннн
LLLL																
LLLH																
LLHL																
LLHH																
LHLL																
LHLH																
LHHL																
СИНН																
HLLL																
HLLH																
HLHL																
нгнн																
HHLL																
ннгн																
нннг																
нннн																

Page 6 Version: 4

13 Handling and Precautions for using LCD/LCM

LCD/LCM is assembled and adjusted with a high degree of precision. Do not attempt to make any alteration or modification. The followings should be noted.

General Precautions:

- 1. LCD panel is made of glass. Avoid excessive mechanical shock or applying strong pressure onto the surface of display area.
- 2. The polarizer used on the display surface is easily scratched and damaged. Extreme care should be taken when handling. To clean dust or dirt off the display surface, wipe gently with cotton, or other soft material soaked with isoproply alcohol, ethyl alcohol or trichlorotriflorothane, do not use water, ketone or aromatics and never scrub hard.
- 3. Do not tamper in any way with the tabs on the metal frame.
- 4. Do not make any modification on the PCB without consulting us.
- 5. When mounting a LCM, make sure that the PCB is not under any stress such as bending or twisting. Elastomer contacts are very delicate and missing pixels could result from slight dislocation of any of the elements.
- 6. Avoid pressing on the metal bezel, otherwise the elastomer connector could be deformed and lose contact, resulting in missing pixels and also cause rainbow on the display.
- 7. Be careful not to touch or swallow liquid crystal that might leak from a damaged cell. Any liquid crystal adheres to skin or clothes, wash it off immediately with soap and water.

Static Electricity Precautions:

- 1. CMOS-LSI is used for the module circuit; therefore operators should be grounded whenever he/she comes into contact with the module.
- 2. Do not touch any of the conductive parts such as the LSI pads; the copper leads on the PCB and the interface terminals with any parts of the human body.
- 3. Do not touch the connection terminals of the display with bare hand; it will cause disconnection or defective insulation of terminals.
- 4. The modules should be kept in anti-static bags or other containers resistant to static for storage.
- 5. Only properly grounded soldering irons should be used.
- 6. If an electric screwdriver is used, it should be grounded and shielded to prevent sparks.
- 7. The normal static prevention measures should be observed for work clothes and working benches.
- 8. Since dry air is inductive to static, a relative humidity of 50-60% is recommended.

Soldering Precautions:

- 1. Soldering should be performed only on the I/O terminals.
- 2. Use soldering irons with proper grounding and no leakage.
- 3. Soldering temperature: 280°C+10°C
- 4. Soldering time: 3 to 4 second.
- 5. Use eutectic solder with resin flux filling.
- 6. If flux is used, the LCD surface should be protected to avoid spattering flux.
- 7. Flux residue should be removed.

Operation Precautions:

- 1. The viewing angle can be adjusted by varying the LCD driving voltage Vo.
- 2. Since applied DC voltage causes electro-chemical reactions, which deteriorate the display, the applied pulse waveform should be a symmetric waveform such that no DC component remains. Be sure to use the specified operating voltage.
- 3. Driving voltage should be kept within specified range; excess voltage will shorten display life.
- 4. Response time increases with decrease in temperature.
- 5. Display color may be affected at temperatures above its operational range.
- 6. Keep the temperature within the specified range usage and storage. Excessive temperature and humidity could cause polarization degradation, polarizer peel-off or generate bubbles.
- 7. For long-term storage over 40°C is required, the relative humidity should be kept below 60%, and avoid direct sunlight.

Limited Warranty

Our LCDs and modules are not consumer products, but may be incorporated by our customers into consumer products or components thereof, DISPLAY does not warrant that its LCDs and components are fit for any such particular purpose.

- 1. The liability of DISPLAY is limited to repair or replacement on the terms set forth below. DISPLAY will not be responsible for any subsequent or consequential events or injury or damage to any personnel or user including third party personnel and/or user. Unless otherwise agreed in writing between DISPLAY and the customer, DISPLAY will only replace or repair any of its LCD which is found defective electrically or visually when inspected in accordance with DISPLAY general LCD inspection standard. (Copies available on request)
- 2. No warranty can be granted if any of the precautions state in handling liquid crystal display above has been disregarded. Broken glass, scratches on polarizer mechanical damages as well as defects that are caused accelerated environment tests are excluded from warranty.
- 3. In returning the LCD/LCM, they must be properly packaged; there should be detailed description of the failures or defect.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for TFT Displays & Accessories category:

Click to view products by Display Elektronik manufacturer:

Other Similar products are found below:

OAI-80038AA-2013-A HDA430T-3G1H EA CARREDIPTFT02 NL6448BC20-21D NB7W-KBA04 NB-ATT01 NB5Q-ATT01 NB5Q-KBA04 NB-CN001 NL12880BC20-05 NL8060BC26-35C NL8060BC26-35F TCG104SVLQAPNN-AN20 OAI-80038AA-2008-A 315-U004B15300 UMSH-8596MD-34T (REV D) 98-0003-3490-8 1044278 1029309 1060549 DE 127-TU-30/7,5 DE 128-TU-20/7,5 EP-LK007TFTPCAP FR7.0A00 RC2002A-TIG-CSX NL6448BC2021C TX17D01VM2EAB TX14D23VM5BAA

TCG121WXLRXVNNANX35 EIC-LCD-1080P T272480C07VR01 1060632 TCG070WVLPAANN-AN50 TCG035QVLPDANN-GN50 1060630 RFE430V-AIW-DNG T-55619GD065J-LW-ABN NHD-1.8-128160EF-SSXN-FT TCG104SVLPEANN-AN30 NL6448BC33-70 NL192108BC18-06F NLB150XG02L-01 NL6448BC20-30D NL10276BC16-06 NL192108AC10-01D NL6448AC18-08F NL6448BC20-30F NL12880BC20-05BD NL12880BC20-05D NL8060BC26-35BA