

Quad SPST CMOS Analog Switches

APPLICATIONS

- · Audio switching
- Battery powered systems
- Data acquisition
- · Sample-and-hold circuits
- Telecommunication systems
- · Automatic test equipment
- Single supply circuits
- · Hard disk drives

DESCRIPTION

The DG444, DG445 monolithic quad analog switches are designed to provide high speed, low error switching of analog signals. The DG444 has a normally closed function. The DG445 has a normally open function. Combining low power (22 nW, typ.) with high speed (toN: 120 ns, typ.), the DG444, DG445 are ideally suited for upgrading DG211, DG212 sockets. Charge injection has been minimized on the drain for use in sample-and-hold circuits.

To achieve high-voltage ratings and superior switching performance, the DG444, DG445 are built on Vishay Siliconix's high-voltage silicon-gate process. An epitaxial layer prevents latchup.

Each switch conducts equally well in both directions when on, and blocks input voltages to the supply levels when off.

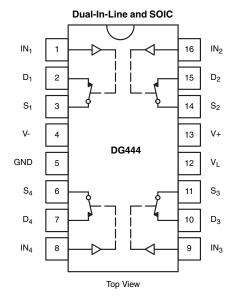
FEATURES

• Low on-resistance: 50 Ω

Low leakage: 80 pA

Low power consumption: 22 nW
 Fast switching action - t_{ON}: 120 ns

· Low charge injection


DG211, DG212 upgrades

• TTL/CMOS logic compatible

BENEFITS

- · Low signal errors and distortion
- Reduced power supply requirements
- Faster throughput
- Improved reliability
- Reduced pedestal errors
- · Simple interfacing
- · Wide supply ranges
 - Single supply: +5 V to 36 V
 - Dual supplies: ± 5 V to ± 20 V

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE						
LOGIC	DG444	DG445				
0	On	Off				
1	Off	On				

Note

 Logic "0" ≤ 0.8 V Logic "1" ≥ 2.4 V

ORDERING INFORMATION						
TEMP. RANGE	RANGE PACKAGE PART NUMBER					
	16-pin plastic DIP	DG444DJ				
-40 °C to 85 °C	10-pili piastic Die	DG445DJ				
-40 C t0 65 C	16 pin parrayy SQIC DG444DY					
	16-pin narrow SOIC	DG445DY				

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C, unless otherwise noted)					
PARAMETER		LIMIT	UNIT		
V+ to V-		44			
GND to V-		25			
V _L		(GND - 0.3) to (V+) +0.3	V		
Digital Inputs ^a , V _S , V _D		(V-) -2 to (V+) +2 or 30 mA, whichever occurs first			
Continuous Current (Any Terminal)		30	A		
Current, S or D (Pulsed at 1 ms, 10	% Duty Cycle)	100	– mA		
Storage Temperature		-65 to 125	°C		
Danier Diagination (Danier a) h	16-Pin Plastic DIP ^c	450	m\//		
Power Dissipation (Package) b	16-Pin Narrow Body SOIC ^d	LIMIT 44 25 (GND - 0.3) to (V+) +0.3 (V-) -2 to (V+) +2 or 30 mA, whichever occurs first 30 100 -65 to 125	mW		

Notes

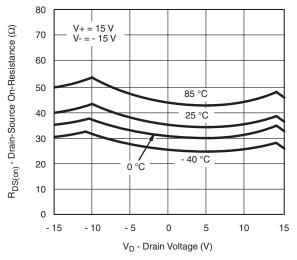
- $a. \ \ Signals \ on \ S_X, \ D_X, \ or \ IN_X \ exceeding \ V+ \ or \ V- \ will \ be \ clamped \ by \ internal \ diodes. \ Limit forward \ diode \ current \ to \ maximum \ current \ ratings.$
- b. All leads welded or soldered to PC board.
- c. Derate 6 mW/°C above 75 °C.
- d. Derate 8 mW/°C above 75 °C.

SPECIFICATIONS for Dua	I Supplies							
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED	TEMP. a	D SUFFIX -40 °C TO 85 °C			UNIT	
	01502	V+ = 15 V, V- = -15 V $V_L = 5 V, V_{IN} = 2.4 V, 0.8 V$	е		MIN. b	TYP. °	MAX. b	
Analog Switch								
Analog Signal Range ^d	V _{ANALOG}			Full	-15	1	15	V
Drain-Source On-Resistanc e	D	$I_S = -10 \text{ mA}, V_D = \pm 8.5 \text{ V}$		Room	-	50	85	Ω
Dialii-Source Off-Nesistanc	R _{DS(on)}	V+ = 13.5 V, V- = -13.5 V		Full	ı	ı	100	5.2
	la. m			Room	-0.5	± 0.01	0.5	
Switch Off Leakage Current	I _{S(off)}	V+ = 16.5, V- = -16.5 V		Full	-5	± 0.01	5	
Switch On Leakage Current	1	$V_D = \pm 15.5 V, V_S = \pm 15.5$	V	Room	-0.5	± 0.01	0.5	nΛ
	ID(off)	I _{D(off)}		Full	-5	± 0.01	5	nA
Channel On Leakage Current	I _{D(on)}	V+ = 16.5 V, V- = -16.5 V $V_S = V_D = \pm 15.5 \text{ V}$		Room	-0.5	± 0.08	0.5	_
Charmer On Leakage Current				Full	-10	± 0.08	10	
Digital Control								
Input Current V _{IN} Low	I _{IL}	V_{IN} under test = 0.8 V All Other = 2.4 V		Full	-500	-0.01	500	~^
Input Current V _{IN} High	I _{IH}	V _{IN} under test = 2.4 V All Other = 0.8 V		Full	-500	0.01	500	nA
Dynamic Characteristics								
Turn-On Time	t _{ON}			Room	-	120	250	
Turn-Off Time	_	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF}$ $V_S = \pm 10 \text{ V}, \text{ See Figure 2}$	DG444	Room	-	110	140	ns
rum-On Time	t _{OFF}	v5 = ± 10 v, 000 rigulo 2	DG445	Room	-	160	210	
Charge Injection e	Q	C_L = 1 nF, V_S = 0 V V_{gen} = 0 V, R_{gen} = 0 Ω		Room	-	-1	-	рС
Off Isolation e	OIRR	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$		Room	-	60	-	-10
Crosstalk (Channel-to-Channel) d	X _{TALK}			Room	-	100	-	dB
Source Off Capacitance	C _{S(off)}	$f = 1 \text{ MHz}$ $V_{ANALOG} = 0 \text{ V}$		Room	-	4	-	
Drain Off Capacitance	C _{D(off)}			Room	-	4	-	pF
Channel On Capacitance	C _{D(on)}			Room	-	16	-	

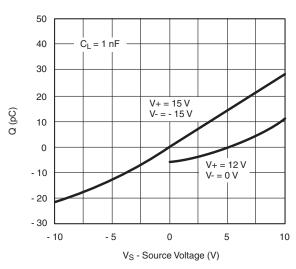
Vishay Siliconix

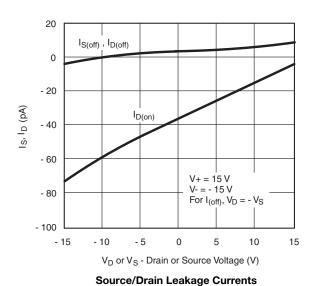
SPECIFICATIONS for Dual Supplies							
PARAMETER	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED	TEMP. a	D SUFFIX -40 °C TO 85 °C			UNIT	
	01202	V+ = 15 V, V- = -15 V $V_L = 5 V, V_{IN} = 2.4 V, 0.8 V^e$		MIN. b	TYP. c	MAX. b	
Power Supplies							
Positive Supply Current	l+		Room	-	0.001	1	
1 ositive Supply Guiterit	IΤ		Full	-	-	5	
Negative Supply Current	1		Room	-1	-0.0001	ı	
Negative Supply Current	V+ = 16.5 V, V- = -16.5 V	Full	-5	ı	ı	μA	
Logic Supply Current	IL	$V_{IN} = 0 V \text{ or } 5 V$	Room	-	0.001	1	μΑ
Logic Supply Current	'L		Full	-	0.001	5	
Ground Current	laur		Room	-1	-0.001	ı	
GIOGING OGITERI	IGND		Full	-5	-0.001	ı	

SPECIFICATIONS for Unipolar Supplies							
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED	TEMP. a	LIMITS -40 °C °C TO 85 °C			UNIT
.,		V+ = 12 V, V- = 0 V $V_L = 5 V, V_{IN} = 2.4 V, 0.8 V^e$		MIN. b	TYP. °	MAX. b	0
Analog Switch							
Analog Signal Range ^d	V _{ANALOG}		Full	0	-	12	V
Drain-Source On-Resistance d		$I_S = -10 \text{ mA}, V_D = 3 \text{ V}, 8 \text{ V}$	Room	-	100	160	Ω
Drain-Source On-Resistance	R _{DS(on)}	V+ = 10.8 V, V _L = 5.25 V	Full	-	-	200	52
Dynamic Characteristics							
Turn-On Time	t _{ON}	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF}, V_S = 8 \text{ V}$	Room	-	300	450	no
Turn-Off Time	t _{OFF}	See Figure 2	Room	-	60	200	ns
Charge Injection	Q	C_L = 1 nF, V_{gen} = 6 V, R_{gen} = 0 Ω	Room	-	2	-	рС
Power Supplies							
Positive Supply Current	I+	V+ = 13.2 V, V _{IN} = 0 V or 5 V	Room	-	0.001	1	
Positive Supply Current	1+	$v + = 13.2 \text{ v}, v_{1N} = 0 \text{ v or } 3 \text{ v}$	Full	-	-	5	
Negative Supply Current	ve Supply Current I- V _{IN} = 0 V or 5 V	V 0 V or 5 V	Room	-1	-0.0001	-	
Negative Supply Current	'-	VIN = 0 V OI 3 V	Full	-5	-	-	
Logic Supply Current	1.	V = 5.25 V V = 0.V or 5 V	Room	-	0.001	1	μA
Logic Supply Current I_L $V_L = 5.25 \text{ V}, V_{IN} = 0 \text{ V or } 5 \text{ V}$	$v_L = 5.25 \text{ v}, v_{IN} = 0 \text{ v or } 5 \text{ v}$	Full	-	-	5		
Cround Current		V 0V 5V	Room	-1	-0.001	-	
Ground Current I_{GND} $V_{IN} = 0 \text{ V or 5 V}$	Full	-5	-	-			

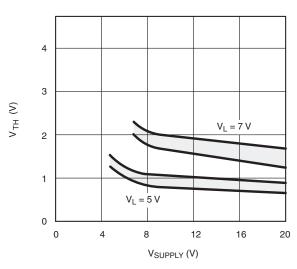

Notes

- a. Room = 25 °C, Full = as determined by the operating temperature suffix.
- b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. Guaranteed by design, not subject to production test.
- e. V_{IN} = input voltage to perform proper function.

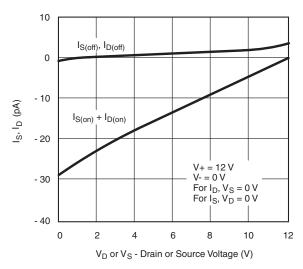

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

R_{DS(on)} vs. V_D and Temperature

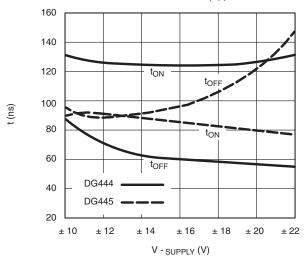


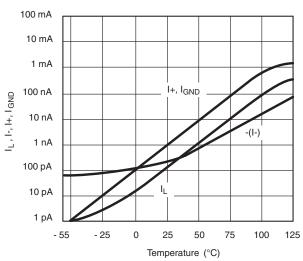
Charge Injection vs. Source Voltage

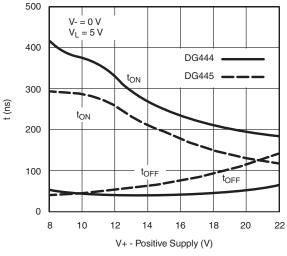


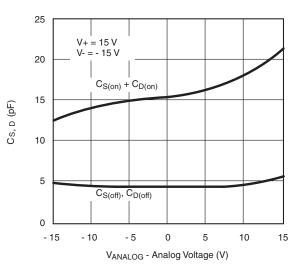
- 120 Crosstalk - 100 - 80 (dB) - 60 Off Isolation - 40 V+ = 15 V V- = - 15 V - 20 Ref. 10 dBm 0 10K 100 1K 100K 1M 10M f - Frequency (Hz)

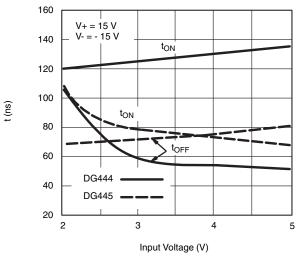
Crosstalk and Off Isolation vs. Frequency


Switching Threshold vs. Supply Voltage


Source/Drain Leakage Currents (Single 12-V Supply)


TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)


Switching Time vs. Power Supply Voltage


Supply Current vs. Temperature

Switching Times vs. Power Supply Voltage

Source/Drain Capacitance vs. Analog Voltage

Switching Time vs. Input Voltage

SCHEMATIC DIAGRAM TYPICAL CHANNEL

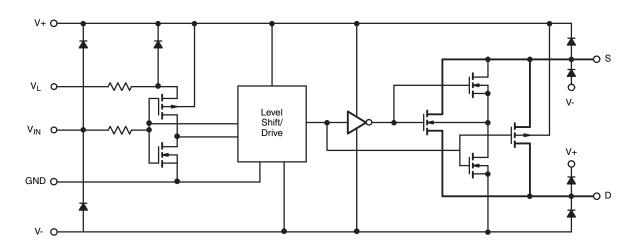


Fig. 1

TEST CIRCUITS

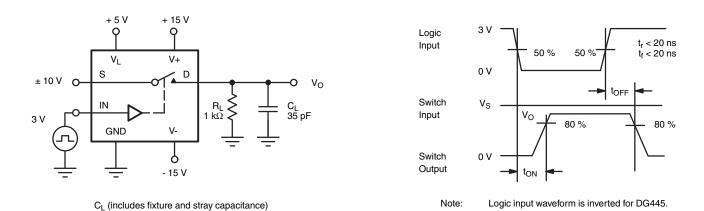


Fig. 2 - Switching Time

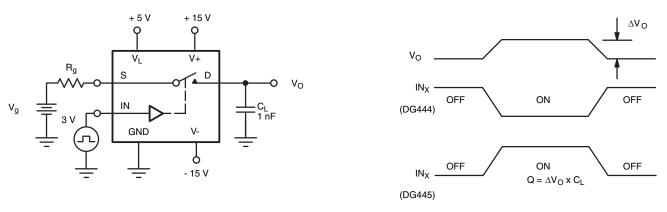


Fig. 3 - Charge Injection

TEST CIRCUITS

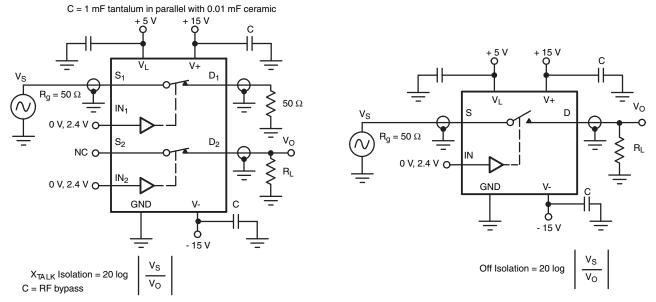


Fig. 4 - Crosstalk

Fig. 5 - Off Isolation

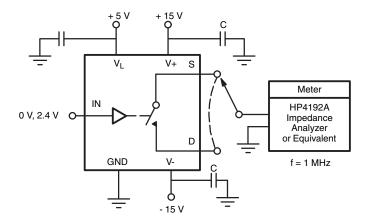


Fig. 6 - Source/Drain Capacitances

APPLICATIONS

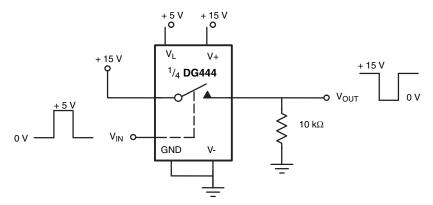


Fig. 7 - Level Shifter

APPLICATIONS

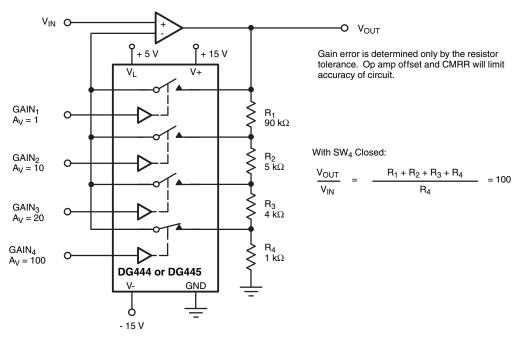
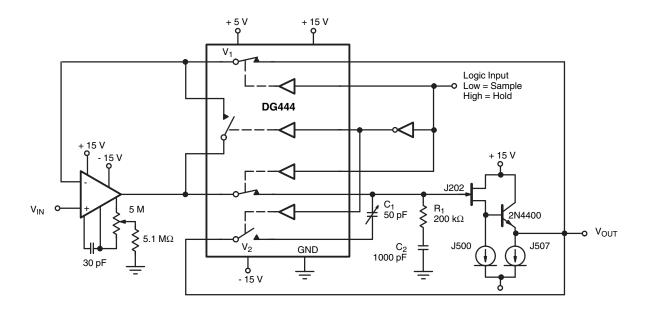
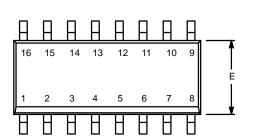
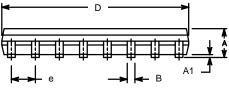


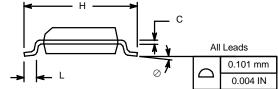
Fig. 8 - Precision-Weighted Resistor Programmable-Gain Amplifier




Fig. 9 - Precision Sample-and-Hold

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?70054.

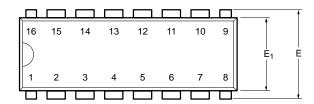

SOIC (NARROW): 16-LEAD JEDEC Part Number: MS-012

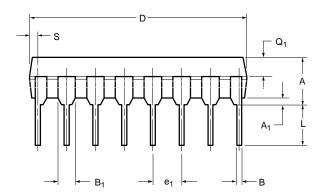


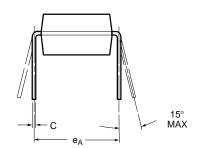
	MILLIMETERS		INC	HES		
Dim	Min	Max	Min	Max		
Α	1.35	1.75	0.053	0.069		
A ₁	0.10	0.20	0.004	0.008		
В	0.38	0.51	0.015	0.020		
С	0.18	0.23	0.007	0.009		
D	9.80	10.00	0.385	0.393		
Е	3.80	4.00	0.149	0.157		
е	1.27	BSC	0.050	BSC		
Н	5.80	6.20	0.228	0.244		
L	0.50	0.93	0.020	0.037		
0	0°	8°	0°	8°		
FCN: S-03946—Rev F 09-Jul-01						

ECN: S-03946—Rev. F, 09-Jul-01

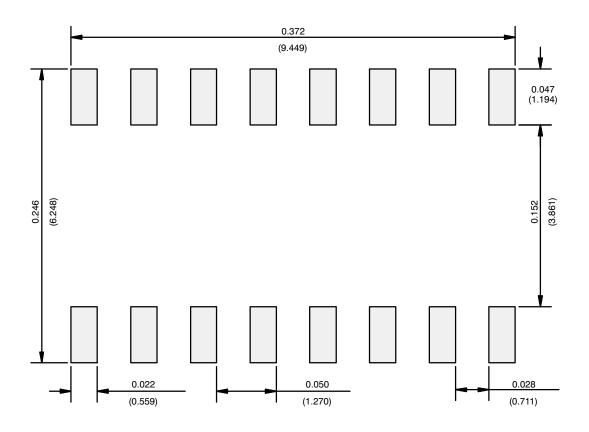
DWG: 5300






www.vishay.com 02-Jul-01

PDIP: 16-LEAD



	MILLIN	IETERS	INC	HES	
Dim	Min	Max	Min	Max	
Α	3.81	5.08	0.150	0.200	
A ₁	0.38	1.27	0.015	0.050	
В	0.38	0.51	0.015	0.020	
B ₁	0.89	1.65	0.035	0.065	
С	0.20	0.30	0.008	0.012	
D	18.93	21.33	0.745	0.840	
E	7.62	8.26	0.300	0.325	
E ₁	5.59	7.11	0.220	0.280	
e ₁	2.29	2.79	0.090	0.110	
e _A	7.37	7.87	0.290	0.310	
L	2.79	3.81	0.110	0.150	
Q ₁	1.27	2.03	0.050	0.080	
S	0.38	1.52	.015	0.060	
ECN: S-03946—Rev. D, 09-Jul-01 DWG: 5482					

Document Number: 71261 www.vishay.com 06-Jul-01 www.vishay.com

RECOMMENDED MINIMUM PADS FOR SO-16

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Ш

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analogue Switch ICs category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

FSA3051TMX NLVAS4599DTT1G MAX4992EVB+T MAX4684ETB+T BCM6522IPBG BCM65300IFSBG MAX14764ETA+T
TMUX1113RSVR TMUX1112RSVR ADG1436TRUZ-EP BL4684C PE423422A PE42359SCAA PE42540F RS550YUCM12

ADGS1414DBCCZ ADG658YRUZ-REEL7 RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 SP2526A-1EN-L/TR FSA4157P6X
BA7603F-E2 MAX4702EUE+ MAX4617CUE+ MAX4599EUT+T MAX4066ESD+ MAX4052ACSE+ MAX396CAI+ MAX391CPE+
MAX4730EXT+T MAX314CPE+ MAX4051AEEE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR TS3A4751PWR

NCN1154MUTAG DG444DY-E3 NLAS4157DFT2G NLAS4599DFT2G NLAS7242MUTBG NLASB3157DFT2G NLAST4599DFT2G

NLAST4599DTT1G DG403DY-T1-E3 MAX4714EXTT MAX392CPE BGSX22G2A10E6327XTSA1 ADG1611BRUZ-REEL7