

COMPLEMENTARY PAIR ENHANCEMENT MODE MOSFET

Product Summary

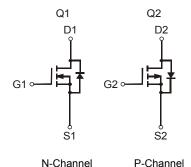
Device	V _{(BR)DSS}	R _{DS(ON)}	I _D T _A = 25°C
Q1	20V	$35m\Omega$ @ $V_{GS} = 4.5V$	4.5A
Qı	Q1 20V	56mΩ @ V _{GS} = 1.8V	3.5A
Q2 -20V		$74m\Omega$ @ $V_{GS} = -4.5V$	3.1A
Q2	-20V	168mΩ @ V _{GS} = -1.8V	2.0A

Description

This MOSFET has been designed to minimize the on-state resistance (R_{DS(on)}) and yet maintain superior switching performance, making it ideal for high efficiency power management applications.

Applications

- Motor control
- Power Management Functions
- DC-DC Converters
- Backlighting


Features

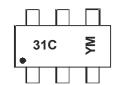
- Low On-Resistance
- Low Input Capacitance
- Fast Switching Speed
- Low Input/Output Leakage
- Fast Switching Speed
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- Qualified to AEC-Q101 standards for High Reliability

Mechanical Data

- Case: TSOT26
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals Matte Tin annealed over Copper leadframe.
 Solderable per MIL-STD-202, Method 208 (3)
- Terminal Connections Indicator: See diagram
- Weight: 0.013 grams (approximate)

Top View

Top View Pin Configuration


Ordering Information (Note 4)

Part Number	Qualification	Case	Packaging
DMC2038LVT-7	Commercial	TSOT26	3000/Tape & Reel
DMC2038LVTQ-7	Automotive	TSOT26	3000/Tape & Reel

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.
- See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. For packaging details, go to our website at http://www.diodes.com/products/packages.html

Marking Information

31C = Product Type Marking Code YM = Date Code Marking Y = Year (ex: X = 2010) M = Month (ex: 9 = September)

Date Code Key

Year	201	0	2011		2012	20	13	2014		2015	2	2016
Code	X		Υ		Z	A	4	В		С		D
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	0	N	D

Maximum Ratings N-CHANNEL – Q1 (@T_A = +25°C, unless otherwise specified.)

Characteristic		Symbol	Value	Units	
Drain-Source Voltage		V _{DSS}	20	V	
Gate-Source Voltage			V _{GSS}	±12	V
		$T_A = +25^{\circ}C$ $T_A = +70^{\circ}C$	I _D	3.7 3.0	А
Continuous Drain Current (Note 5) V _{GS} = 4.5V	t<10s	$T_A = +25^{\circ}C$ $T_A = +70^{\circ}C$	I _D	4.1 3.2	Α
Continuous Drain Current (Note 6) 1/ 4 51/	Steady State	$T_A = +25^{\circ}C$ $T_A = +70^{\circ}C$	I _D	4.5 3.6	Α
Continuous Drain Current (Note 6) V _{GS} = 4.5V	t<10s	$T_A = +25^{\circ}C$ $T_A = +70^{\circ}C$	I _D	5.2 4.2	Α
Maximum Continuous Body Diode Forward Current	Is	1.5	Α		
Pulsed Drain Current (10μs pulse, duty cycle = 1%))		I _{DM}	25	Α

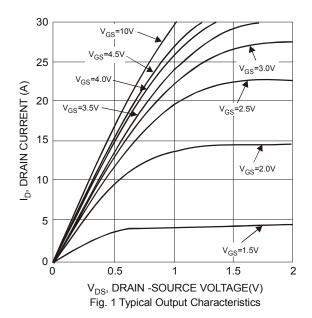
Maximum Ratings P-CHANNEL – Q2 (@T_A = +25°C, unless otherwise specified.)

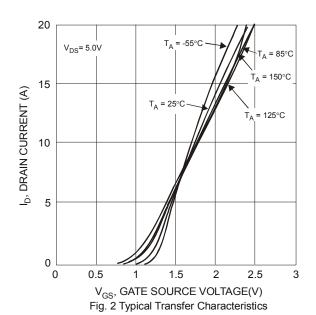
Characteristic		Symbol	Value	Units	
Drain-Source Voltage			V_{DSS}	-20	V
Gate-Source Voltage	_		V_{GSS}	±12	V
		T _A = +25°C T _A = +70°C	I _D	2.6 2.1	А
Continuous Drain Current (Note 5) V _{GS} = 4.5V	t<10s	T _A = +25°C T _A = +70°C	I _D	2.9 2.4	А
Continuous Prain Cornent (Note C) V	Steady State	T _A = +25°C T _A = +70°C	I _D	3.1 2.5	А
Continuous Drain Current (Note 6) V _{GS} = 4.5V	t<10s	T _A = +25°C T _A = +70°C	I _D	3.8 3.0	А
Maximum Continuous Body Diode Forward Current	Is	-1.5	Α		
Pulsed Drain Current (10μs pulse, duty cycle = 1%)			I _{DM}	-17	Α

Thermal Characteristics (@T_A = +25°C, unless otherwise specified.)

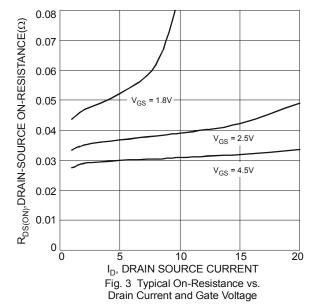
Characteristic		Symbol	Value	Units
Total Bower Dissipation (Note 5)	T _A = +25°C	Б	0.8	W
Total Power Dissipation (Note 5)	T _A = +70°C	P_{D}	0.5	VV
Thermal Resistance, Junction to Ambient (Note 5)	Steady State	- Г	168	°C/W
Thermal Resistance, Junction to Ambient (Note 5)	t<10s	$R_{\theta JA}$	120	C/VV
Total Power Dissipation (Note 6)	$T_A = +25^{\circ}C$	Б	1.1	W
Total Fower Dissipation (Note 6)	T _A = +70°C	P_{D}	0.7	VV
Thermal Desistance, Junction to Ambient (Note 6)	Steady State	П	114	
Thermal Resistance, Junction to Ambient (Note 6)	t<10s	$R_{\theta JA}$	72	°C/W
Thermal Resistance, Junction to Case (Note 6)		$R_{ heta JC}$	39	
Operating and Storage Temperature Range		$T_{J_1}T_{STG}$	-55 to +150	°C

Device mounted on FR-4 substrate PC board, 2oz copper, with minimum recommended pad layout.
 Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square copper plate.




Electrical Characteristics N-CHANNEL - Q1 (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition	
OFF CHARACTERISTICS (Note 7)							
Drain-Source Breakdown Voltage	BV _{DSS}	20	1	-	V	$V_{GS} = 0V, I_D = 250\mu A$	
Zero Gate Voltage Drain Current @T _c = +25°C	I _{DSS}	-	-	1.0	μΑ	V_{DS} =16V, V_{GS} = 0V	
Gate-Source Leakage	I _{GSS}	-	-	±100	nA	$V_{GS} = \pm 12V, V_{DS} = 0V$	
ON CHARACTERISTICS (Note 7							
Gate Threshold Voltage	V _{GS(th)}	0.4	-	1.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	
		-	27	35		$V_{GS} = 4.5V$, $I_D = 4.0A$	
Static Drain-Source On-Resistance	R _{DS} (ON)	-	33	43	mΩ	$V_{GS} = 2.5V$, $I_D = 2.5A$	
	== (=)	-	43	56		V _{GS} = 1.8V, I _D = 1.5A	
Forward Transfer Admittance	Y _{fs}	-	9	-	S	$V_{DS} = 5V, I_{D} = 3.4A$	
Diode Forward Voltage	V_{SD}	0.4	-	1.1	V	$V_{GS} = 0V, I_{S} = 1A$	
DYNAMIC CHARACTERISTICS (Note 8)							
Input Capacitance	C _{iss}	-	400	530	pF	10/11/	
Output Capacitance	Coss	-	70	90	pF	V _{DS} = 10V, V _{GS} = 0V, -f = 1.0MHz	
Reverse Transfer Capacitance	C _{rss}	-	65	100	pF	1 - 1.0WI IZ	
Gate Resistance	R_g	-	1.9	-	Ω	$V_{DS} = 0V$, $V_{GS} = 0V$, $f = 1MHz$	
Total Gate Charge (V _{GS} = 4.5V)	Q_g	-	5.7	-	nC		
Total Gate Charge (V _{GS} = 10V)	Qg	-	12	17	nC	\/ - 15\/ \ - 5 0 0	
Gate-Source Charge	Q _{gs}	-	0.7	-	nC	$V_{DS} = 15V, I_D = 5.8A$	
Gate-Drain Charge	Q _{gd}	-	1.4	-	nC		
Turn-On Delay Time	t _{D(on)}	-	5	10	ns		
Turn-On Rise Time	t _r	-	8	16	ns	$V_{DS} = 10V, V_{GS} = 4.5V,$	
Turn-Off Delay Time	t _{D(off)}	-	25	40	ns	$R_G = 6\Omega$, $I_{DS} = 1A$,	
Turn-Off Fall Time	t _f	-	8	16	ns		


Notes:

- 7. Short duration pulse test used to minimize self-heating effect. 8. Guaranteed by design. Not subject to product testing.

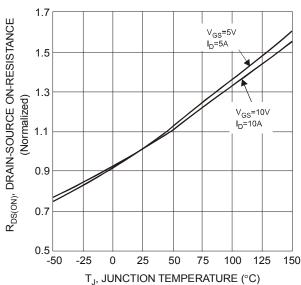
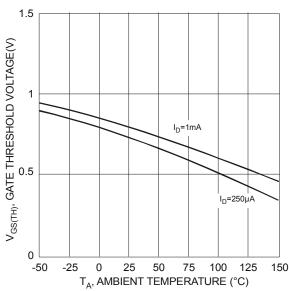
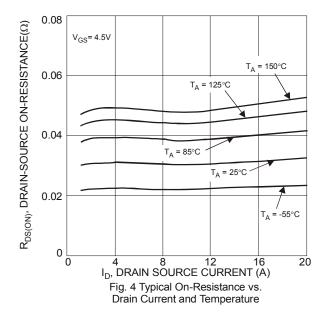
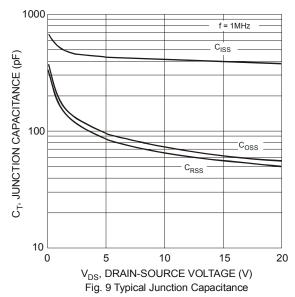
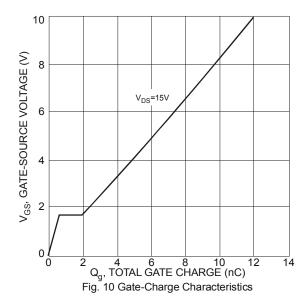
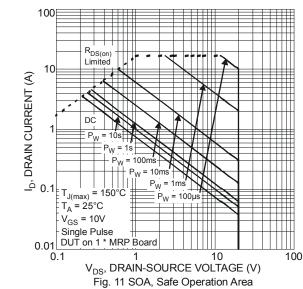


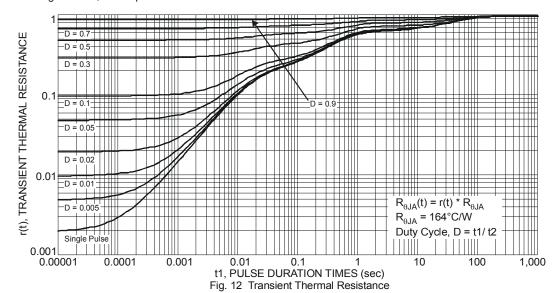
Fig. 5 On-Resistance Variation with Temperature

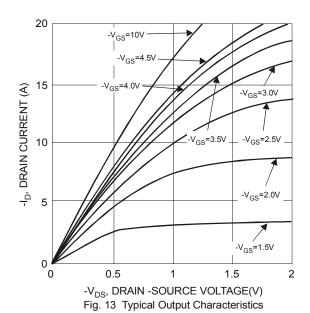



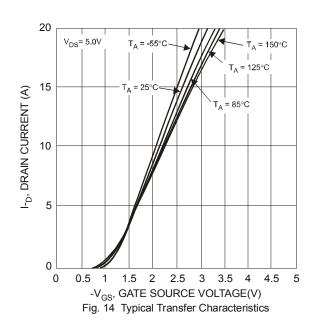

Fig. 7 Gate Threshold Variation vs. Ambient Temperature



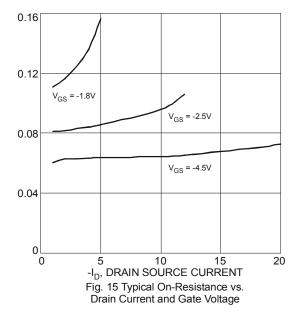


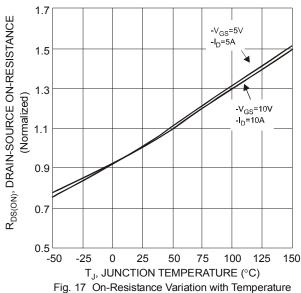

20 18 16 Is, SOURCE CURRENT (A) T_A= 25°C 12 10 8 6 2 0 0.6 0.2 0.4 8.0 1 1.2 1.4 V_{SD}, SOURCE-DRAIN VOLTAGE (V) Fig. 8 Diode Forward Voltage vs. Current





Electrical Characteristics P-CHANNEL – Q2 (@T_A = +25°C, unless otherwise specified.)


Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition	
OFF CHARACTERISTICS (Note 7)							
Drain-Source Breakdown Voltage	BV_{DSS}	-20	1	-	٧	$V_{GS} = 0V$, $I_D = -250\mu A$	
Zero Gate Voltage Drain Current @T _c = +25°C	I _{DSS}	-	1	-1.0	μΑ	$V_{DS} = -16V, V_{GS} = 0V$	
Gate-Source Leakage	I _{GSS}	-	-	±100	nA	$V_{GS} = \pm 12V, V_{DS} = 0V$	
ON CHARACTERISTICS (Note 7)							
Gate Threshold Voltage	$V_{GS(th)}$	-0.4	-	-1.0	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	
		-	57	74		$V_{GS} = -4.5V$, $I_D = -3.0A$	
Static Drain-Source On-Resistance	R _{DS} (ON)	-	76	110	mΩ	$V_{GS} = -2.5V$, $I_D = -1.5A$	
	, ,	-	102	168		$V_{GS} = -1.8V$, $I_{D} = -1.0A$	
Forward Transfer Admittance	Y _{fs}	-	10	-	S	$V_{DS} = -5V, I_{D} = -3.0A$	
Diode Forward Voltage	V_{SD}	-	-0.8	-1.0	V	$V_{GS} = 0V, I_{S} = -0.6A$	
DYNAMIC CHARACTERISTICS (Note 8)							
Input Capacitance	Ciss	-	530	705	рF	101/1/	
Output Capacitance	Coss	-	70	95	pF	$V_{DS} = -10V, V_{GS} = 0V,$ - f = 1.0MHz	
Reverse Transfer Capacitance	C _{rss}	-	60	90	pF	1 - 1.0WH12	
Gate Resistance	R_g	-	72	-	Ω	V_{DS} = 0V, V_{GS} = 0V, f = 1MHz	
Total Gate Charge (V _{GS} = -4.5V)	Q_g	-	7	10	nC		
Total Gate Charge (V _{GS} = -10V)	Qg	-	14	-	nC	\\ - 45\\\ - CA	
Gate-Source Charge	Q_{gs}	-	0.95	-	nC	V _{DS} = -15V,I _D = -6A	
Gate-Drain Charge	Q_{qd}	-	1.2	-	nC		
Turn-On Delay Time	t _{D(on)}	-	11	20	nS		
Turn-On Rise Time	t _r	-	12	22	nS	$V_{DS} = -10V, V_{GS} = -4.5V,$	
Turn-Off Delay Time	t _{D(off)}	-	21	34	nS	$R_G = 6\Omega$, $I_S = -1A$,	
Turn-Off Fall Time	t _f	-	13	23	nS		


7. Short duration pulse test used to minimize self-heating effec 8. Guaranteed by design. Not subject to product testing.

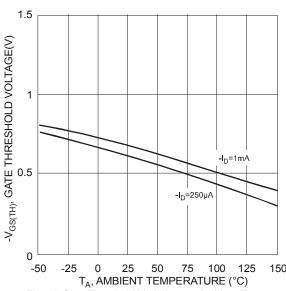
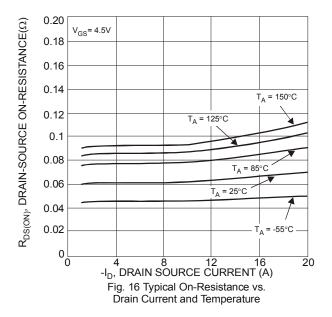



Fig. 19 Gate Threshold Variation vs. Ambient Temperature

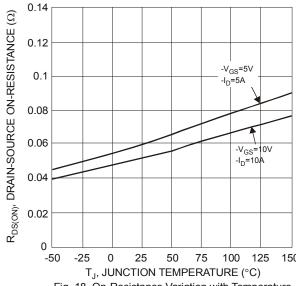
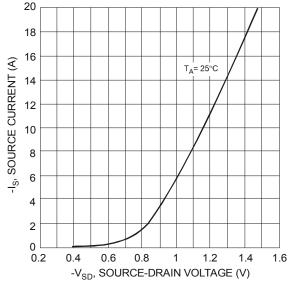
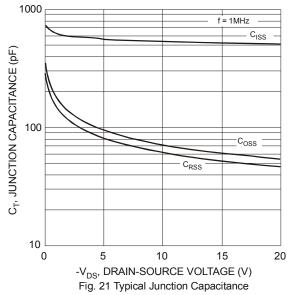
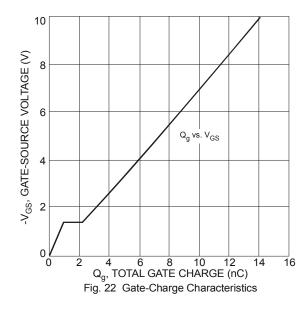
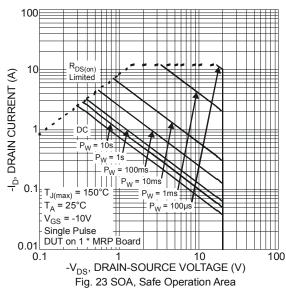
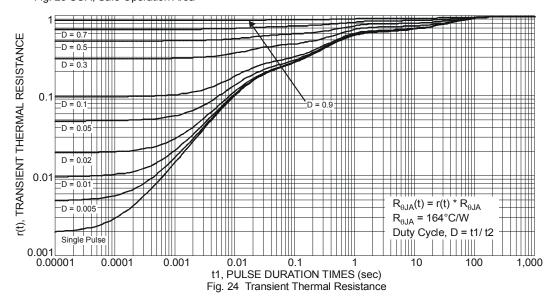
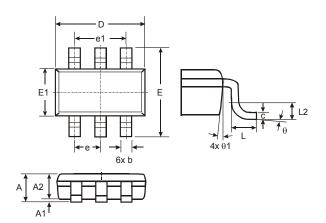


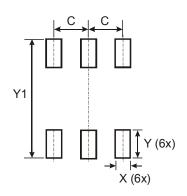
Fig. 18 On-Resistance Variation with Temperature


Fig. 20 Diode Forward Voltage vs. Current



Package Outline Dimensions


Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for latest version.

TSOT26							
Dim	Min	Max	Тур				
Α	_	1.00	-				
A1	0.01	0.10	_				
A2	0.84	0.90	_				
D	2.85	2.95	2.90				
Е	2.70	2.90	2.80				
E1	1.55	1.65	1.60				
b	0.30	0.45	-				
С	0.12	0.20	_				
е	BSC	BSC	0.95				
e1	BSC	BSC	1.90				
L	0.30	0.50					
L2	BSC	BSC	0.25				
θ	0°	8°	4°				
θ1	4°	12°	-				
All D	imens	ions ir	n mm				

Suggested Pad Layout

Please see AP02001 at http://www.diodes.com/datasheets/ap02001.pdf for the latest version.

Dimensions	Value (in mm)
С	0.950
X	0.700
Y	1.000
Y1	3 199

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2012, Diodes Incorporated

www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3