

- Ideal for European Superheterodyne Receivers at 433.92 MHz
- Extremely Low Series Resistance
- Quartz Stability
- Rugged, Hermetic, Low-Profile TO39 Case
- Complies with Directive 2002/95/EC (RoHS)

The RO3102 is a true one-port, surface-acoustic-wave (SAW) resonator in a low-profile TO39 case. It provides reliable, fundamental-mode, quartz frequency stabilization of fixed-frequency oscillators operating at approximately 423.22 MHz. The RO3102 is designed for 433.92 MHz superheterodyne receivers with a 10.7 MHz IF used in remote control and wireless security systems operating under ETSI I-ETS 300 220.

Absolute Maximum Ratings

Rating	Value	Units
CW RF Power Dissipation	+0	dBm
DC Voltage Between Any Two Pins	±30	VDC
Case Temperature	-40 to +85	°C
Solder Temperature, 10 seconds/5 cycles maximum	260	°C

RO3102

423.22 MHz SAW Resonator

Electrical Characteristics

Characteristic		Sym	Notes	Minimum	Typical	Maximum	Units
Center Frequency (+25 °C)	Absolute Frequency	f _C	2245	423.145		423.295	MHz
	Tolerance from 423.220 MHz	Δf_{C}	2, 3, 4, 5			±75	kHz
Insertion Loss		IL	2, 5, 6		1.4	2.0	dB
Quality Factor	Unloaded Q	Q _U	567		12,500		
	50 Ω Loaded Q	QL	5, 6, 7	-	1,900		
Temperature Stability	Turnover Temperature	Т _О		10	25	40	°C
	Turnover Frequency	f _O	6, 7, 8	-	f _c		kHz
	Frequency Temperature Coefficient	FTC			0.037		ppm/°C ²
Frequency Aging	Absolute Value during the First Year	f _A	1		≤10		ppm/yr
DC Insulation Resistance between Any Two Pins			5	1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M			13		Ω
	Motional Inductance	L _M	5, 7, 9	-	62		μH
	Motional Capacitance	C _M		-	2.3		fF
	Pin 1 to Pin 2 Static Capacitance	CO	5, 6, 9		1.8		pF
	Transducer Static Capacitance	CP	5, 6, 7, 9		1.8		pF
Test Fixture Shunt Inductance		L _{TEST}	2, 7		77		nH
Lid Symbolization (in Addition to Lot and/or Date Codes) RFM RO3102		•					

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

Notes:

- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
- The center frequency, f_C, is measured at the minimum insertion loss point, IL_{MIN}, with the resonator in the 50 Ω test system (VSWR ≤ 1.2:1). The shunt inductance, L_{TEST}, is tuned for parallel resonance with C_O at f_C. Typically, f_{OSCILLATOR} or f_{TRANSMITTER} is less than the resonator f_C.
 One or more of the following United States patents apply: 4,454,488 and
- 3. One or more of the following United States patents apply: 4,454,488 and 4,616,197 and others pending.
- Typically, equipment designs utilizing this device require emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 5. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.
- 6. The design, manufacturing process, and specifications of this device are subject to change without notice.

- 7. Derived mathematically from one or more of the following directly measured parameters: f_, IL, 3 dB bandwidth, f_ versus T_, and C_.
- 8. Turnover temperature, T_O, is the temperature of maximum (or turnover) frequency, f_O. The nominal frequency at any case temperature, T_C, may be calculated from: $f = f_O [1 FTC (T_O T_C)^2]$. Typically, oscillator T_O is 20°C less than the specified resonator T_O.
- 9. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_0 is the static (nonmotional) capacitance between pin1 and pin 2 measured at low frequency (10 MHz) with a capacitance meter. The measurement includes case parasitic capacitance with a floating case. For usual grounded case applications (with ground connected to either pin 1 or pin 2 and to the case), add approximately 0.25 pF to C_0 .

Electrical Connections

This one-port, two-terminal SAW resonator is bidirectional. The terminals are interchangeable with the exception of circuit board layout.

Pin	Connection
1	Terminal 1
2	Terminal 2
3	Case Ground

Typical Test Circuit

The test circuit inductor, L_{TEST} is tuned to resonate with the static capacitance, C_O at $F_C.$

Electrical Test:

Power Test:

CW RF Power Dissipation = P P REFLECTED

Typical Application Circuits

Typical Low-Power Transmitter Application:

Typical Local Oscillator Application:

Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include oscillator temperature characteristics.

Equivalent LC Model

The following equivalent LC model is valid near resonance:

Case Design

Dimensions	Millimeters		Inches		
Dimensions	Min	Max	Min	Max	
A		9.40		0.370	
В		3.18		0.125	
С	2.50	3.50	0.098	0.138	
D	0.46 Nominal		0.018 Nominal		
E	5.08 Nominal		0.200 Nominal		
F	2.54 Nominal		0.100 Nominal		
G	2.54 Nominal		0.100 Nominal		
Н		1.02		0.040	
J	1.40		0.055		

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for murata manufacturer:

Other Similar products are found below :

CRE1S0505DC 786028C MGJ1D121905MPC-R7 MGJ2D051515SC 82103C 82224C 82473C GCM32EC71H106MA03L GRM2165C1H101FA01D PTGL09AS2R2K3B51B0 11R683C DFE252012P-1R0M=P2 BL02RN1R2P1A NMK1212SC NMV1212DAC LQH43MN330J03L GJM0335C1E220GB01D GRM1885C1H150FA01J GRM3195C2A471JD01D RF1211C MGJ2D121509SC MGJ6D122005LMC-R7 #B953AS-330M=P3 BLM18AG601SN1J HN-214 HN-214X TZ03P450 UEE-12/12.5-D48NB-C LBWB1ZZYDZ-DTEMP-SNIC-UART-A LLM315R70J225MA11L 46334C DR4103 LQH5BPN1R5NT0L SCA830-D07-PCB NKE1212DC NMA1215SC UVQ-48/2.5-D24PB-C IML-0642 HPR105C HPQ-12/25-D48PB-C UWS-5/10-Q48N-C UWR-5/2000-D24E-C UHE-152000-D24-C 782485/35C UEI-3.3/15-Q12PR-C MGJ2D242005SC MEV1S0505SC MEMS-EVAL-BOARD MEJ2D0512SC MEE3S1215SC