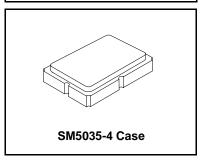


- Ideal for 303.825 MHz Transmitters
- Very Low Series Resistance
- Quartz Stability
- Surface-mount Ceramic Case
- Complies with Directive 2002/95/EC (RoHS)


The RO3104A is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount, ceramic case. It provides reliable, fundamental-mode, quartz frequency stabilization of fixed-frequency transmitters operating at 303.825 MHz. This SAW is designed specifically for AM transmitters in wireless security and remote control applications.

Absolute Maximum Ratings

Rating	Value	Units
CW RF Power Dissipation (See Typical Test Circuit)	0	dBm
DC Voltage Between Terminals (Observe ESD Precautions)	±30	VDC
Case Temperature	-40 to +85	°C
Soldering Temperature (10 seconds / 5 cycles maximum)	260	°C

RO3104A

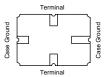
303.825 MHz SAW Resonator

Electrical Characteristics

Characteristic		Sym	Notes	Minimum	Typical	Maximum	Units
Frequency, +25 °C	v, +25 °C Nominal Frequency f _C	0 0 4 5	303.750		303.900	MHz	
	Tolerance from 303.825 MHz	Δf_{C}	2, 3, 4, 5			±75	kHz
Insertion Loss		IL	2, 5, 6		1.5	2.0	dB
Quality Factor	Unloaded Q	Q _U	5, 6, 7		11,000		
	50 Ω Loaded Q	Q_L			1,460		
Temperature Stability	Turnover Temperature	T _O	6, 7, 8	10	25	40	°C
	Turnover Frequency	f _O			f _C		
	Frequency Temperature Coefficient	FTC			0.032		ppm/°C ²
Frequency Aging	Absolute Value during the First Year	f _A	1, 6		10		ppm/yr
DC Insulation Resistance between Any Two Terminals			5	1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M			15.4		Ω
	Motional Inductance	L _M	5, 6, 7, 9,		88.4		μH
	Motional Capacitance	C _M	3,		3.1		fF
	Transducer Static Capacitance	Co	5, 6, 9		3.3		pF
Test Fixture Shunt Inductance		L _{TEST}	2, 7		82		nΗ
Lid Symbolization		662 // YWWS					

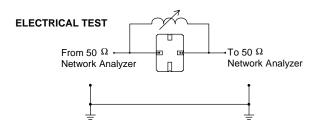
CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

Notes:

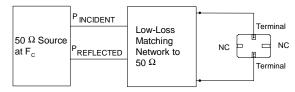

- Frequency aging is the change in $f_{\mathbb{C}}$ with time and is specified at +65 °C or less. Aging may exceed the specification for prolonged temperatures above +65 °C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.

 The center frequency, f_C, is measured at the minimum insertion loss point,
- IL_{MIN}, with the resonator in the 50 Ω test system (VSWR \leq 1.2:1). The shunt inductance, L_{TEST}, is tuned for parallel resonance with C_O at f_C. Typically, f_{OSCILLATOR} or f_{TRANSMITTER} is approximately equal to the resonator $f_{\mathbb{C}}$.
- One or more of the following United States patents apply: 4,454,488 and 4.616.197.
- Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 5. Unless noted otherwise, case temperature $T_C = +25 \pm 2$ °C.
- The design, manufacturing process, and specifications of this device are subject to change without notice.

- Derived mathematically from one or more of the following directly 7.
- measured parameters: f_C , IL, 3 dB bandwidth, f_C versus T_C , and C_O . Turnover temperature, T_O , is the temperature of maximum (or turnover) frequency, f_O. The nominal frequency at any case temperature, T_C, may be calculated from: $f = f_O [1 - FTC (T_O - T_C)^2]$. Typically oscillator T_O is approximately equal to the specified resonator To.
- This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance Co is the static (nonmotional) capacitance between the two terminals measured at low frequency (10 MHz) with a capacitance meter. The measurement includes parasitic capacitance with "NC" pads unconnected. Case parasitic capacitance is approximately 0.05 pF. Transducer parallel capacitance can by calculated as: $C_P \approx C_O - 0.05$ pF.
- Tape and Reel standard per ANSI / EIA 481.

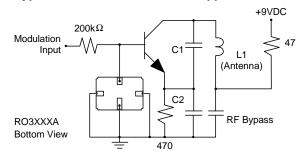

Electrical Connections

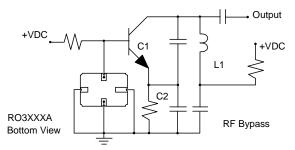
The SAW resonator is bidirectional and may be installed with either orientation. The two terminals are interchangeable and unnumbered. The callout NC indicates no internal connection. The NC pads assist with mechanical positioning and stability. External grounding of the NC pads is recommended to help reduce parasitic capacitance in the circuit.



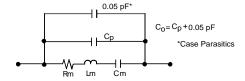
Typical Test Circuit

The test circuit inductor, L_{TEST} , is tuned to resonate with the static capacitance, C_{O} , at F_{C} .

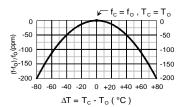

POWER TEST


CW RF Power Dissipation = PINCIDENT - P REFLECTED

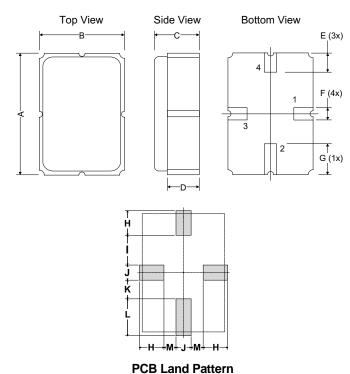
Typical Application Circuits


Typical Low-Power Transmitter Application

Typical Local Oscillator Applications



Equivalent Model



Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include LC component temperature contributions.

Case

Dimensians	Millimeters			Inches		
Dimensions	Min	Nom	Max	Min	Nom	Max
Α	4.87	5.00	5.13	0.191	0.196	0.201
В	3.37	3.50	3.63	0.132	0.137	0.142
С	1.45	1.53	1.60	0.057	0.060	0.062
D	1.35	1.43	1.50	0.040	0.057	0.059
E	0.67	0.80	0.93	0.026	0.031	0.036
F	0.37	0.50	0.63	0.014	0.019	0.024
G	1.07	1.20	1.33	0.042	0.047	0.052
Н	-	1.04	-	-	0.041	-
I	-	1.46	-	-	0.058	-
J	-	0.50	-	-	0.019	-
K	-	1.05	-	-	0.041	-
L	-	1.44	-	-	0.057	-
M	-	0.71	-	-	0.028	-

Top View

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Resonators category:

Click to view products by Murata manufacturer:

Other Similar products are found below:

B39431R820H210 CSAC2.00MGCM-TC ECS-HFR-40.00-B-TR CSTLS4M00G53Z-A0 ZTB455E ECS-CR2-16.00-A-TR ECS-HFR-20.00-B-TR ECS-CR2-20.00-A-TR RO3164E-3 ASR418S2-T CSTNE10M0G520000R0 CSTLS8M00G53093-A0 CSTNE12M0G52A000R0 CSTLS18M4X54-A0 CSTLS16M9X53Z-B0 CSTLS24M0X51-A0 CSTLS25M0X51-B0 CSTLS18M0X51-B0 CSTLS4M00G53093-A0 CSTLS18M4X53-A0 CSTNE16M0V510000R0 CSTLS30M0X53-B0 CSTLS33M8X53-B0 CSTLS16M9X53-A0 CSTLS6M40G56-B0 CSTLS6M25G56-A0 CSTNE14M7V510000R0 CSTLS18M4X53-B0 CSTLS33M0X51-B0 CSTLS5M50G56-B0 7B008000101 7D038400101 TAXM24M2ILDBET2T TAXM26M2IHDBET2T 146-32.768-12.5-20-20/A 3225-24.00-12-10-10/A 7B009843M01 CF4016M00009T8188042 S32400001B0730D1JB X252016MLB4SI Q24FA20H00389 CSTLS16M0X54-B0 CSTLS4M19G56-B0 9AC04194152080D2JB CST3.58MGW CSTCR4M91G55B-R0 CSTLS3M68G56-B0 S2100327072090 FC-12M32.768KHZ9PF20PPM ASR315S2