

COG (NPO) is the most popular formulation of the "temperature-compensating," EIA Class I ceramic materials. Modern COG (NPO) formulations contain neodymium, samarium and other rare earth oxides.
COG (NPO) ceramics offer one of the most stable capacitor dielectrics available. Capacitance change with temperature is $0 \pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ which is less than $\pm 0.3 \% \Delta \mathrm{C}$ from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Capacitance drift or hysteresis for C0G (NPO) ceramics is negligible at less than $\pm 0.05 \%$ versus up to $\pm 2 \%$ for films. Typical capacitance change with life is less than $\pm 0.1 \%$ for COG (NPO), one-fifth that shown by most other dielectrics. COG (NPO) formulations show no aging characteristics.

PART NUMBER (see page 2 for complete part number explanation)

0805	5	A	101	J	A	T	2	A
$\begin{gathered} \text { Size } \\ (\text { L" } \times \text { W") } \end{gathered}$	Voltage $6.3 \mathrm{~V}=6$ $10 \mathrm{~V}=\mathrm{Z}$ $16 \mathrm{~V}=\mathrm{Y}$ $25 \mathrm{~V}=3$ $50 \mathrm{~V}=5$ $100 \mathrm{~V}=1$ $200 \mathrm{~V}=2$ $500 \mathrm{~V}=7$	Dielectric $\mathrm{COG}(\mathrm{NPO})=\mathrm{A}$	Capacitance Code ($\ln \mathrm{pF}$) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance $\begin{aligned} & \mathrm{B}= \pm .10 \mathrm{pF}(<10 \mathrm{pF}) \\ & \mathrm{C}= \pm .25 \mathrm{pF}(<10 \mathrm{pF}) \\ & \mathrm{D}= \pm .50 \mathrm{pF} /<10 \mathrm{pF}) \\ & \mathrm{F}= \pm 1 \%(\geqslant 10 \mathrm{pF}) \\ & \mathrm{G}= \pm 2 \%(\geqslant 10 \mathrm{pF}) \\ & \mathrm{J}= \pm 5 \% \\ & \mathrm{~K}= \pm 10 \% \end{aligned}$	Failure Rate A = Not Applicable	Terminations T = Plated Ni and Sn 7 = Gold Plated Contact Factory For 1 = Pd/Ag Term	Packaging $2=7$ "Reel $4=13$ " Reel 7 = Bulk Cass. 9 = Bulk Contact Factory For Multiples	Specia Code A = Std Product

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

Parameter/Test		NPO Specification Limits			
$\frac{\text { Operating emperature Range }}{\text { Capacitance }}$		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Temperature Cycle Chamber		
		Within specified tolerance	$\begin{gathered} \text { Freq.: } 1.0 \mathrm{MHz} \pm 10 \% \text { for cap } \leq 1000 \mathrm{pF} \\ 1.0 \mathrm{kHz} \pm 10 \% \text { for cap }>1000 \mathrm{pF} \\ \text { Voltage: } 1.0 \mathrm{Vrms} \pm .2 \mathrm{~V} \end{gathered}$		
Q		$<30 \mathrm{pF}: \mathrm{Q} \geq 400+20 \times$ Cap Value $\geq 30 \mathrm{pF}: \mathrm{Q} \geq 1000$			
Insulation Resistance		$100,000 \mathrm{M} \Omega$ or $1000 \mathrm{M} \Omega-\mu \mathrm{F}$, whichever is less	Charge device with rated voltage for 60 ± 5 secs @ room temp/humidity		
Dielectric Strength		No breakdown or visual defects	Charge device with 300% of rated voltage for 1-5 seconds, w/charge and discharge current limited to $50 \mathrm{~mA}(\max)$ Note: Charge device with 150% of rated voltage for 500 V devices.		
Resistance to Flexure Stresses	Appearance	No defects	Deflection: 2 mm Test Time: 30 seconds $1 \mathrm{~mm} / \mathrm{sec}$		
	$\begin{gathered} \text { Capacitance } \\ \text { Variation } \\ \hline \end{gathered}$	$\pm 5 \%$ or $\pm .5 \mathrm{pF}$, whichever is greater			
	Q	Meets Initial Values (As Above)			
	Insulation Resistance	\geq Initial Value $\times 0.3$			
Solderability		$\geq 95 \%$ of each terminal should be covered with fresh solder	Dip device in eutectic solder at $230 \pm 5^{\circ} \mathrm{C}$ for 5.0 ± 0.5 seconds		
Resistance to Solder Heat	Appearance	No defects, $<25 \%$ leaching of either end terminal	Dip device in eutectic solder at $260^{\circ} \mathrm{C}$ for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties.		
	Capacitance Variation	$\leq \pm 2.5 \%$ or $\pm .25 \mathrm{pF}$, whichever is greater			
	Q	Meets Initial Values (As Above)			
	Insulation Resistance	Meets Initial Values (As Above)			
	Dielectric Strength	Meets Initial Values (As Above)			
Thermal Shock	Appearance	No visual defects	Step 1: $-55^{\circ} \mathrm{C} \pm 2^{\circ}$Step 2:Room Temp	≤ 3 minutes	
	Capacitance Variation	$\leq \pm 2.5 \%$ or $\pm .25 \mathrm{pF}$, whichever is greater			
	Q	Meets Initial Values (As Above)	Step 3: $+125^{\circ} \mathrm{C} \pm 2^{\circ}$	30 ± 3 minutes	
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes	
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and measure after 24 hours at room temperature		
Load Life	Appearance	No visual defects	Charge device with twice rated voltage in test chamber set at $125^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ for 1000 hours (+48, -0).		
	Capacitance Variation	$\leq \pm 3.0 \%$ or $\pm .3 \mathrm{pF}$, whichever is greater			
	$\begin{gathered} \text { Q } \\ \text { (C=Nominal Cap) } \end{gathered}$	$\begin{array}{rlr} \geq 30 \mathrm{pF}: & \mathrm{Q} \geq 350 \\ \geq 10 \mathrm{pF}, & <30 \mathrm{pF}: & \mathrm{Q} \geq 275+5 \mathrm{C} / 2 \\ <10 \mathrm{pF}: & \mathrm{Q} \geq 200+10 \mathrm{C} \\ \hline \end{array}$			
	Insulation \qquad	\geq Initial Value $\times 0.3$ (See Above)	Remove from test chamber and stabilize at room temperature for 24 hours before measuring.		
	Dielectric Strength	Meets Initial Values (As Above)			
LoadHumidity	Appearance	No visual defects	Store in a test chamber set at $85^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C} /$ $85 \% \pm 5 \%$ relative humidity for 1000 hours $(+48,-0)$ with rated voltage applied. Remove from chamber and stabilize at room temperature for 24 ± 2 hours before measuring.		
	Capacitance Variation	$\leq \pm 5.0 \%$ or $\pm .5 \mathrm{pF}$, whichever is greater			
	Q	$\geq 30 \mathrm{pF}:$ $\mathrm{Q} \geq 350$ $\geq 10 \mathrm{pF},<30 \mathrm{pF}:$ $\mathrm{Q} \geq 275+5 \mathrm{C} / 2$ $<10 \mathrm{pF}:$ $\mathrm{Q} \geq 200+10 \mathrm{C}$			
	Insulation Resistance	\geq Initial Value $\times 0.3$ (See Above)			
	Dielectric Strength	Meets Initial Values (As Above)			

Capacitance Range

PREFERRED SIZES ARE SHADED

PREFERRED SIZES ARE SHADED

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:

Click to view products by AVX manufacturer:

Other Similar products are found below :
M39014/01-1467 M39014/02-1218V M39014/02-1225V M39014/02-1262V M39014/22-0631 1210J5000102JCT 1210J2K00102KXT 1210J5000103KXT 1210J5000223KXT D55342E07B379BR-TR D55342E07B523DR-T/R 1812J1K00103KXT 1812J1K00473KXT 1812J2K00680JCT 1812J4K00102MXT 1812J5000102JCT 1812J5000103JCT 1812J5000682JCT NIN-FB391JTRF NIN-FC2R7JTRF NPIS27H102MTRF C1206C101J1GAC C1608C0G1E472JT000N C2012C0G2A472J 2220J2K00101JCT KHC201E225M76N0T00 1812J1K00222JCT 1812J2K00102KXT 1812J2K00222KXT 1812J2K00472KXT 2-1622820-7-CUT-TAPE 2220J3K00102KXT 2225J2500824KXT CCR07CG103KM CGA2B2C0G1H010C CGA2B2C0G1H040C CGA2B2C0G1H050C CGA2B2C0G1H060D CGA2B2C0G1H070D CGA2B2C0G1H151J CGA2B2C0G1H1R5C CGA2B2C0G1H2R2C CGA2B2C0G1H3R3C CGA2B2C0G1H680J CGA2B2C0G1H6R8D CGA2B2X8R1H221K CGA2B2X8R1H472K CGA3E1X7R1C474K CGA3E2C0G1H561JT0Y0N CGA4J2X7R2A104K

