ATC 100 B Series Porcelain Superchip® Multilayer Capacitors

- Case B Size
 - (.110" x .110") 0.1 pF to 1000 pF
- High Q
- Ultra-Stable Performance
- Low ESR/ESL
- High Self-Resonance

• Capacitance Range

- Low Noise
- Established Reliability (QPL)
- Extended WVDC up to 1500 VDC

ATC, the industry leader, offers new improved ESR/ESL performance for the 100 B Series RF/Microwave Capacitors. This Series is now available with extended operating temperatures up to 175°C. High Density porcelain construction provides a rugged, hermetic package.

Typical functional applications: Bypass, Coupling, Tuning, Feedback, Impedance Matching and DC Blocking.

Typical circuit applications: UHF/Microwave RF Power Amplifiers. Mixers, Oscillators, Low Noise Amplifiers, Filter Networks, Timing Circuits and Delay Lines.

ENVIRONMENTAL TESTS

ATC 100 B Series Capacitors are designed and manufactured to meet and exceed the requirements of EIA-198, MIL-PRF-55681 and MIL-PRF-123.

THERMAL SHOCK: MIL-STD-202, Method 107, Condition A.

MOISTURE RESISTANCE: MIL-STD-202, Method 106.

LOW VOLTAGE HUMIDITY:

MIL-STD-202, Method 103, Condition A, with 1.5 Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for

240 hours min.

LIFE TEST:

MIL-STD-202, Method 108, for 2000 hours, at 125°C. Voltage Applied:

200% of WVDC for capacitors rated at 500 volts DC or less. 120% of WVDC for capacitors rated at 1250 volts DC or less. 100% of WVDC for capacitors rated above 1250 volts DC.

ELECTRICAL AND MECHANICAL **SPECIFICATIONS**

QUALITY FACTOR (Q): greater than 10,000 at 1 MHz.

TEMPERATURE COEFFICIENT OF CAPACITANCE (TCC):

+90 ±20 PPM/°C (-55°C to +125°C) +90 ±30 PPM/°C (+125°C to +175°C)

INSULATION RESISTANCE (IR):

0.1 pF to 470 pF:

106 Megohms min. @ +25°C at rated WVDC.

105 Megohms min. @ +125°C at rated WVDC.

510 pF to 1000 pF:

10⁵ Megohms min. @ +25°C at rated WVDC.

104 Megohms min. @ +125°C at rated WVDC.

IR above +125°C is derated by one order of magnitude.

WORKING VOLTAGE (WVDC): See Capacitance Values Table, page 2.

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

250% of WVDC for capacitors rated at 500 volts DC or less for 5 seconds. 150% of WVDC for capacitors rated at 1250 volts DC or less for 5 seconds. 120% of WVDC for capacitors rated above 1250 volts DC for 5 seconds.

RETRACE: Less than ±(0.02% or 0.02 pF), whichever is greater.

AGING EFFECTS: None

PIEZOELECTRIC EFFECTS: None

(No capacitance variation with voltage or pressure).

CAPACITANCE DRIFT: ±(0.02% or 0.02 pF), whichever is greater.

OPERATING TEMPERATURE RANGE:

0.1 to 330 pF: from -55°C to +175°C 360 to 1000 pF: from -55°C to +125°C

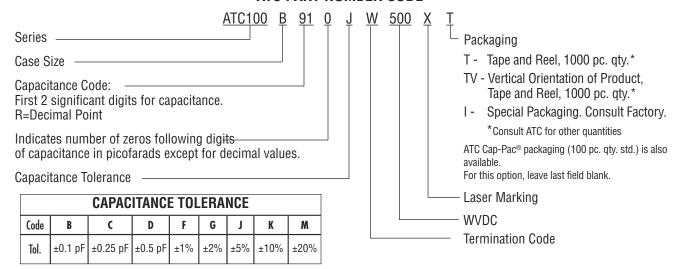
TERMINATION STYLES:

Available in various surface mount and leaded styles. See Mechanical Configurations, page 3.

TERMINAL STRENGTH: Terminations for chips and pellets withstand a pull of 5 lbs. min., 15 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor. Test per MIL-STD-202, method 211.

Technical

ATC Europe saleseur@atceramics.com CERAMICS


ATC 100 B Capacitance Values

CAP.	CAP.	TOL.	RATED	WVDC	CAP.	CAP.	TOL.	RATED	WVDC	CAP.	CAP.	TOL.	RATED	WVDC	CAP.	CAP.	TOL.	RATED	WVDC								
CODE	(pF)	IUL.	STD.	EXT.	CODE	(pF)	IOL.	STD.	EXT.	CODE	(pF)	IUL.	STD.	EXT.	CODE	(pF)	IUL.	STD.	EXT.								
0R1	0.1	В			2R4	2.4				200	20				151	150											
0R2	0.2			Ш	2R7	2.7			lin	220	22				161	160		000	170/								
0R3	0.3	B, C		VOLTAGE	3R0	3.0			VOLTAGE	240	24				181	180		300	1000								
0R4	0.4	Σ, σ		170	3R3	3.3			07.7	270	27				201	200			EXT [
0R5	0.5				3R6	3.6				300	30				221	220			E)								
0R6	0.6			ED	3R9	3.9	В, С,		ED	330	33			ш	241	240											
0R7	0.7											ENC	4R3	4.3	D		QN:	360	36			AGI	271	270			<u> </u>
0R8	0.8			EXTENDED	4R7	4.7		EXTENDED	390	39			VOLTAGE	301	300			170/									
0R9	0.9			7	5R1	5.1			E	430	43				331	330		200	600								
1R0	1.0				5R6	5.6				470	47		500	1500	361	360			EXT								
1R1	1.1	В, С,	500	1500	6R2	6.2		500	1500	510	51	F, G, J,		ED	391	390	F, G, J,		Я								
1R2	1.2	D			6R8	6.8	D 0 1			560	56	K, M		ENC	431	430	K, M										
1R3	1.3				7R5	7.5	B, C, J,			620	62			EXTENDED	471	470											
1R4 1R5	1.4			1 <i>GE</i>	8R2 9R1	8.2 9.1	K, M		1 <i>GE</i>	680	68 75			7	511 561	510 560											
1R6	1.5 1.6			VOLTAGE	100	10		-	VOLTAGE	750 820	82				621	620		100									
1R7	1.7			М	110	11			2//	910	91				681	680			170/								
1R8	1.8			ED	120	12			ЕD	101	100				751	750											
1R9	1.9			ND.	130	13	F, G, J,		ND	111	110				821	820		50	300								
2R0	2.0			EXTENDED	150	15	K, M		EXTENDED	121	120		300		911	910		30	EX								
2R1	2.1			E	160	16	11, 11		E	131	130			1000	102	1000											
2R2	2.2				180	18				'	100			,000	102	.000											

VRMS = 0.707 X WVDC

• SPECIAL VALUES, TOLERANCES, HIGHER WVDC AND MATCHING AVAILABLE. PLEASE CONSULT FACTORY.
NOTE: EXTENDED WVDC DOES NOT APPLY TO CDR PRODUCTS.

ATC PART NUMBER CODE

The above part number refers to a 100 B Series (case size B) 91 pF capacitor,

J tolerance (±5%), 500 WVDC, with W termination (Tin/Lead, Solder Plated over Nickel Barrier), laser marking and Tape and Reel packaging.

ATC accepts orders for our parts using designations *with* or *without* the "ATC" prefix. Both methods of defining the part number are equivalent, i.e., part numbers referenced with the "ATC" prefix are interchangeable to parts referenced without the "ATC" prefix. Customers are free to use either in specifying or procuring parts from American Technical Ceramics.

For additional information and catalogs contact your ATC representative or call direct at (+1-631) 622-4700.

Consult factory for additional performance data.

AMERICAN TECHNICAL CERAMICS

ATC North America sales@atceramics.com

ATC Europe saleseur@atceramics.com

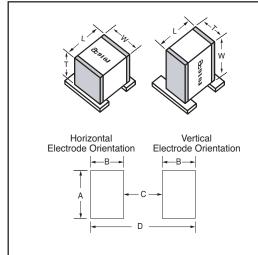
ATC 100 B Capacitors: Mechanical Configurations

ATC SERIES	ATC	MIL-PRF-	CASE SIZE	OUTLINES		DY DIMENSION (mm)	LEAD AND TERMINATION DIMENSIONS AND MATERIALS				
& CASE SIZE	CODE	55681	& TYPE	W/T IS A Termination Surface	LENGTH (L)	WIDTH (W)	THICKNESS (T)	OVERLAP (Y)	ı	MATERIAL	s
100B	W	CDR14BG	B Solder Plate	$\begin{array}{c c} Y \to \leftarrow & \downarrow & \\ \hline & w & \\ & \to \downarrow \downarrow \uparrow \to \uparrow \downarrow \downarrow \\ \end{array}$.110 +.020010 (2.79 +0.51 -0.25)	.110 ±.015 (2.79 ±0.38)			Tin/Lead, Solder Plated ove Nickel Barrier Termination		
100B	Р	CDR14BG	B Pellet	$\begin{array}{c c} Y \to \left \leftarrow & \downarrow \\ \hline & \underline{w} \\ & \downarrow \\ $.110 +.035010 (2.79 +0.89 -0.25) .110 ±.015 (2.79 ±0.38)		.102 (2.59)	.015 (0.38)	Heavy Tin/Lead Coated over Nickel Barrier Terminati		
100B	Т	N/A	B Solderable Nickel Barrier	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & W & \hline & \downarrow \\ \to & \downarrow & \downarrow \\ $.110 +.020010 (2.79 +0.51 -0.25)	.110 ±.015 (2.79 ±0.38)	max.	±.010 (0.25)	Tir	IS Compliant n Plated over arrier Termination	
100B	CA	CDR13BG	B Gold Chip	$\begin{array}{c c} Y \to \left \left \leftarrow \right & \downarrow \\ \hline & \underline{W} \\ & \downarrow \\ &$.110 +.020010 (2.79 +0.51 -0.25)	.110 ±.015 (2.79 ±0.38)			RoHS Compliant Gold Plated over Nickel Barrier Termination		
100B	MS	CDR21BG	B Microstrip	$\begin{array}{c ccccc} \downarrow & \longrightarrow \mid L_L \mid \leftarrow & \downarrow & \longrightarrow \mid \leftarrow \\ \hline \underline{w_L} & & & \searrow & & \longrightarrow \mid \leftarrow \\ \uparrow & \longrightarrow \mid L \mid \leftarrow & & \uparrow & \uparrow \mid \uparrow \mid \leftarrow \\ \end{array}$.120 (3.05) max.		Length (L _L)	Width (W _L)	Thickness (T _L)
100B	AR	CDR22BG	B Axial Ribbon	$\begin{array}{c c} \downarrow & \rightarrow \mid \ ^{L_{L}} \mid \leftarrow & \downarrow \xrightarrow{T_{L}} \\ \hline \underline{w_{L}} & & \underline{w} & \underline{m} \\ \uparrow & \rightarrow \mid L \mid \leftarrow & \uparrow \rightarrow \mid \top \mid \leftarrow \\ \end{array}$.135 ±.015 (3.43 ±0.38)	.110 ±.015 (2.79 ±0.38)	.102 (2.59) max.	N/A	.250 (6.35) min.	#26 AV	.004 ±.001 (.102 ±.025)
100B	RR	CDR24BG	B Radial Ribbon	$\begin{array}{c c} & & \downarrow & \downarrow & \downarrow \\ \hline \downarrow & & \downarrow & \downarrow \\ \hline \rightarrow \mid L \mid \leftarrow & \uparrow \\ \hline \downarrow \mid \uparrow \mid \leftarrow & \uparrow \\ \end{array} w_L$							
100B	RW	CDR23BG	B Radial Wire	→ L ← → L ← → T ← ← ← ← ← ← ← ← ←	.145 ±.020						AWG., 106) dia.
100B	AW	CDR25BG	B Axial Wire	→ L L ← ↓ W → L ← ↑ ↑ ↑ ↑ ←	(3.68 ±0.51)						ninal

Additional lead styles available: Narrow Microstrip (NM), Narrow Axial Ribbon (NA) and Vertical Narrow Microstrip (H). Other lead lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are **RoHS** compliant. For a complete military catalog, request American Technical Ceramics document ATC 001-818.

AMERICAN TECHNICAL CERAMICS

ATC North America sales@atceramics.com


ATC Europe saleseur@atceramics.com

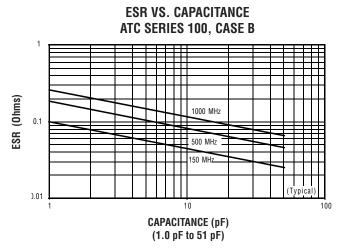
ATC 100 B Non-Magnetic Capacitors: Mechanical Configurations

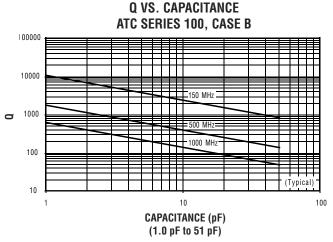
ATC	ATC			OUTLINES		DY DIMENSIO	LEAD AND TERMINATION DIMENSIONS AND MATERIALS				
SERIES & CASE SIZE	TERM. CODE	MIL-PRF- 55681	CASE SIZE & TYPE	W/T IS A Termination Surface	LENGTH (L)	WIDTH (W)	THICKNESS (T)	OVERLAP (Y)	MATERIALS		
100B	WN	Meets Require- ments	B Non-Mag Solder Plate	Y→ ← ↓ <u>w</u> → L ← ↑→ T ←	.110 +.025010 (2.79 +0.64 -0.25)	.110 ±.015 (2.79 ±0.38)			Non-N	, Solder P Magnetic E erminatio	
100B	PN	Meets Require- ments	B Non-Mag Pellet	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & W & \hline & \downarrow & \downarrow \\ \to & \downarrow & \downarrow & \uparrow \to \downarrow & \uparrow & \downarrow & \uparrow & \downarrow \end{array}$.110 +.035010 (2.79 +0.89 -0.25)	.110 ±.015 (2.79 ±0.38)	.102 (2.59) max.	.015 (0.38) ±.010 (0.25)	Heavy Tin/Lead Coated, Non-Magnetic Barrie Termination		Barrier
100B	TN	Meets Require- ments	B Non-Mag Solderable Barrier	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & W & \hline & \downarrow & \downarrow \\ \to & \downarrow & \downarrow & \uparrow & \downarrow \\ \downarrow & \downarrow & \downarrow & \uparrow & \downarrow & \uparrow & \downarrow \\ \end{array}$.110 +.025010 (2.79 +0.64 -0.25)	.110 ±.015 (2.79 ±0.38)			RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination		ver Barrier
100B	MN	Meets Require- ments	Non-Mag Microstrip	$\begin{array}{c c} \downarrow & \rightarrow \mid ^{L}_{L} \mid \leftarrow & \downarrow & \rightarrow \mid ^{T}_{L} \\ \hline \underline{w_{L}} & \bullet & \bullet & \underbrace{w} & \bullet & \bullet \\ \uparrow & \rightarrow \mid L \mid \leftarrow & \uparrow \bullet \mid T \mid \leftarrow \\ \end{array}$.120 (3.05) max.		Length (L _L)	Width (W _L)	Thickness (T _L)
100B	AN	Meets Require- ments	Non-Mag Axial Ribbon	$\begin{array}{c c} \downarrow & \rightarrow \mid \ ^{L}_{L} \mid \leftarrow & \downarrow \rightarrow \mid \mid \leftarrow \\ \underline{w}_{L} & & \underline{w} & \underline{w} & \underline{w} \\ \uparrow & \rightarrow \mid L \mid \leftarrow & \uparrow \rightarrow \mid \tau \mid \leftarrow \end{array}$	135 ±.015 (3.43 ±0.38)				.250 (6.35) min.	.093 ±.005 (2.36 +0.13)	.004 ±.001 (.102 ±.025)
100B	FN	Meets Require- ments	B Non-Mag Radial Ribbon	$\begin{array}{c c} & & \downarrow & \rightarrow \mid L_{L} \mid \leftarrow \\ \hline \downarrow & & \hline \downarrow & & \hline \downarrow \\ \rightarrow \mid L \mid \leftarrow & \uparrow \rightarrow \mid \top \mid \leftarrow & \uparrow \end{array} w_{L}$.110 ±.015 (2.79 ±0.38)	.102 (2.59)	N/A		±0.13)	±.020)
100B	RN	Meets Require- ments	B Non-Mag Radial Wire	→ L L ← → W ←	.145 ±.020		max.		.500 (12.7)		AWG., 106) dia.
100B	BN	Meets Require- ments	B Non-Mag Axial Wire	→ L ← → W • T ←	(3.68 ±0.51)				min.		ninal

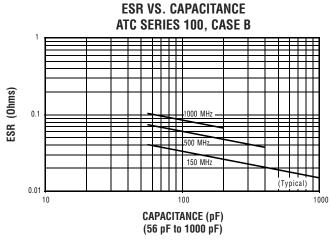
Additional lead styles available: Narrow Microstrip (DN), Narrow Axial Ribbon (GN) and Vertical Narrow Microstrip (HN). Other lead lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are **RoHS** compliant.

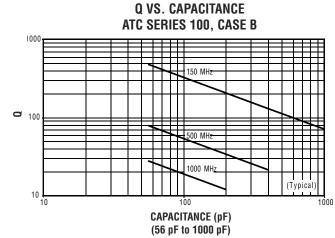
Suggested Mounting Pad Dimensions

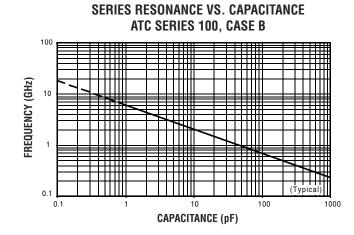
Case B Vertical Mount Dimensions are in inches								
Cap Value	Pad Size	A Min.	B Min.	C Min.	D Min.			
0.1 pF	Normal	.065	.050	.075	.175			
0.1 pr	High Density	.045	.030	.075	.135			
0.2 nE	Normal	.090	.050	.075	.175			
0.2 pF	High Density	.070	.030	.075	.135			
0.3 to	Normal	.110	.050	.075	.175			
510 pF	High Density	.090	.030	.075	.135			
> 510 pF	Normal	.120	.050	.075	.175			
> 510 pr	High Density	.100	.030	.075	.135			
Horizontal Mount Dimensions are in inches								

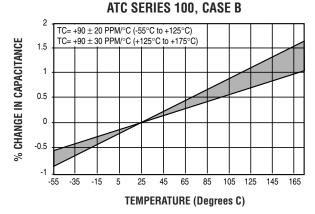

HOHZOHIAI	HOLIZOLITAT MOULIT DIMENSIONS are in inches								
All	Normal	.130	.050	.075	.175				
values	High Density	.110	.030	.075	.135				


AMERICAN TECHNICAL CERAMICS

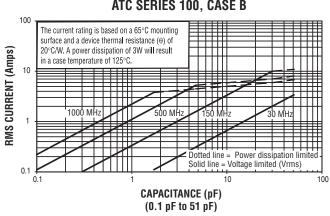

ATC North America sales@atceramics.com


ATC Europe saleseur@atceramics.com

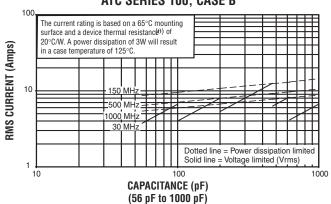

ATC 100 B Performance Data



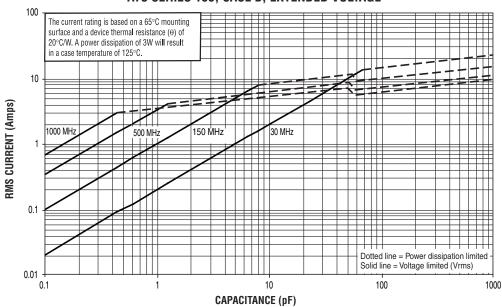
CAPACITANCE CHANGE VS. TEMPERATURE


AMERICAN TECHNICAL CERAMICS

ATC North America sales@atceramics.com


ATC Europe saleseur@atceramics.com

ATC 100 B Performance Data


CURRENT RATING VS. CAPACITANCE ATC SERIES 100, CASE B

CURRENT RATING VS. CAPACITANCE ATC SERIES 100, CASE B

CURRENT RATING VS. CAPACITANCE ATC SERIES 100, CASE B, EXTENDED VOLTAGE

Sales of ATC products are subject to the terms and conditions contained in American Technical Ceramics Corp. Terms and Conditions of Sale (ATC document #001-992 Rev. B; 12/05). Copies of these terms and conditions will be provided upon request. They may also be viewed on ATC's website at www.atceramics.com/productfinder/default.asp. Click on the link for Terms and Conditions of Sale.

ATC has made every effort to have this information as accurate as possible. However, no responsibility is assumed by ATC for its use, nor for any infringements of rights of third parties which may result from its use. ATC reserves the right to revise the content or modify its product without prior notice.

© 1996 American Technical Ceramics Corp. All Rights Reserved

ATC # 001-807 Rev. Q 9/14

TECHNICAL

ATC Europe saleseur@atceramics.com

CERAMICS

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:

Click to view products by American Technical Ceramics manufacturer:

Other Similar products are found below:

M39014/01-1467 M39014/02-1218V M39014/02-1225V M39014/02-1262V M39014/02-1301 M39014/22-0631 1210J5000102JCT

1210J2K00102KXT 1210J5000103KXT 1210J5000223KXT D55342E07B379BR-TR D55342E07B523DR-T/R 1812J1K00103KXT

1812J1K00473KXT 1812J2K00680JCT 1812J4K00102MXT 1812J5000102JCT 1812J5000103JCT 1812J5000682JCT NIN-FB391JTRF

NIN-FC2R7JTRF NPIS27H102MTRF C1206C101J1GAC C1608C0G1E472JT000N C2012C0G2A472J 2220J2K00101JCT

KHC201E225M76N0T00 LRC-LRF1206LF-01R025FTR1K 1812J1K00222JCT 1812J2K00102KXT 1812J2K00222KXT

1812J2K00472KXT 2-1622820-7-CUT-TAPE 2220J3K00102KXT 2225J2500824KXT CCR07CG103KM CGA2B2C0G1H010C

CGA2B2C0G1H040C CGA2B2C0G1H050C CGA2B2C0G1H060D CGA2B2C0G1H070D CGA2B2C0G1H151J CGA2B2C0G1H1R5C

CGA2B2C0G1H2R2C CGA2B2C0G1H3R3C CGA2B2C0G1H680J CGA2B2C0G1H6R8D CGA2B2X8R1H221K CGA2B2X8R1H472K

CGA3E1X7R1C474K