General Description

The MIC6211 Itty $B^{\text {itty }}{ }^{\text {TM }}$ op amp is a general-purpose, highperformance, single- or split-supply, operational amplifier in a space-saving, surface-mount package.
The MIC6211 operates from 4V to 32V, single or differential (split)supply. The input common-mode range includes ground. The device features a 2.5 MHz unity gain bandwidth, $6 \mathrm{~V} / \mu \mathrm{s}$ slew rate, and is internally unity-gain compensated.
Inputs are protected against reverse polarity (input voltage less than $\mathrm{V}-$) and ESD (electrostatic discharge). Output is current limited for both sourcing and sinking. Output short circuits of unlimited duration are allowed, provided the power dissipation specification is not exceeded.
The MIC6211 is available in the tiny, 5 -lead SOT-23-5 sur-face-mount package.

Features

- 4 V to 32 V operation
- Small footprint package
- Unity gain stable
- 2.5 MHz unity gain bandwidth
- $6 \mathrm{~V} / \mu \mathrm{s}$ typical slew rate
- Short circuit protected

Applications

- Analog blocks
- Active filtering

Ordering Information

Part Number		Marking		Temp. Range	Package
Standard	Pb-Free	Standard	Pb-Free		
MIC6211-BM5	MIC6211-YM5	A11	$\underline{\text { A11 }}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
SOT-23-5					

Pin Configuration

Functional Configuration

SOT-23-5 (M5)

Pin Description

Pin Number	Pin Name	Pin Function
1	OUT	Amplifier Output
2	V-	Negative Supply: Negative supply for split supply application or ground for single supply application.
3	IN +	Noninverting Input
4	IN-	Inverting Input
5	$\mathrm{~V}+$	Positive Supply

[^0]Micrel, Inc. • 2180 Fortune Drive •San Jose, CA 95131•USA•tel + 1 (408) 944-0800•fax + 1 (408) 474-1000•http://www.micrel.com

Absolute Maximum Ratings

Supply Voltage ($\mathrm{V}_{\mathrm{V}_{+}}-\mathrm{V}_{\mathrm{V}_{-}}$)
36 V or $\pm 18 \mathrm{~V}$
Differential Input Voltage $\left(\mathrm{V}_{\mathrm{IN}_{+}}-\mathrm{V}_{\mathrm{IN}}\right)$....................... $\pm 36 \mathrm{~V}$
Input Voltage $\left(\mathrm{V}_{\mathrm{IN}+}, \mathrm{V}_{\mathrm{IN}_{-}}\right)$..................... $\left(\mathrm{V}_{\mathrm{V}_{-}}-0.3 \mathrm{~V}\right)$ to $\mathrm{V}_{\mathrm{V}_{+}}$
Output Short Circuit Current Duration \qquad

Operating Ratings

Supply Voltage 4 V to 32 V
Ambient Temperature Range \qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
 (mounted to printed circuit board)

Electrical Characteristics (Differential Supply)

$\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}} ;$ unless noted

Symbol	Parameter	Condition	Min	Typ	Max	Units
V_{OS}	Input Offset Voltage			2	7	mV
$\mathrm{TCV}_{\text {OS }}$	Average Input Offset Drift	Note 1		7		$\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current			50	250	nA
I_{OS}	Input Offset Current		+13.5	+13.8	30	nA
V_{CM}	Input Voltage Range	-15.0	-15.3	V		
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=+13.5 \mathrm{~V},-15.0 \mathrm{~V}$	65	100	V	
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	65	110	dB	
$\mathrm{~A}_{\text {VOL }}$	Large Signal Voltage Gain	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	25	180	dB	
$\mathrm{~V}_{\text {OUT }}$	Maximum Output Voltage Swing		± 12.5	± 14	$\mathrm{~V} / \mathrm{mV}$	
B_{W}	Bandwidth			2.5	V	
$\mathrm{~S}_{\mathrm{R}}$	Slew Rate			6		$\mathrm{~V} / \mu \mathrm{s}$
$\mathrm{I}_{\text {SC }}$	Output Short Circuit Current	Sourcing or sinking	30	50		mA
I_{S}	Supply Current			1.3	2.0	mA

Electrical Characteristics (Single Supply)

$\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0.1 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}$; unless noted

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			2	7	mV
$\mathrm{TCV}_{\text {OS }}$	Average Input Offset Drift	Note 1		7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current			65	250	nA
I_{OS}	Input Offset Current			8	30	nA
V_{CM}	Input Voltage Range		$\begin{gathered} \hline+3.5 \\ 0 \end{gathered}$	$\begin{aligned} & \hline+3.7 \\ & -0.3 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to 3.5 V	45	70		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	65	105		dB
$\overline{\mathrm{A}}$ VOL $^{\text {a }}$	Large Signal Voltage Gain	$\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}$ to $3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	15	170		V / mV
$\mathrm{V}_{\text {OUT }}$	Maximum Output Voltage Swing	$\begin{aligned} & R_{\mathrm{L}}=10 \mathrm{k} \text { to } \mathrm{GND} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \text { to }+5 \mathrm{~V} \end{aligned}$	+3.8	$\begin{aligned} & +4.0 \\ & +1.0 \end{aligned}$	+1.2	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
${ }_{\text {SC }}$	Output Short Circuit Current	Sourcing or sinking	20	40		mA
I_{5}	Supply Current			1.2	1.8	mA

General Note: Devices are ESD protected; however, handling precautions are recommended.
Note 1: Not production tested.

Typical Characteristics

Small-Signal Transient Response

Power Supply Rejection Ratio vs. Frequency

Functional Diagram

Applications Information

Common-Mode Range and Output Voltage

The input common-mode range of the MIC6211 is from the negative supply voltage to 1.2 V below the positive supply voltage. The output voltage swings within 1V of the positive and negative supply voltage.

Voltage Buffer

Figure 1 shows a standard voltage follower/buffer. The output voltage equals the input voltage. This circuit is used to buffer a high impedance signal source. This circuit works equally well with single or split supplies.

Figure 1. Voltage Buffer

Inverting Amplifier

Figure 2 shows an inverting amplifier with its gain set by the ratio of two resistors. This circuit works best with split supplies, but will perform with single supply systems if the non-inverting input (+ input) is biased up above ground.

Figure 2. Inverting Amplifer

Voltage Controlled Current Sink

Figure 3 is a voltage controlled current sink. A buffer transistor forces current through a programming resistor until the feedback loop is satisfied. Current flow is $V_{\mathbb{I N}} / R$. This circuit works with single or split supplies.

Figure 3. Voltage Controlled Current Sink

High-Pass Filter

Figure 4 is an active filter with 20dB (10x) gain and a lowfrequency cutoff of 10 Hz . The high gain-bandwidth of the MIC6211 allows operation beyond 100 kHz . This filter configuration is designed for split supplies.

Figure 4a. High-Pass Filter

Figure 4b. High-Pass Filter Response

Summing Amplifier

Figure 5 is a single supply summing amplifier. In this configuration, the output voltage is the sum of V 1 and V 2 , minus the sum of V 3 and V 4 . By adding more resistors to either the inverting or non-inverting input, more voltages may be summed. This single supply version has one important restriction: the sum of V1 and V2 must exceed the sum of V3 and V 4 , since the output voltage cannot pull below zero with only a single supply.

Figure 5. Summing Amplifier

Package Information

SOT-23-5 (M5)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 wEB http://www.micrel.com
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.
© 1999 Micrel, Incorporated.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by Microchip manufacturer:
Other Similar products are found below :
OPA2991IDSGR OPA607IDCKT 007614D 633773R 635798C 635801A 702115D 709228FB 741528D NCV33072ADR2G
SC2902DTBR2G SC2903DR2G SC2903VDR2G LM258AYDT LM358SNG 430227FB 430228DB 460932C AZV831KTR-G1 409256CB 430232AB LM2904DR2GH LM358YDT LT1678IS8 042225DB 058184EB 070530X SC224DR2G SC239DR2G SC2902DG

SCYA5230DR2G 714228XB 714846BB 873836HB MIC918YC5-TR TS912BIYDT NCS2004MUTAG NCV33202DMR2G
M38510/13101BPA NTE925 SC2904DR2G SC358DR2G LM358EDR2G AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E NJM358CG-TE2 HA1630S01LPEL-E LM324AWPT HA1630Q06TELL-E

[^0]: IttyBitty is a trademark of Micrel, Inc.

