Engineering Quick Reference Selection Guide

	2 Pos	ition	4 Position	5 Position		
	Plug	Receptacle		Plug	Receptacle	
Contact Arrangement	$\left(\begin{array}{c} 0 & 0\\ 1 & 2\end{array}\right)$	$\left(\begin{array}{c} 0 & 0\\ 2 & 1 \end{array} \right)$	Contact Cannon			
	Inline	Feed Thru	Inline	РСВ	Inline	
Features	Clip Lock	Clip Lock	Clip Lock	Snap Lock	Snap Lock	
Specifications	CS-216	CS-216	CS-216	CS-206	CS-206	
Plug	086-0066-000 w/Wedgelock 086-0058-000 Standard	086-0058-000 Standard	Contact Cannon	098532-0000 (5 A) 098532-001 (13 A)	098532-0000 (5 A) 098532-001 (13 A)	
Receptacle	086-0061-000 w/Wedgelock	083-0242-000	Contact Cannon	098531-0000 (5 A) 098531-0001 (13 A)	098530-0000 (5 A) 098530-0001 (13 A)	
Terminals	See page 14	See page 14	Contact Cannon	See page 14	See page 14	

How to Order

	<u>SLC</u>	<u>5</u>	I	<u>13</u>	<u>0</u>	<u>0</u>
Series Prefix						
Size/Configuration						
Connector Type						
Contact Termination						
Material/Finish Modifier						
Mechanical Modifier						

Series Prefix

SLC - Snap-Lock Circular

Size/Configuration

5-5 Cavity Housing 8-8 Cavity Housing 10-10 Cavity Housing 15-15 Cavity Housing

Connector Type

P - Plug, In-line (Cable-to-Cable)*

R - Receptacle, In-line (Cable-to-Cable)

T - Receptacle, Snap-thru

B - Receptacle, PCB

Contact Termination

5 - 5 A 13 - 13 A

Material/Finish Modifier

- 0 Standard Assembly (Silicone Elastomer) 1 - Fluorosilicone Elastomer
- Mechanical Modifier
- 0 Standard Assembly
- *Note: In-line Plug mates with all 3 receptacle types (In-line, Snap-thru, and PCB.)

Engineering Quick Reference Selection Guide

						Plu	g	Receptacle
	8 Position			10 Position			15 Position	
Plug		Receptacle	Plug	I	Receptacle			
10 02 70 80 0 60 0 50 4	\ /	$\begin{array}{c c} 2 \bigcirc & \bigcirc 1 \\ \bigcirc & \bigcirc & \bigcirc \\ 4 \bigcirc & 8 & \bigcirc \\ 5 \bigcirc & 6 \end{array}$					$ \begin{bmatrix} 0 & 0 \\ 0 & 5 \\ 0 & 0 \\ 0 \end{bmatrix} $	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
PCB	Inline	Snap-thru	PCB	Inline	Snap-thru		Snap-thru	
Snap Lock (Double)	Snap Lock (Double)	Snap Lock (Double)	Snap Lock (Double)	Snap Lock (Double)	Snap Lock (Double)		Snap Lock (Double)
CS-210	CS-210	CS-210	CS-206	CS-206	CS-210		CS-210	
098532-0010	098532-0008	098532-0010	098532-0002 (5 A) 098532-0003 (13 A)	098532-0002 (5 A) 098532-0003 (13 A)	098532-0002 (5 A) 098532-0003 (13 A)		086-0060-000	
-	-	098533-0010	098531-0002 (5 A) 098531-0003 (13 A)	098530-0002 (5 A) 098530-0003 (13 A)	098533-0002 098533-0003		086-0059-000	
See page 14	See page 14	See page 14	See page 14	See page 14	See page 14		See page 14	

The Snap Lock Environmental Series is environmentally sealed connector created for printed circuit board, black box, cable-to-cable or bulkhead applications.

When your under-the-hood requirements call for tough performance, the SLC "snaps" into a tightly sealed connection that can withstand heat, shock and vibration. The connector is designed to preserve the integrity of the solid state package, while protecting against contaminants - even when unmated.

Gold, tin/lead plated stamped contacts add durability. A rugged, thermoplastic receptacle body maximizes performance by withstanding temperature variances from -40°C to +150°C (material rating).

The SLC series is available in 2, 5, 8, 10, 15 contact cavity configurations. It can also be adapted to robotics assembly. Should you requirement demand higher density configurations, consult Customer Service.

Product Features and Benefits

· Superior environmental sealing

· Hand insertable/removable contacts

· Material rating: -40°C to +150°C continuous operation at rated current

· Crimp stamped gold, tin/lead plated contacts

- · Available in sizes 2, 5, 8, 10, 15 contacts
 - · Low contact resistance · Small footprint on P.C. board and low profile

· Low millivolt drop

· Adaptable to robotics assembly

 \cdot Current rating 5 A and 13 A versions

- · Latch with tactile and audible feedback
- · Increases durability and provides for minimum
- installation · Low installed cost
- · Requires less PCB space

Performance Specifications

Contact Resistance	10mΩ maximum
Insulation Resistance	20MΩ minimum (USCAR)
Current Rating	5 A signal continuous at 150°C all contacts, 2 position
	13 A power continuous at 150°C all contacts, 5 position and 10 position only
Dielectric Withstanding Voltage	1000 Vrms AC at sea level
Applicable Cannon Specification	SLC (CS-206) SLCT 5 & 10 (210) SLCT8 (216) SLCT 15 (206)
Material Rating Operating Temperature	-40°C to +150°C
Crimp Contacts	Semi-automatic or hand crimpable or fully automatic
Wire Size	20 - 16 AWG
Wire Insulation Sealing Range	1,98 (.078) to 3,30 (.130) dia.
Contact Insertion	No tool required. Suitable for automation.
Contact Extraction	Rear Removable
Contact Retention	20 lbs. Minimum per contact
Wire Strip Length	5,59 (.220) to 5,33 (.210)

Materials and Finishes

Connector Housing	High temperature thermoplastic
Contacts	Copper alloy
Finish	Engaging area: Gold over nickel
	Crimp/P.C. tail area: Tin/lead over nickel - standard offering
	Tin/Lead over nickel - Option #2 all over
Environmental Seal	High temperature silicone elastomer

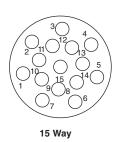
Plug 2 Way 5 Way 8 Way 10 Way 10 Way 15 Way 15 Way

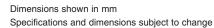
Receptacle

 $\begin{pmatrix} 0 & 0 \\ 2 & 1 \end{pmatrix}$

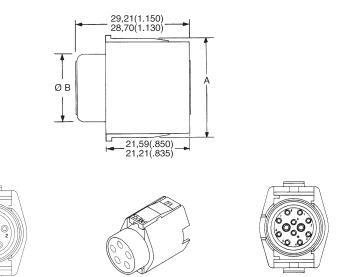
2 Way

5 Way




8 Way

TT

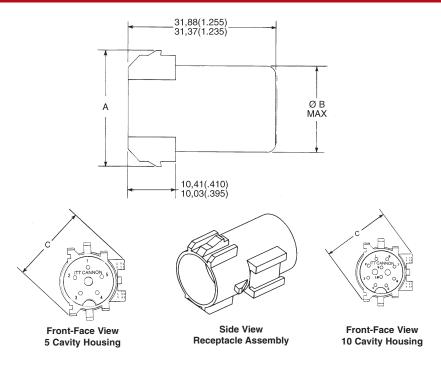

10 Way

Plug, In-line* (Cable-to-Cable) (Type P) SLC-5, SLC-10

Front-Face View 5 Cavity Housing

Front-Face View 10 Cavity Housing

In-line Plug* (Mates with SLC types R, T, and B)

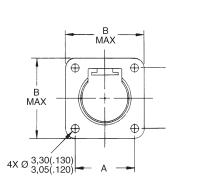

Housing Size	Rating	Part Number	Description	А	ØB
5	5 A	098532-0011	SLC-5P5-00	27,81 (1.095)	18,03 (.710)
5	13 A	098532-0001	SLC-5P13-00	26,80 (1.055)	18,03 (.710)
10	5 A	098532-0002	SLC-10P5-00	34,92 (1.375)	24,15 (.990)
10	13 A	098532-0003	SLC-10P13-00	34,04 (1.340)	25,15 (.990)

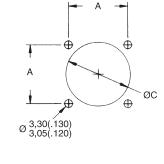
*Contact lead assemblies are customer terminated and installed. See page 14, part numbers 110238-0488, 110238-2003.

Receptacle, In-line* (Cable-to-Cable) (Type R) SLC-5, SLC-10

In-line Receptacle* (Mates with SLC type P)

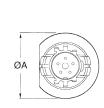
Housing Size	Rating	Part Number	Description	А	ØB	C Ref.
5	5 A	098530-0000	SLC-5R5-00	24,13 (.950)	18,03 (.710)	24,38 (.960)
5	13 A	098530-0001	SLC-5R13-00	23,75 (.935)	18,03 (.710)	24,38 (.960)
10	5 A	098530-0002	SLC-10R5-00	31,24 (1.230)	25,15 (.990)	31,62 (1.245)
10	13 A	098530-0003	SLC-10R13-00	30,86 (1.215)	25,15 (.990)	31.62 (1.245)

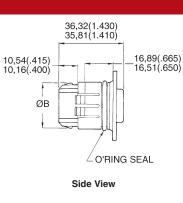

*Contact lead assemblies are customer terminated and installed. See page 16, part numbers 110238-0446, 110238-2004.

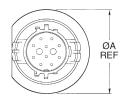

Square Flange

Snaps onto Type R and B connectors

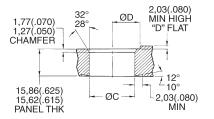
Materials and Finishes Material: Thermoplastic Color: Black


Housing Size	Part Number	А	B Max.	ØC
5	066-9504.000	23,37 (.920)	31,24 (1.230)	32,51 - 31,75 (1.280 - 1.250)
10	066-9504-001	28,45 (1.120)	36,32 (1.430)	25,40 - 24,64 (1.000970)


3,05 (.120)


> 5,33 (.210) MAX

Receptacle, Snap-thru* (Type T) SLC-5, SLC-10

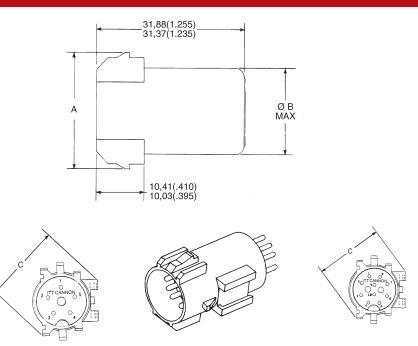


Front-Face View 5 Position Front-Face View 10 Position

Panel Section View

ØD REF

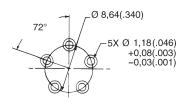
Panel Rear Face View

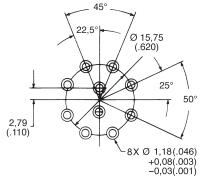

Housing Size	Rating	Part Number	Description	ØA	ØB	ØC	ØD
5	5 A	098533-0000	SLC-5T5-00	37,21 (1.465)	24,13 (.950)	25,60 (1.008)	15,62 (.615)
5	13 A	098533-0001	SLC-5T13-00	36,96 (1.455)	23,75 (.935)	25,48 (1.003)	15,34 (.605)
10	5 A	098533-0002	SLC-10T5-00	47,62 (1.875)	31,24 (1.230)	35,05 (1.380)	20,19 (.795)
10	13 A	098533-0003	SLC-10T13-00	47,37 (1.865)	30,86 (1.215)	34,92 (1.375)	19,94 (.785)

*Contact lead assemblies are customer terminated and installed. See page 14, part numbers 110238-0446, 110238-2004.

Receptacle, PCB* (Type B) SLC-5, SLC-10

Front-Face View 5 Cavity Housing Side View In-Line Receptacle With PCB Contacts


Front-Face View 10 Cavity Housing


In-line Receptacle* (Mates with SLC Type P)

Size	Rating	Part Number	Description	A	ØB	C Ref.
5	5 A	098531-0000	SLC-5B5-00	24,13 (.950)	18,03 (.710)	24,38 (.960)
5	13 A	098531-0001	SLC-5B13-00	23,75 (.935)	18,03 (.710)	24,38 (.960)
10	5 A	098531-0002	SLC-10B5-00	31,24 (1.230)	25,15 (.990)	31,62 (1.245)
10	13 A	098531-0003	SLC-10B13-00	30,86 (1.215)	25,15 (.990)	31,62 (1.245)

*PCB Contacts are factory installed.

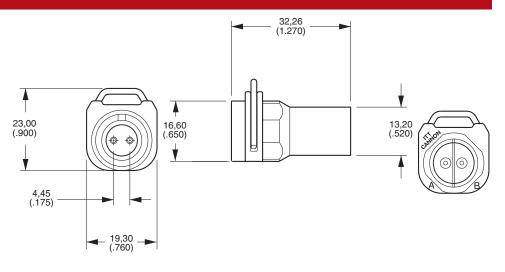
Recommended PCB Layout

10,10

(.400)

44,00 (1.700) 22,90 (.900)

PANEL


MAX

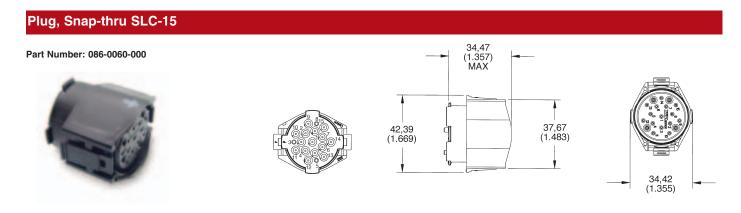
Note: In-line plug and receptacle available.

Plug, Feed-thru CLC-2

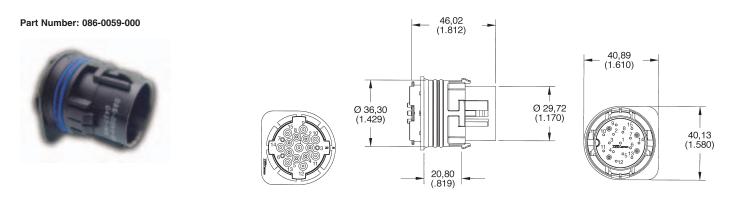
Part No.: 086-0058-000 With Silicone Grommet Seal Part No.: 086-0058-001 With Silicone Grommet Seal Part No.: 086-0058-002 With Fluorosilicone Seal

4,45

(.175)

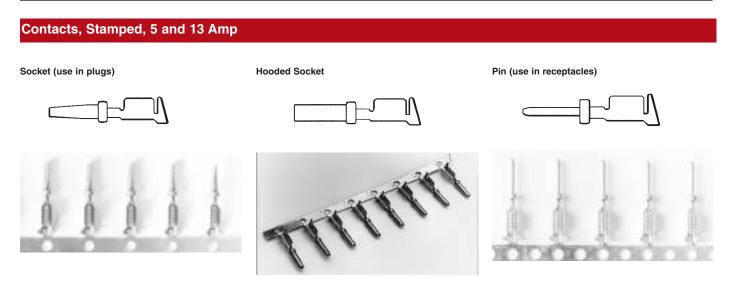

15.90

(.600)



< итт

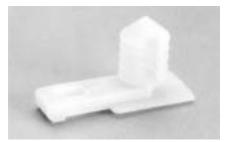
Right Angle CLC and CLC Y-Splice, please contact Product Management.



Receptacle, Snap-thru SLC-15

Consult factory for alternate layouts.

	Hooded Socket	Reeled		
Description	Socket Part Number	Pin Part Number	Socket Part Number	Number of Contacts
5 A	110238-1016 (030-2480-007)	110238-0446 (030-2464-007)	110238-0488 (030-2480-000)	4,500
13 A		110238-2004 (030-2464-003)	110238-2003 (030-2480-003)	4,000
13 A		110238-2004 (030-2464-003)	110238-2003 (030-2480-003)	4,000


Accessories

Sealing Plugs

Material: Thermoplastic, Color: Natural Part Number: 225-0093-000 +125°C Rating

Connector Clip

Material: Thermoplastic, Color: Natural Part Number: 225-0093-000 +125°C Rating

Mounting Hardware for use on In-line Receptacle (Cable-to-Cable) (Type R) Fits \emptyset 6,35 (.250) hole x 0,51 (.020) thick panel.

Extraction Tool

Contact Extraction Tool Part Number: 274-7068-001 Tip Part Number: 323-9519-000

A Standard CET - SLE/SLC is available for extraction of the individual crimp contacts. Insertion tool is not required.

Insertion / Extraction Instructions for Crimp Contacts

Insertion Tool

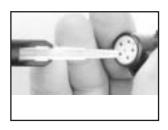
No insertion tool is required. The contact is easily snapped in from the rear of the connector manually.

1. Move to the rear of the connector so that the contact cavities can be identified.

2. Insert a crimp terminated assembly into a selected cavity.

3. Continue the forward movement until and audible snap can be felt and heard. Slight pull in the opposite direction will confirm complete insertion.

Extraction


1. Open the CET - SLC Extraction tool and place it over the insulation of the wire.

2. Using a straight motion forward, insert the tool along the wire until it bottoms against the connector. (Do not use a screwing motion damage will result.)

3. While the extraction tool is in place, simply pull the wire/contact assembly out.

4. Remove the extraction tool. Extraction is complete.

Hand Crimp Tool Operation

Hand Crimp Tool - CCT - SLC / SLE Part Number: 995-0002-232

The CCT-SLC/SLE hand crimp tool is designed to crimp individual SLC/SLE contacts on wire sizes 16, 18, and 20 AWG. Each cycle is ratchet-controlled (The tool must be completely closed before it can be reopened) to assure a satisfactory crimp each time. Over and under crimps are eliminated.

This tool is for use when the requirement is for low to moderate volume quantities, and for on-site applications where semiautomatic tools cannot be practically used.

1. Cycle the CCT - SLE / SLC hand tool to the open position.

4. Partially (usually the first click) Cycle the hand tool assuring that the upward thrusting tails of the contact has started engaging with the top jaw of the tool. (There is a slight tendency for the contact to roll out of vertical alignment.)

While pressing upward on the locator spring, insert the contact with tails upward completely into the locator.

5. Insert the pre-stripped wire into the crimp area of the contact and completely cycle the tool.

3. When correctly positioned the contact should be located beyond flush with the edge of the CCT - SLE / SLC and positioned in the concave polished split level crimp.

6. While pressing upward on the locator spring withdraw the crimp termination.

7. The result will be a perfect termination.

8. Note that there are no unterminated wire strands, and that some strand ends can be seen at the forward edge of the crimp. Also note the insulation is gripped by the smaller secondary crimp. Distortion is at a minimum, both axially and laterally - no sharp edges.

Wire Stripping

	l 5 and 13	3 A Contact	
Tolerance	A	В	
Low	2,41 (.095)	5,33 (.210)	
High	3,30 (.130)	5,59 (.220)	

A

- 1

Lease Automatic Tooling - North America*

ABT-607 Pneumatic Crimper

The ABT-607 is a pneumatic powered and controlled machine. It is designed for customers with moderate volume. This machine is designed to semi-automatically crimp stamped and formed contacts onto pre-stripped stranded or single conductor electrical wire. This machine will accommodate size 34 thru 12 AWG wire and is actuated by the use of a foot pedal.

Machine Crimp Rate: 800 per hour

Power Requirements: Pneumatic = 100 psi, 2 cu. ft. per min.

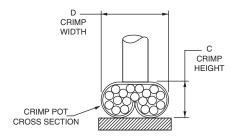
ABT-500 UCCD

The ABT-500 Universal Cannon Crimp Die, is a flywheel driven, electronically controlled machine that is designed to semi-automatically crimp stamped and formed contacts on stranded or single conductor, prestripped wire. This machine will accommodate size 34 thru 12 WG wire. The machine is actuated by the use of a foot pedal. Machine Crimp Rate: 1300 per hour

Power Requirements: Electrical = 115VAC, 60Hz, 20A

ABT-620 UCCS

The ABT-620 Universal Cannon Crimper/Stripper is a pneumatic powered, microprocessor controlled machine. It is designed to semi-automatically strip insulation from stranded or single conductor electrical wire and attach a stamped and formed contact by crimping. The machine will accommodate 34 thru 12 AWG wire. Primary application of the machine is the termination of jacketed cable where the individual leads cannot be stripped by fully automated equipment. The ABT-620 UCCS operates automatically upon insertion of a wire or it can be switched over to foot pedal operation if desired.


Machine Crimp Rate: 1200+ per hour

Power Requirements: Electrical = 115VAC, 60Hz, 20A Pneumatic = 80 psi, 3 cu. ft. per min.

* For other geographical regions, contact Cannon for details.

Crimp Pot Cross Section

The wire crimp heights listed are only reference and valid for the correspondingly listed wire size, wire plating and wire stranding.

The wire crimp tensile values must be used to assure the performance of crimped contacts.

For wire crimp information not listed in this table, please contact Cannon.

Crimp Height and Width

			Wire Ga	uge (AWG)				
	16			18		2	20	
	C*	D Ref.		C*	D Ref.	C*	D Ref.	
Signal (5A)	.064*	.082		.056*	.080	.054*	.080	
Power (13A)	.066*	.082		.062*	.080	.058*	.080	

* Hand Tools are \pm .002 and machines are \pm .001

Insulation Height and Width

	Wire Gauge (AWG)					
	16		18		20	
	Height	Width Max**	Height Max	Width Max**	Height Max	Width Max**
	Max					
Signal (5A)	.110	.115**	.105	.110**	.105	.110**
Power (13A)	.110	.115**	.105	.110**	.105	.110**

** Measurements are taken without crimping wire insulation.

Crimp Tensile Strength

Wire Trim Dimension

Wire Size (AWG)	16	18	20	
Tensile Min (lbs)	35 lbs.	25 lbs.	20lbs.	

Test Parameters

SLC Products are designed to meet Cannon specifications CS-206, CS-210, and CS-216. Items of most general interest to users are designers are listed below.

Environmental Sealing Contact Crimp Tensile Strength Insulation Resistance Dielectric Withstanding Voltage Low Level Contact Resistance Mechanical Shock Vibration Durability Contact	3.2.3.5 3.2.3.6 3.2.3.7 3.2.3.8 3.2.3.9 3.2.3.2 3.2.2.1 3.2.1.1 3.2.1.2 3.2.1.4 3.2.3.3 3.2.3.4 3.2.3.4		all exhibit an insul- chevicity of the spectrum of the spectru	s 750 PSIG C e wire from the contact, e le less than the applicable Il not constitute a failure. Crimp Tens 35 25 20 ation resistance greater t cluding salt solution immo- nce of breakdown betwee posure to each environmer is shall be less than 10 m of 100 milliamps with an each direction applied ald Each shock shall consist n in accordance with MIL- or (Y) nitored during the last 20	e limits as specified. Wire break ile Strength, Pounds Minimur han 100 megohms between all ersion. Tests shall be performed en adjacent contacts when teste nt. Current leakage shall be less open circuit test voltage of 20 r ong the three mutually perpendie of a terminal peak sawtooth pul -STD-1344, Method 2005.1, tes Grms 10.2 10.2 minutes sweep in each axis wi	age or contact damage or contact damage or contacts. This limit (at 100 VDC ± 10%). It at 100 VDC ± 5% than 1.0 milliamp. It contacts and millivolts maximum. Cular axes of the se with a peak value to condition VI for 20 th a test current of 10 the atest current of 10 th
Tensile Strength Insulation Resistance Dielectric Withstanding Voltage Low Level Contact Resistance Mechanical Shock Vibration Durability	3.2.1.1 3.2.1.2 3.2.1.4 3.2.3.3 3.2.3.4	breaking the wire within the crin not due to crimping at less than Wire Size AWG 16 18 20 Mated and wired connectors sh shall apply after exposure to ea Wired and mated connectors sh Connectors shall meet this requ The low level contact resistance crimp joints. The test current sh Connectors shall be subjected t connector test specimen for a to of 100 g's and a duration of 6 m Connectors shall be subjected t hours along each of the followin Dire Radi Long Electrical continuity of the conn milliamps or less and a test volt failure.	all exhibit an insul- characteristic and the shall not b tensile loads shall all exhibit an insul- ch environment in all show no evide irement after expo- of mated contact all be a maximum o three shocks in tal of 12 shocks. I illiseconds. o random vibration g three axes: tion al axis of connecta tudinal axis of consector itudinal axis of consector itudinal axis of consector shall be mo age less than 2VE	e less than the applicable II not constitute a failure. Crimp Tens 35 25 20 ation resistance greater t cluding salt solution imme nce of breakdown betwee osure to each environmer is shall be less than 10 m of 100 milliamps with an each direction applied ald Each shock shall consist n in accordance with MIL- or (Y) nnector (Z) nitored during the last 20	e limits as specified. Wire break ile Strength, Pounds Minimur han 100 megohms between all ersion. Tests shall be performed en adjacent contacts when teste nt. Current leakage shall be less open circuit test voltage of 20 r ong the three mutually perpendie of a terminal peak sawtooth pul -STD-1344, Method 2005.1, tes Grms 10.2 10.2 minutes sweep in each axis wi	age or contact damage or contact damage or contacts. This limit (at 100 VDC ± 10%). It at 100 VDC ± 5% than 1.0 milliamp. It contacts and millivolts maximum. Cular axes of the se with a peak value to condition VI for 20 th a test current of 10 the atest current of 10 th
Resistance Dielectric Withstanding Voltage Low Level Contact Resistance Mechanical Shock Vibration Durability	3.2.1.2 3.2.1.4 3.2.3.3 3.2.3.4	shall apply after exposure to ea Wired and mated connectors sh Connectors shall meet this requ The low level contact resistance crimp joints. The test current sh Connectors shall be subjected t connector test specimen for a to of 100 g's and a duration of 6 m Connectors shall be subjected t hours along each of the followin Diree Radi Long Electrical continuity of the conm milliamps or less and a test volt failure. Connectors shall be subjected t	ch environment in all show no evide irrement after expo of mated contact all be a maximum o three shocks in tal of 12 shocks. I illiseconds. o random vibration g three axes: tion al axis of connectt itudinal axis of con ectors shall be mo age less than 2VE	cluding salt solution immu- nce of breakdown betwee sure to each environmer is shall be less than 10 m of 100 milliamps with an each direction applied ak Each shock shall consist n in accordance with MIL- or (Y) nnector (Z) nitored during the last 20	ersion. Tests shall be performed en adjacent contacts when teste it. Current leakage shall be less open circuit test voltage of 20 r ong the three mutually perpendi of a terminal peak sawtooth pul -STD-1344, Method 2005.1, tes Grms 10.2 10.2	at 100 VDC ± 10%. d at 1000 VDC ± 5%. than 1.0 milliamp. the contacts and millivolts maximum. cular axes of the lse with a peak value t condition VI for 20 th a test current of 10
Withstanding Voltage Low Level Contact Resistance Wechanical Shock Vibration	3.2.1.4 3.2.3.3 3.2.3.4	Connectors shall meet this requ The low level contact resistance crimp joints. The test current sh Connectors shall be subjected t connector test specimen for a to of 100 g's and a duration of 6 m Connectors shall be subjected t hours along each of the followin Dire Radi Long Electrical continuity of the conn milliamps or less and a test volt failure. Connectors shall be subjected t evidence of damage to the cont	irement after expo of mated contact all be a maximum o three shocks in ital of 12 shocks. i illiseconds. o random vibration g three axes: tion al axis of connect titudinal axis of con ectors shall be mo age less than 2VE	sure to each environmer is shall be less than 10 m of 100 milliamps with an each direction applied ald Each shock shall consist n in accordance with MIL- or (Y) nnector (Z) nitored during the last 20	nt. Current leakage shall be less illiohms when measured across open circuit test voltage of 20 r ong the three mutually perpendi of a terminal peak sawtooth pul 	the contacts and millivolts maximum. cular axes of the se with a peak value t condition VI for 20 th a test current of 10
Low Level Contact Resistance Vechanical Shock //ibration Durability	3.2.3.3	crimp joints. The test current sh Connectors shall be subjected t connector test specimen for a to of 100 g's and a duration of 6 m Connectors shall be subjected t hours along each of the followin Dire Radi Long Electrical continuity of the conn milliamps or less and a test volt failure. Connectors shall be subjected t evidence of damage to the cont	all be a maximum o three shocks in . tal of 12 shocks illiseconds. o random vibratior g three axes: tion al axis of connecta titudinal axis of co actors shall be mo age less than 2VE	of 100 milliamps with an each direction applied ald Each shock shall consist n in accordance with MIL- or (Y) nnector (Z) nitored during the last 20	open circuit test voltage of 20 r ong the three mutually perpendio of a terminal peak sawtooth pul -STD-1344, Method 2005.1, tes Grms 10.2 10.2 9 minutes sweep in each axis wi	nillivolts maximum. cular axes of the se with a peak value t condition VI for 20 th a test current of 10
Shock Vibration Durability	3.2.3.4	connector test specimen for a to of 100 g's and a duration of 6 m Connectors shall be subjected t hours along each of the followin Dire Radi Long Electrical continuity of the conn milliamps or less and a test volt failure. Connectors shall be subjected t evidence of damage to the cont	tal of 12 shocks. I illiseconds. o random vibratior g three axes: tion al axis of connector itudinal axis of con actors shall be mo age less than 2VE	Each shock shall consist n in accordance with MIL- or (Y) nnector (Z) nitored during the last 20	of a terminal peak sawtooth pul STD-1344, Method 2005.1, tes Grms 10.2 10.2 9 minutes sweep in each axis wi	ise with a peak value t condition VI for 20 th a test current of 10
Durability		hours along each of the followin Dire Radi Long Electrical continuity of the conn milliamps or less and a test volt failure. Connectors shall be subjected t evidence of damage to the cont	g three axes: ction al axis of connector itudinal axis of con- actors shall be mo- age less than 2VE	or (Y) nnector (Z) nitored during the last 20	Grms 10.2 10.2 minutes sweep in each axis wi	th a test current of 10
	3.2.2.6	evidence of damage to the cont	o 25 cycles of mat			
Contact			acts, contact platir			
	3.2.2.2	Contacts shall not be displaced this test follows maintenance ag			tor body when a force of 10 pou	unds is applied. Wher
Maintenance Aging	3.2.2.3	Consist of subjecting each wired connector with approved tooling		cycles of removal and reir	nsertion of 20% of the contacts	or a minimum of 5 pe
Mating and Separating Force	3.2.2.4	The maximum force required to plug and receptacle shall be 5 p				uired to separate the
Solvent Resistance Immersion	3.2.2.9	@ 7 psi.	tors shall be imm t the completion stance requireme l Fluid hol ar/50% Glycol pirits ase) Oil V40) preme) on Fluid nerged and pressu Dextron) hstand a one seco	hersed to a depth of 2 to of the salt-water immer ent specified herein. Method Immersion (2) Dip (1) Immersion (2) Dip (1) Immersion (2) Dip (1) Immersion (2) Dip (1) Dip (1) Dip (1) Dip (1) Dip (1) Dip (1) urized	o 12 inches in a 5% salt-water	solution for 24 d, the connectors
lemperature life	3.2.3.1	Connectors shall be subjected t period and after removal from th voltage requirements specified l life test. Upon removal from the which may be detrimental to the	ne chamber, the connectors chamber at the connectors	onnectors shall meet the s shall be operated at rate onclusion of the test, the	insulation resistance and dielec ed current throughout the durati	tric withstanding on of the temperature
Thermal Cycling	3.2.3.2	Connectors shall be subjected t temperature to -40°C to +150°C with a minimum stabilization per be a minimum of 1.30°C per mi	, and from 150°C iod of 15 minutes	to room temperature. On at each temperature extr	e cycle shall be accomplished i reme. The chamber temperature	n a three-hour period
Specifications and dimensions subj	ject to change	1			×	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for itt manufacturer:

Other Similar products are found below :

NEM-QTHSSB-68PGNS-B MJSR-34PL61 096520-0863 096520-0927 153205-3053 096522-0534 097391-0281 MDM-37PCBR-F222 MJSR-42PH003 MDM-51PCBRP-L56 CV3456L28-15P KPSE06F20-41SA206F0 CB2-18-3SCA232 MS3106E22-14P 252-7689-001 CA3108E14S-5PBA176A232 097414-0074 CA3101E10SL-4SF80DN CA3101E10SL-4PBA176F42 053513-4377 MS3100F14S-7S 051212-0001 MS3101E181SW 980-8001-545 024251-0016-R 024253-0025 024265-0001 024270-0015 024271-0022 024273-0043 024288-0001 M24308/24-21F CT1F22-7SS CT2-20-23SWS CT2-20-23SXS CT2-32-5PC CT2-36-10PCAU CT6-24-11PSA206 CT6F9767-14-4-14S-5PC CT6T9767-14-4-14SA7SS D38999/20FG16PA-LC - D38999/26JH21PB-LC MD1-21PS MDM-15PH001B-A174 MDM-15PH003B-A174 MDM-21SCBR-A174 MDM-21SCBRP-A174 MDM-21SH003B MDM25PH003BF222 MDM-31SBRP