ROHS
Available on commercial versions

50 Watt Zener Diodes

Qualified per MIL-PRF-19500/114

DESCRIPTION

This series of high power 50W Zener diodes, JEDEC registered 1N2804B through 1N2846B and 1N4557B through 1N4564B, provide voltage regulation in values from 3.9 V to 200 V broad range of voltages. They may be operated up to 50 W with adequate mounting and heat sinking due to their low thermal resistance. These Zeners are also available in reverse polarity. On select part numbers, these Zeners are also available in JAN, JANTX, and JANTXV military qualifications.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered IN2804 through 1N2846B and 1N4557 through 1N4564B numbers.
- Internal solder bond construction.
- Hermetically sealed (welded).
- Zener voltage 3.9 V to 200 V .
- JAN, JANTX, and JANTXV qualifications also available per MIL-PRF-19500/114 on most family members (see Electrical Characteristics table).
(See Part Nomenclature for all available options).
- Standard polarity is anode to case. Reverse polarity is available.
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- Regulates voltage over a broad range of operating current and temperature.
- Voltage tolerances of $10 \%, 5 \%, 2 \%$, and 1% are available.
- Non-sensitive to ESD per MIL-STD-750 method 1020.
- Inherently radiation hard as described in Microsemi MicroNote 050.

MAXIMUM RATINGS

Parameters/Test Conditions	Symbol	Value	Unit
Junction Temperature	T_{J}	-65 to +175	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-65 to +200	${ }^{\circ} \mathrm{C}$
Thermal Resistance Junction to Case @ $\mathrm{T}_{\mathrm{C}}=30^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$	$\mathrm{R}_{\ominus \mathrm{JC}}$	2.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Average Rated Power Dissipation @ $\mathrm{T}_{\mathrm{C}} \geq 75^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{M}(\mathrm{AV})}$	50	W
Power Derating @ $\mathrm{T}_{\mathrm{C}} \geq+75^{\circ} \mathrm{C}$		0.5	$\mathrm{~W}^{\circ} \mathrm{C}$
Forward Voltage @ $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~A}$	$\mathrm{~V}_{\mathrm{F}}$	1.5	V
Solder Temperature @ 10 s max	T_{SP}	260	${ }^{\circ} \mathrm{C}$

Qualified Levels: JAN, JANTX, and JANTXV

TO-204AD (TO-3) Package

MSC - Lawrence
6 Lake Street,
Lawrence, MA 01841
Tel: 1-800-446-1158 or
(978) 620-2600

Fax: (978) 689-0803
MSC - Ireland
Gort Road Business Park,
Ennis, Co. Clare, Ireland
Tel: +353 (0) 656840044
Fax: +353 (0) 656822298
Website:
www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Industry standard TO-3 (TO-204AD), hermetically sealed, 0.052 inch diameter pins.
- FINISH: Solder dipped tin-lead over nickel plated alloy 52. Solderable per MIL-STD-750 method 2026. RoHS compliant mattetin plating is also available on commercial grade only.
- POLARITY: Standard polarity units are connected anode to case. Reverse polarity (cathode to case) is indicated by suffix R. In either example, both pins are common with one another as anode or cathode (see Figure 2).
- WEIGHT: Approximately 15 grams.
- MOUNTING HARDWARE: Consult factory for optional insulator and sheet metal screws.
- See Package Dimensions on last page.

PART NOMENCLATURE

SYMBOLS \& DEFINITIONS

Symbol	Definition
I_{R}	Reverse Current: The maximum reverse (leakage) current that will flow at the specified voltage and temperature.
$\mathrm{I}_{\mathrm{Z}}, \mathrm{I}_{\mathrm{ZT}}, \mathrm{I}_{\mathrm{ZK}}$	Regulator Current: The dc regulator current (I_{Z}), at a specified test point (I_{ZT}), near breakdown knee (I_{ZK}).
I_{ZM}	Maximum Regulator (Zener) Current: The maximum rated dc current for the specified power rating.
V_{R}	Reverse Voltage: The reverse voltage dc value, no alternating component.
V_{F}	Maximum Forward Voltage: The maximum forward voltage the device will exhibit at a specified current.
V_{Z}	Zener Voltage: The Zener voltage the device will exhibit at a specified current ($\left.\mathrm{I}_{\mathrm{Z}}\right)$ in its breakdown region.
Z_{ZT} or Z_{ZK}	Dynamic Impedance: The small signal impedance of the diode when biased to operate in its breakdown region at a specified rms current modulation (typically 10% of I_{ZT} or I_{ZK}) and superimposed on I_{ZT} or I_{ZK} respectively.

* ELECTRICAL CHARACTERISTICS @ $\mathrm{T}_{\mathrm{C}}=30^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$ unless otherwise noted

JEDEC TYPE NUMBER (Note 1)	NOMINAL ZENER VOLTAGE $\mathrm{V}_{\mathrm{z}} @ \mathrm{I}_{\mathrm{ZT}}$	ZENER TEST CURRENT (IZT)	MAXIMUM DYNAMIC IMPEDANCE (NOTE 2)		MAX DC ZENER CURRENT (Izm) @ 75 ${ }^{\circ} \mathrm{C}$ Stud Temp. (Note 3)	TYPICAL TEMPERATURE COEFFICIENT α_{vz}	MAX** REVERSE CURRENT $\mathrm{I}_{\mathrm{R}} @ \mathrm{~V}_{\mathrm{R}}$	
			$\mathrm{Z}_{\text {zt }} @ \mathrm{I}_{\mathbf{z t}}$	$\begin{gathered} \mathrm{Z}_{\mathrm{zk}} @ 1 \mathrm{~mA} \\ \left(\mathrm{I}_{\mathrm{zK}}\right) \end{gathered}$				
	Volts	mA	Ohms	Ohms	mA	\% ${ }^{\circ} \mathrm{C}$	$\mu \mathrm{A}$	Volts
†1N4557B	3.9	3200	0.16	400	10,000	-0.050	150	0.5
$\dagger 1 \mathrm{~N} 4558 \mathrm{~B}$	4.3	2900	0.16	500	9,000	-0.035	150	0.5
†1N4559B	4.7	2650	0.12	600	8,000	± 0.015	100	1.0
$\dagger 1 \mathrm{~N} 4560 \mathrm{~B}$	5.1	2450	0.12	650	7,500	0.035	20	1.0
\dagger 1N4561B	5.6	2250	0.12	900	7,000	0.050	20	1.0
\dagger 1N4562B	6.2	2000	0.14	1000	6,500	0.055	20	2.0
1N4563B	6.8	1850	0.16	200	6,650	0.053	10	2.0
1N4564B	7.5	1650	0.24	100	6,050	0.057	10	3.0
$\dagger 1 \mathrm{~N} 2804 \mathrm{~B}$	6.8	1850	0.2	70	7,000	0.057	150	4.5
$\dagger 1 N 2805 B$	7.5	1700	0.3	70	6,360	0.067	100	5.0
$\dagger 1 \mathrm{~N} 2806 \mathrm{~B}$	8.2	1500	0.4	70	5,800	0.070	50	5.4
$\dagger 1 N 2807 B$	9.1	1370	0.5	70	5,240	0.075	25	6.1
$\dagger 1 \mathrm{~N} 2808 \mathrm{~B}$	10	1200	0.6	80	4,760	0.081	25	6.7
†1N2809B	11	1100	0.8	80	4,330	0.085	10	8.4
$\dagger 1 \mathrm{~N} 2810 \mathrm{~B}$	12	1000	1.0	80	3,970	0.079	10	9.1
†1N2811B	13	960	1.1	80	3,750	0.080	10	9.9
1N2812B	14	890	1.2	80	3,400	0.070	10	10.6
†1N2813B	15	830	1.4	80	3,170	0.082	10	11.4
$\dagger 1 N 2814 \mathrm{~B}$	16	780	1.6	80	2,970	0.083	10	12.2
1N2815B	17	740	1.8	80	2,750	0.075	10	13.0
$\dagger 1 \mathrm{~N} 2816 \mathrm{~B}$	18	700	2.0	80	2,640	0.085	10	13.7
1N2817B	19	660	2.2	80	2,450	0.075	10	14.4
$\dagger 1 N 2818 \mathrm{~B}$	20	630	2.4	80	2,380	0.086	10	15.2
$\dagger 1 \mathrm{~N} 2819 \mathrm{~B}$	22	570	2.5	80	2,160	0.087	10	16.7
$\dagger 1 \mathrm{~N} 2820 \mathrm{~B}$	24	520	2.6	80	1,980	0.088	10	18.2
1N2821B	25	500	2.7	80	1,850	0.080	10	19.0
†1N2822B	27	460	2.8	90	1,760	0.090	10	20.6
$\dagger 1 N 2823 B$	30	420	3.0	90	1,590	0.091	10	22.8
$\dagger 1 \mathrm{~N} 2824 \mathrm{~B}$	33	380	3.2	90	1,440	0.092	10	25.1
†1N2825B	36	350	3.5	90	1,320	0.093	10	27.4
†1N2826B	39	320	4.0	90	1,220	0.094	10	29.7
†1N2827B	43	290	4.5	90	1,000	0.095	10	32.7
1N2828B	45	280	4.5	100	1,030	0.090	10	34.2
$\dagger 1 \mathrm{~N} 2829 \mathrm{~B}$	47	270	5.0	100	1,020	0.095	10	35.8
1N2830B	50	250	5.0	100	935	0.090	10	38.0
†1N2831B	51	245	5.2	100	930	0.096	10	38.8
$\dagger 1 N 2832 \mathrm{~B}$	56	220	6	110	850	0.096	10	42.6
†1N2833B	62	200	7	120	770	0.097	10	47.1
$\dagger 1 \mathrm{~N} 2834 \mathrm{~B}$	68	180	8	140	700	0.097	10	51.7
†1N2835B	75	170	9	150	640	0.098	10	56.0
†1N2836B	82	150	11	160	580	0.098	10	62.2
†1N2837B	91	140	15	180	530	0.099	10	69.2
$\dagger 1 \mathrm{~N} 2838 \mathrm{~B}$	100	120	20	200	480	0.100	10	76.0
1N2839B	105	120	25	210	430	0.090	10	79.8
$\dagger 1 \mathrm{~N} 2840 \mathrm{~B}$	110	110	30	220	430	0.100	10	83.6
†1N2841B	120	100	40	240	400	0.100	10	91.2
†1N2842B	130	95	50	275	370	0.100	10	98.8
†1N2843B	150	85	75	400	320	0.100	10	114.0
†1N2844B	160	80	80	450	300	0.100	10	121.6
†1N2845B	180	68	90	525	260	0.100	10	136.8
†1N2846B	200	65	100	600	240	0.100	10	152.0

* JEDEC Registered Data. **Not JEDEC Data. † Have JAN, JANTX and JANTXV Qualifications to MIL-PRF-19500/114

See notes on following page.

NOTES:

1. The JEDEC type numbers shown (B suffix) have a $+/-5 \%$ tolerance on nominal Zener voltage.
2. Zener voltage $\left(V_{z}\right)$ is measured with junction in thermal equilibrium with $30^{\circ} \mathrm{C}$ base temperature. The test currents ($I_{z \tau}$) have been selected so that at nominal voltages the dissipation is a constant 12.5 watts. This results in a nominal junction temperature rise of $18.75{ }^{\circ} \mathrm{C}$.
3. The Zener impedance is derived from the 60 cycle ac voltage, which results when an ac current having an rms value equal to 10% of the dc Zener current (I_{ZT} or I_{ZK}) is superimposed on I_{ZT} or I_{ZK}. Zener impedance is measured at 2 points to ensure a sharp knee on the breakdown curve and to eliminate unstable units. A curve showing the variation of Zener impedance vs. Zener current for six representative types is shown in Figure 3. Also see MicroNote 202 for further information.
4. The values of I_{zm} are calculated for $\mathrm{a}+/-5 \%$ tolerance on nominal Zener voltage. Allowance has been made for the rise in Zener voltage above V_{ZT} that results from Zener impedance and the increase in junction temperature as power dissipation approaches 50 watts. In the case of individual diodes, I_{Zm} is that value of current that results in a dissipation of 50 watts.

GRAPHS

FIGURE 1
Power Derating Curve

FIGURE 2
Typical circuit connections for anode-to-case and cathode-to-case polarities

FIGURE 3
Typical Zener Impedance vs Zener Current for Types Shown

Typical Zener Impedance vs Zener Current for Types Shown

PACKAGE DIMENSIONS

NOTES:

1. Dimensions are in inches. Millimeters are given for general information only.
2. These dimensions should be measured at points 0.050 inch $(1.27 \mathrm{~mm})+0.005$ inch $(+0.13 \mathrm{~mm})-0.000$ inch $(-0.00 \mathrm{~mm})$ below seating plane.
3. The seating plane of the header shall be flat within $0.001 \mathrm{inch}(0.03 \mathrm{~mm})$ concave to 0.004 inch $(0.10 \mathrm{~mm})$ convex 0.001 inch $(0.03 \mathrm{~mm})$ concave to 0.006 inch $(0.15 \mathrm{~mm})$ convex overall.
4. Pins 1 and 2 are internally connected with an internal jumper.
5. Devices with RB suffix (reverse polarity) have the cathode internally connected to the case.
6. In accordance with ASME Y14.5M, diameters are equivalent to $\Phi \times$ symbology.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Zener Diodes category:
Click to view products by Microsemi manufacturer:

Other Similar products are found below :
MMSZ5245BS-7-F RKZ13B2KG\#P1 RKZ5.6B2KJ\#R1 EDZTE6113B EDZTE6116B EDZTE616.8B 1N747A 1N966B NTE5116A NTE5121A NTE5139A NTE5147A NTE5152A NTE5155A NTE5156A NTE5164A JANS1N4974US SMAJ4764A-TP RKZ5.1BKU\#P6 3SMAJ5946B-TP 3SMAJ5950B-TP 3SMBJ5920B-TP 3SMBJ5925B-TP TDZTR24 441774C MMSZ4678-TP MMSZ5232BQ-13-F BZG04-36 BZG05C9V1-HE3-TR HZM30NBTR-E UDZTE-175.1B 3SMAJ5945B-TP 3SMAJ5947B-TP 3SMBJ5941B-TP DL4746A-TP RKZ18B2KK\#R1 RKZ10B2KL\#R1 RKZ6.8B2KL\#R1 RKZ8.2B2KL\#R1 DZ2S240M0L SMAZ27-TP SMBZ5920B-E3/52 ZMM3.0 RD16UM-T1-A RD39S-T1-A RD9.1S-T1-A RD10S-T1-A RD20S-T1-A RD2.2S-T1-A RD2.7UM-T1-A

